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Abstract 

Background  Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper 
and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput 
sequencing technologies, combined with data mining techniques and machine learning methods, could provide 
remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying 
machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited 
number of samples. The aim of this study was to develop a methodology for training interpretable machine learning 
models in the classification of ALS and ALS-subtypes samples, using gene expression datasets.

Methods  We performed dimensionality reduction in gene expression data using a semi-automated preprocessing 
systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection 
algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classi-
fiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. 
The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evalu-
ated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selec-
tion Operator (LASSO), and (b) Local Outlier Factor (LOF).

Results  The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex 
samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most 
determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation data-
set, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When 
LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged 
from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the 
classification of pooled cerebellum and frontal cortex samples).

Conclusions  Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and 
we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease 
subtypes and tissue samples, while identifying disease-associated genes.
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Introduction
Amyotrophic lateral sclerosis is a fatal neurodegenera-
tive disease that affects motor pathways of both upper 
and lower motor neurons (Mathis et  al. 2019; Ragagnin 
et  al. 2019). Motor symptoms include progressive mus-
cle atrophy and weakness that lead to paralysis and even-
tually death (Mejzini et  al. 2019). There is also a wide 
range of non-motor symptoms, such as cognitive and 
behavioral changes, disruption of executive functions, 
frontotemporal dementia, and others (Goldstein and 
Abrahams 2013; Phukan et  al. 2007; Volk et  al. 2018). 
The disease can be either inherited or sporadic in origin, 
while clear pathogenetic causes have been so far identi-
fied in 40–55% of inherited ALS cases (Mejzini et  al. 
2019). As a result, in the vast majority of ALS cases the 
disease etiology remains unclear (Mathis et  al. 2019; 
Volk et  al. 2018), while clinical and basic research data 
suggest involvement of multiple genetic factors (Mathis 
et al. 2019). Most familial ALS cases are inherited in an 
autosomal dominant manner, accounting for ~ 10% of 
all ALS cases, while the remaining 90% are classified as 
sporadic ALS (Mejzini et  al. 2019). Mutations in more 
than 30 genes and loci have been associated with ALS, 
including SOD1, TARDBP, FUS, and C9orf72 (Nakamura 
et al. 2020). Although these genes are strongly associated 
with familial ALS, mutated forms have also been identi-
fied in a small percentage of sporadic ALS cases (Es et al. 
2009). Nevertheless, a direct pathogenetic link between 
these gene mutations and the emergence of motor neu-
ron degeneration has not yet been established (Mejzini 
et al. 2019). As a result, despite several disease-associated 
mutations have been identified, their relative importance 
in ALS pathogenesis remains unclear (Lederer et  al. 
2007).

In recent years, the advancements in high-throughput 
sequencing technologies have opened new perspec-
tives in the elucidation of the underlying pathogenetic 
mechanisms of ALS. A plethora of whole genome asso-
ciation studies has resulted in the identification of ALS 
susceptibility loci and ALS-associated single nucleo-
tide polymorphisms (SNPs) (Nakamura et  al. 2020; Es 
et al. 2009; Sha et al. 2009), while gene expression stud-
ies have led to gene expression profiling of various tis-
sues of the nervous system (Batra et al. 2016; Pantelidou 
et al. 2007; Prudencio et al. 2015). RNA-sequencing data 
has been used for a wide range of analyses, including 
weighted gene co-expression network analysis and pro-
tein–protein interaction networks analysis (Kotni et  al. 
2016; Saris et al. 2009) as well as unsupervised clustering 

analysis of gene expression for the molecular classifica-
tion of ALS samples (Aronica et  al. 2015; Morello et  al. 
2018). In this context, a classification pipeline based pre-
dominantly on machine learning techniques was recently 
introduced (Karim et  al. 2021). However, the classifica-
tion efficiency of machine learning (ML) methods dete-
riorates when applied to biomedical data; due to "the 
curse of dimensionality" (Vasilopoulou et al. 2020), exac-
erbated by the lack of large, labeled datasets to properly 
train the ML models. High dimensionality is a very com-
mon problem in such studies, since datasets include an 
extremely high number of features with a reduced num-
ber of samples (Vasilopoulou et  al. 2020). Recently, an 
indirect solution to the problem was proposed, based on 
conversion of RNA expression data into images and use 
of these images to train a convolution neural network 
(CNN) (Karim et al. 2021). The main shortcoming of this 
approach is that the training data is too small to allow 
for efficient model building and separation between rel-
evant and irrelevant genes. In other studies, a manual or 
ad-hoc selection process was used (Magen et al. 2020). In 
the meanwhile, AI-based approaches have started being 
considered as innovative gene targeting tools, employed 
recently in drug target discovery studies (Eisenstein 
2022).

In this study, we introduce a novel semi-automated 
preprocessing gene selection methodology using SES, 
a causality-based feature selection algorithm that is tai-
lored to high-dimensional datasets with a low number 
of samples. We used novel approaches to (i) achieve 
dimensionality reduction of gene expression data, while 
ensuring that genes with causality relationship and not 
mere statistical correlation will be retained; and (ii) train 
highly efficient interpretable classification models using 
XGBoost and Random Forest. For the interpretation of 
XGBoost models, we used the SHAP values (Shapley 
additive explanations). Our methodology was developed 
and evaluated using 2 publicly available ALS-related 
datasets and benchmarked against other gene selec-
tion approaches (Least Absolute Shrinkage and Selec-
tion Operator (LASSO) and Local Outlier Factor (LOF)), 
achieving high classification accuracy and model expla-
nation efficacy, especially in more complex datasets. Of 
note, the genes selected through our methodology as the 
most determinative for disease existence have already 
been reported to play a role in ALS; this provides strong 
insights into the capability of our methodology not only 
to lead to better detection and prediction ML models but 
also assist in unraveling disease-associated genes.
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Data and methods
Data
Two datasets were used in this study, as outlined in 
Table  1. For the development of the proposed method-
ology, we used RNA-sequencing data from the study of 
Prudencio et al. (Prudencio et al. 2015) which included: 
(a) cerebellum and frontal cortex post-mortem samples 
from 8 C9orf72-related familial ALS cases (8 frontal cor-
tex and 8 cerebellum samples), (b) cerebellum and fron-
tal cortex post-mortem samples from 10 sporadic ALS 
cases (10 frontal cortex and 10 cerebellum samples), and 
(c) cerebellum and frontal cortex post-mortem samples 
from 8 healthy individuals plus one frontal cortex sam-
ple from an additional healthy individual (9 frontal cortex 
and 8 cerebellum samples). For this dataset (Prudencio 
et  al. 2015), gene expression and differential expression 
analyses were performed, following a standard protocol 
(Ghosh and Chan 2016). Additionally, a publicly avail-
able gene expression dataset from the study of Batra et al. 
(2016) was used to evaluate the efficiency of our meth-
odology. This dataset included gene expression data for 
12 sporadic ALS motor neuron samples and 9 healthy-
control motor neuron samples.

Methodology
The SES algorithm is a causality-based feature selection 
algorithm, established on the principles of constrained-
based learning of Bayesian Networks, from the “MXM” R 
package. SES follows a forward–backward filter approach 
for feature selection while providing minimal, highly-
predictive, statistically-equivalent, multiple feature sub-
sets of a high dimensional dataset (Anna Roumpelaki 
2022). Using SES, we managed to develop a systematic 
gene selection process and successfully achieved dimen-
sionality reduction by identifying the genes that have the 
highest probability to be causally related with ALS. After 
identifying the minimal set of features with the highest 
predictive performance on the target variable of interest 
(disease state: ALS or healthy), the SES algorithm uses 
these features to build regression models. The selected 
features can be further used to train disease classifiers.

The newly-developed pipeline starts with application 
of the SES algorithm to detect the genes that constitute 
a subset of the Markov Blanket (parents and children 
only) of the target variable of interest (disease state -ALS 

or healthy- of a sample). Then machine learning classifi-
ers are trained using the selected genes by applying the 
two tree-based machine learning algorithms XGBoost 
(“xgboost” R package) (Chen et  al. 2016) and Random 
Forest (“randomForest” R package) (Breiman 2001). The 
classifiers are interpreted according to their SHAP values 
(“shapr” package). The proposed pipeline allows detec-
tion of the genes that are the determinative for the clas-
sification of a sample as diseased or healthy, emphasizing 
on causal relationships rather than statistical correlations 
that may be present in the data available (Fig. 1).

Feature selection with SES
The focus of our study is to identify the genes forming the 
optimal SES regression models. We used the SES algo-
rithm to identify the highly-predictive subsets of genes, 
allowing discrimination between: (a) C9orf72-related 
familial ALS and healthy-control samples, (b) sporadic 
ALS and healthy-control samples, and (c) all ALS (both 
sporadic and C9orf72-related familial ALS) and healthy-
control samples. Since datasets from two distinct ana-
tomical regions of the brain were available (frontal cortex 
and cerebellum), 6 different binary class separation cases 
were performed.

SES was applied in a ninefold leave-out stratified cross-
validation manner for 3 different p-values (0.01, 0.03, 
0.05). We used various p-values to render the gene selec-
tion process as systematically as possible and minimize 
the possibility of omitting highly predictive genes due to 
use of an incorrect combination of parameters. The max-
imum number of equally-predictive regression models 
produced per algorithm repetition is defined by the nsig-
nat parameter, while each regression model represents 
the selection of a different subset of genes-features from 
the initial gene expression data. In our case, the nsignat 
was set to 10, meaning that SES returned a maximum of 
10 equivalent regression models per repetition.

Development of machine learning classifiers with XGBoost 
and Random Forest
Next, we used two tree-based machine learning algo-
rithms, XGBoost and Random Forest, to train classi-
fiers. The machine learning algorithms were trained on: 
(a) the expression values of the selected genes, (b) the 
initial high-dimensional gene expression data. Training 

Table 1  Data summary

Development dataset A) Cerebellum and frontal cortex gene expression (logRPKM) data from 8 C9orf72-related familial ALS, 10 sporadic ALS and 9 
healthy-control patients (for 1 of the healthy patients only frontal cortex expression data was available). In total, 53 cerebellum 
and frontal cortex samples
B) Same data formatted as differential expression datasets for the sporadic ALS and the C9orf72-related familial ALS subtype (1 
differential expression dataset per disease subtype)

Evaluation dataset Spinal motor neuron gene expression (logRPKM) data from 12 sporadic ALS patients and 9 healthy-control patients
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the machine learning algorithms on the initial dataset 
(full dimensionality) aimed at checking whether the per-
formed feature selection process was efficient in terms of 
the resulting ML model accuracy. Classifiers trained on 
the complete initial gene expression dataset are expected 
to have lower accuracy than those trained on the more 
restricted dataset. To generate dependable and accurate 
results, the same k-fold cross-validation process, as in the 
feature selection process, was followed in this step of the 
analysis.

Model interpretation with the SHAP values
Interpreting machine learning models with the SHAP 
(SHapley Additive exPlanations) values (Norsk Regnesen-
tral and Package 2021) is an application of the emerging 
field of XAI (eXplainable Artificial Intelligence) (Barredo 
Arrieta et  al. 2020). The SHAP values provide a way to 
rank the predictors by their importance in the model, 
as they represent the effect of each of the predictive fea-
tures (in our case genes) on the predicted outcome (class 
prediction). To this end, we used the “shapr” package for 
the interpretation of the most accurate machine learning 
classifiers.

Evaluation methods
We first evaluated our methodology by applying it in data 
from another publicly available gene expression dataset 
(Batra et al. 2016), which included gene expression values 
from 12 sporadic ALS and 9 healthy-control motor neu-
ron samples. Following the same process, we applied the 
SES algorithm in a ninefold leave-out stratified cross-val-
idation approach for 3 different p-values (0.01, 0.03, 0.05) 
and the maximum number of SES regression models to 
be produced per run (nsignat parameter) was set to 10.

To further evaluate our methodology, we compared 
the gene selection performance of SES to that of LASSO. 
LASSO is a state-of-the-art feature selection algorithm, 
which focuses on correlations between predictive fea-
tures and the target variable rather than causal relation-
ships between them (Lagani et  al. 2017; Yu et  al. 2020). 
In this context, we used LASSO instead of SES and ana-
lyzed both the development gene expression (Prudencio 
et al. 2015) and the evaluation dataset (Batra et al. 2016). 
To simulate the multi-stage analysis performed with SES, 
we applied LASSO in a tenfold leave-out cross-validation 
manner for each dataset and we performed 50 repetitions 
(seeds 1–50) per fold.

Finally, we compared the feature selection performance 
of SES to that of a simple outlier detection process. To 
this end, we used the differential expression dataset we 
retrieved through differential expression analysis of 
the Prudencio et al. dataset (Prudencio et al. 2015). The 
method used for the outlier detection was the LOF algo-
rithm, a density-based algorithm from “DMwR” R pack-
age (Torgo 2017). Sporadic ALS and C9orf72-related 
familial ALS differential expression datasets were merged 
and the common outliers between these two disease sub-
types were identified.

Results
Gene selection and classifier construction
The genes selected during the multi-stage system-
atic feature selection process with SES carry all the 
necessary information for further classification of an 
unknown cerebellum or frontal cortex sample into dif-
ferent categories. When analyzing the development 
dataset, we were interested in the C9orf72-related 
familial ALS, sporadic ALS or healthy, 3-classification 

Fig. 1  Schematic of the developed methodology
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problem. While the development dataset included 
23,188 genes, the genes selected by the systematic gene 
selection process with SES (the genes forming the mul-
tiple regression models for the 6 different binary class 
separation cases) were reduced to 473 (approx. 2%).

These 473 selected genes represent the first set of 
selected genes, a rather general set of genes for molec-
ular detection of all the ALS cases (C9orf72-related 
familial ALS and sporadic ALS cases). However, if we 
assess the class separation accuracy achieved by the 
regression models of SES, we can identify those regres-
sion models (i.e., these highly-predictive subsets of 
genes) that are very accurate (thus more informative) 
for a specific molecular segregation case.

Table  2 displays the accuracy achieved by the SES 
regression models in the six different separation cases 
for the three different p-values when taking into con-
sideration: (a) the first 3 out of 10 SES models, (b) the 
first 5 out of 10 SES models and (c) all 10 SES models.

Across the board (Table  2), SES regression mod-
els perform better in the separation cases of the cer-
ebellum samples: by using the first 5 SES models for 
p-value = 0.01 we can distinguish if a cerebellum sam-
ple is an ALS (C9orf72-related familial ALS or sporadic 
ALS) or a healthy sample with 85.18% accuracy. Simi-
larly, Table  2 also shows that by using the first 5 SES 
models for p-value = 0.01, we can identify an unknown 
ALS cerebellum sample as a C9orf72-related famil-
ial ALS sample with 83.33% accuracy. Consequently, 
these 44 genes that constitute these “5 plus 5” regres-
sion models, represent a second, more focused set of 
selected genes, specifically associated with the cerebel-
lum samples. In contrast, the frontal cortex SES sepa-
ration models were generally less accurate, reaching 
72.22% accuracy, when p-value and nsignat were set at 
0.03 and 10 respectively. For that reason, we decided 
not to focus on gene subsets specifically associated with 
the frontal cortex samples.

A ninefold leave-out stratified cross-validation process 
was then followed by training machine learning classifi-
ers on: (a) the expression values of the 473 genes, (b) the 
expression values of the 44 genes, and (c) the expression 
values of the 23,188 genes (initial gene expression data-
set). The accuracy results for the classifiers for the 3-class 
classification (C9orf72-related familial ALS, sporadic 
ALS or healthy) of the unknown (hold-out) samples are 
presented below (Table 3).

The machine learning models trained on the initial 
high-dimensional gene expression dataset (23,188 genes) 
achieved lower classification accuracy in comparison to 
those trained on the 473 or the 44 genes. Moreover, Ran-
dom Forest performed better than XGBoost at building 
machine learning classifiers in pooled cerebellum and 

frontal cortex samples and less so when the two brain 
regions were analyzed separately (Table 3).

SHAP values were calculated, and the results were 
plotted as SHAP importance plots, which visualize the 
level of importance of the 10 most determinative genes 
for each classifier. As we had followed a ninefold strati-
fied cross-validation analysis, 9 cerebellum and 9 fron-
tal cortex classifiers, 9 SHAP importance plots for the 
interpretation of the cerebellum classifiers and 9 SHAP 
importance plots for the interpretation of frontal cor-
tex classifiers were made. The mean average importance 

Table 2  Comparison of performance of the SES models with 
different hyperparameters in the development dataset

Accuracy achieved by the SES regression models in the hold-out datasets for 
the separation of: (i) ALS (both C9orf72-related familial ALS and sporadic ALS) 
cerebellum from healthy cerebellum samples, (ii) C9orf72-related familial 
ALS cerebellum samples from healthy cerebellum samples, (iii) sporadic ALS 
cerebellum from healthy cerebellum samples, (iv) ALS (both C9orf72-related 
familial ALS and sporadic ALS) frontal cortex from healthy frontal cortex samples, 
(v)) C9orf72-related familial ALS frontal cortex samples from healthy frontal 
cortex samples, (vi) sporadic ALS frontal cortex from healthy frontal cortex 
samples. The referred accuracy is achieved due to taking into consideration: (a) 
the first 3 out of 10 SES models, (b) the first 5 out of 10 SES models and (c) all 10 
SES models. The most accurate separation cases are highlighted in italics

p-value = 0.05 p-value = 0.03 p-value = 0.01

Cerebellum samples
Separation of ALS (both C9orf72-related familial ALS and sporadic ALS) 
from healthy samples

10 models 74.11% 81.48% 77.77%

5 models 66.66% 81.48% 85.18%

3 models 74.88% 77.77% 70.37%

Separation of C9orf72-related familial ALS from healthy samples

10 models 50.00% 33.33% 66.66%

5 models 72.22% 66.66% 83.33%

3 models 72.22% 72.22% 66.66%

Separation of sporadic ALS from healthy samples

10 models 33.33% 22.22% 38,88%

5 models 33.33% 22.22% 44.44%

3 models 33.33% 22.22% 33.33%

Frontal Cortex samples
Separation of ALS (both C9orf72-related familial ALS and sporadic ALS) 
from healthy samples

10 models 48.14% 51.85% 51.85%

5 models 51.85% 51.85% 55.55%

3 models 51.85% 48.14% 55.55%

Separation of C9orf72-related familial ALS from healthy samples

10 models 61.11% 72.22% 38.88%

5 models 61.11% 55.55% 44.44%

3 models 55.55% 50.00% 50.00%

Separation of sporadic ALS from healthy samples

10 models 61.11% 61.11% 61.11%

5 models 55.55% 61.11% 55.55%

3 models 55.55% 55.55% 50.00%
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score for each gene appearing in these SHAP explanation 
plots was computed (Additional file 1: Table S1). For both 
cerebellum and frontal cortex classifiers the C9orf72 gene 
was identified as one of the most determinative for the 
classification of an ALS sample to the specific C9orf72-
related familial ALS subtype.

Methodology evaluation in a different ALS dataset
Feature selection with SES was also performed for the 
evaluation dataset and the assessed accuracy achieved 
by the regression models in distinguishing sporadic ALS 
from healthy samples was computed (Additional file  1: 
Table S2).

The number of the different genes identified in at least 
one regression model during the whole process was 93 
out of the 24,626 included in the dataset (approx. 0.37% 
of the genes were retained in the analysis). This subset 
of the 93 selected genes could be characterized as the 
first, more generalized set of informative genes. We then 
focused on the regression models that were constructed 
during 9-folds with p-value = 0.01, which achieved the 
highest mean average ninefold accuracy among the oth-
ers. The genes selected by these models were 19.

For the construction of the machine learning classi-
fiers, we chose to use these 19 genes. A ninefold leave-
out stratified cross-validation analysis was performed by 
applying XGBoost and Random Forest, generating highly 
accurate machine learning models, trained upon the 19 
genes. In this case, XGBoost and Random Forest classifi-
ers achieved 88.89% accuracy for the 2-class classification 
(sporadic ALS or healthy motor neuron samples) of the 
hold-out datasets, while the respective accuracy achieved 
by the classifiers that were trained upon all features of the 
gene expression dataset (24,626 genes) was 33.33%. The 
SHAP values for the interpretation of the motor neuron 
classifiers and the detection of the most determinative 

genes for the classification of an unknown sample as spo-
radic ALS or healthy were also computed (Additional 
file 1: Table S2).

Replacing SES with LASSO
When SES was replaced by LASSO in the pipeline, 99 
genes were selected for the first, more generalized set of 
informative genes, and 39 for the more accurate subset 
of informative genes. Similar to our previous results, the 
XGBoost classifiers performed better than the Random 
Forest classifiers. Interestingly, the cerebellum XGBoost 
classifiers trained upon the LASSO-selected genes 
achieved 96.3% classification accuracy in the 3-class clas-
sification (C9orf72-related familial ALS, sporadic ALS, or 
healthy) of the hold-out datasets, while the frontal cortex 
XGBoost classifiers were only 74.07% accurate (Table 4).

Achieved accuracy of the cerebellum and frontal cortex 
classifiers (derived from analyzing the development data-
set), as well as the motor neuron classifiers (derived from 
analyzing the evaluation dataset). The respective accu-
racy is presented for the classifiers that were trained on 
the genes selected (a) by LASSO, and (b) by SES

Table 3  Comparison of model performance trained on different numbers of selected genes

Accuracy achieved by the XGBoost and Random Forest classifiers for the classification of the hold-out datasets when they were trained on (a) the expression values 
of the 473 geness, (b) the expression values of the 44 genes, (c) full dimensionality (expression values of 23,188 genes). The analysis was performed for (i) pooled 
cerebellum and frontal cortex samples, (ii) only for the cerebellum samples, as well as (c) only for the frontal cortex samples. The most accurate classification cases are 
highlighted in italics

473 genes 44 genes Full 
dimensionality

XGBoost classifiers

Pooled cerebellum and frontal cortex samples 72.33% 67.02% 44.25%

Cerebellum samples 70.37% 85.18% 48.14%

Frontal cortex samples 85.18% 81.48% 51.85%

Random Forest classifiers

Pooled cerebellum and frontal cortex samples 74.22% 79.75% 46.96%

Cerebellum samples 37.03% 40.74% 25.92%

Frontal cortex samples 29.62% 40.74% 25.92%

Table 4  Comparison of model performance of two 
dimensionality reduction methods

LASSO genes SES genes

XGBoost classifiers

Cerebellum classifiers 96.30% 85.18%

Frontal cortex classifiers 74.07% 85.18%

Motor neuron classifiers 88.89% 88.89%

Random Forest classifiers

Cerebellum classifiers 40.74% 40.74%

Frontal cortex classifiers 37.04% 29.63%

Motor neuron classifiers 100.00% 88.89%
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Analysis of the evaluation dataset with LASSO led to 
the identification of 14 genes as the most predictive (sec-
ond, more accurate, set of informative genes). When 
these 14 genes were used to train machine learning mod-
els, both Random Forest and XGBoost performed well 
and managed to train highly accurate classifiers, with 
Random Forest classifiers achieving up to 100% accuracy 
in the class prediction of the hold-out datasets (Table 4). 
SHAP values were calculated for the interpretation of the 
classifiers trained on the LASSO-selected genes.

Replacing SES with density‑based outlier detection
Using the LOF algorithm for outlier identification in 
the differential expression data, we detected 199 outlier 
genes. These 199 genes are the common most differen-
tially expressed genes between all ALS cases (both spo-
radic ALS and C9orf72-related familial ALS) and were 
used to train machine learning classifiers. The XGBoost 
classifiers trained on the LOF selected genes achieved 

77.78% mean average accuracy in the 3-class classifi-
cation (sporadic ALS, C9orf72-related familial ALS or 
healthy) of the hold-out datasets, while the achieved 
accuracy for the Random Forest classifiers was 48.15%.

Comparing the results obtained, it becomes evident 
that the XGBoost classifiers trained on the 199 LOF 
selected genes have lower accuracy than those trained 
by the genes selected by SES. This indicates that the 
expression of some genes that are very informative for 
disease prediction does not change significantly and as 
a result these genes are not identified by simple out-
lier detection but are identified by SES. Figures  2 and 
3 depict the differential expression of the genes in the 
sporadic and the C9orf72-related familial ALS differen-
tial expression dataset respectively. The SES-selected 
genes are shown in red and although the expression of 
some changes significantly, only minimal differences 
in the differential expression levels are found between 
them and the rest of the genes that were not selected by 
the application of the SES algorithm (Figs. 2, 3).

Fig. 2  Differential expression levels (Log2 fold-change values) of the SES-selected genes in the sporadic ALS differential expression dataset (top 
panel), and the genes that were not selected by SES in the sporadic ALS differential expression dataset (bottom panel)
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Discussion
Taking advantage of gene expression data is often ham-
pered by the high dimensionality that inevitably such 
datasets carry. At the same time, the molecular aspects 
of diseases like ALS remain elusive and research would 
benefit greatly by integration of such data. In this study, 
we developed an innovative methodology to identify a 
subset of causally related genes and then use it to train 
machine learning algorithms to efficiently differentiate 
between ALS subtypes and healthy-control samples.

By applying the causality-based feature selection algo-
rithm SES, we managed to overcome the problem of 
high-dimensionality in the gene expression datasets, by 
only selecting the most informative genes for the dis-
ease prediction. Additionally, we used these genes to 
build highly accurate machine learning classifiers for the 
development dataset using XGBoost and Random Forest 
algorithm. High classification accuracy was also achieved 
when the same methodology was applied for the con-
struction of ALS classifiers for the evaluation dataset.

When constructing the machine learning classifiers for 
the development dataset we observed that: (1) Random 

Forest classifiers could not perform optimally in the 
3-class classification task (healthy sample, sporadic ALS 
sample or C9orf72-related ALS sample) when cerebel-
lum and frontal cortex samples were studied separately, 
while the classifiers for pooled cerebellum and frontal 
cortex samples achieved high accuracy, and (2) the opti-
mal number of genes (features) for the training datasets 
of the XGBoost cerebellum classifiers (expression values 
of 44 genes) proved to be lower than that of the XGBoost 
frontal cortex classifiers (expression values of 473 genes). 
The first observation should be mostly attributed to the 
smaller size of the training datasets when the two brain 
regions are studied separately in comparison to the train-
ing size when cerebellum and frontal cortex samples are 
pooled (23 and samples per training dataset for the cere-
bellum and the frontal cortex classifiers respectively, ver-
sus 47 samples per training dataset for pooled cerebellum 
and frontal cortex classifiers). However, in the analysis of 
the evaluation dataset, which also included a small num-
ber of samples (12 sporadic ALS and 9 healthy samples) 
the Random Forest algorithm performed well (88.89% 
classification accuracy). Based on these results, both the 

Fig. 3  Differential expression levels (Log2 fold-change values) of the SES-selected genes in the C9orf72-related familial ALS differential expression 
dataset (top panel), and the genes that were not selected by SES in the C9orf72-related familial ALS differential expression dataset (bottom panel)
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small size of the training dataset and the task complexity 
seem to lead to underperformance of the Random For-
est classifiers. A small training dataset proved not to be 
sufficient for solving the 3-class classification problem 
in the development dataset, while a training dataset of 
a similar size was suitable for training binary classifiers 
for the evaluation dataset. Moreover, the fact that the 
optimal number of genes (features) in the training data-
sets of the frontal cortex classifiers is bigger than that 
of the cerebellum classifiers might be associated with 
the respective difference in the gene expression patterns 
between these two brain regions. More specifically, the 
cerebellum displays the least internal heterogeneity in 
gene expression patterns among all brain regions (Negi 
et al. 2017). Such information is in accordance with our 
findings indicating that higher heterogeneity in the brain 
region, requires a higher number of variables (genes) to 
train accurate machine learning models for the classifica-
tion of its samples. In contrast, more homogenous brain 
regions seem to require fewer features for the classifica-
tion of their samples. Specifically for the cerebellum clas-
sifiers, an increase in the dimensionality of the training 
datasets led to a decrease in model performance: the 
accuracy achieved by the XGBoost classifiers when they 
were trained on the 473 selected genes was ≈15% lower 
than that achieved when they were trained on the 44 
genes (Table 3), which may imply fact that additional pre-
dictive variables, other than the absolutely necessary only 
add noise. As a final step in our methodology, we inter-
preted the best XGBoost classifiers by applying the SHAP 
values.

The methodology that we developed is among the first 
to take advantage of ML methods in order to provide 
insights into the molecular mechanisms associated spe-
cifically with ALS pathogenesis (Pun et  al. 2022; Zhang 
et al. 2022; Bean et al. 2020). Throughout these analyses, 
we identified the genes most highly related to ALS patho-
genesis for both sporadic ALS and C9orf72-related ALS 
cases, while performing separate analysis for cerebellum 
and frontal cortex samples (Table  2). Our main argu-
ment is twofold: firstly, through our proposed judicious 
gene selection procedure, the machine learning models 
are more accurate and secondly and more importantly, 
due to the causality-awareness of the feature selection 
methodology, the selected genes are more informative. 
In our experiments, we have mostly provided evidence 
regarding the former aspect. Regarding the latter, the 
most interesting observation associated with the SHAP 
interpretation results is that C9orf7, which has success-
fully been detected by our methodology as one of the 
most determinative genes for the existence of C9orf72-
related ALS, was not the only one among the detected 
determinative genes that has already been defined as 

ALS-related. In fact, most of the genes identified as 
determinative, especially those with the highest mean 
average importance score, have already been associated 
with ALS or implicated in neurodegeneration events.

If we applied a threshold of mean average importance 
score of 3 to select the topmost determinative genes 
among the ones identified (Additional file 1: Table S1), we 
would identify LOC100506258, ELOA3C, TNFRSF11B, 
STAT3, DDO as the topmost determinative genes for the 
classification of a cerebellum sample as ALS or healthy. 
Among these genes, three (TNFRSF11B, STAT3, DDO) 
have already been cited at least once in ALS literature 
(Errico et al. 2020; Rubino et al. 2020; Shibata et al. 2010). 
Especially for TNFRSF11B and STAT3, a strong associa-
tion with ALS pathology has been observed, the exact 
mechanism of which remains unclear (Rubino et  al. 
2020; Shibata et al. 2010). As for the categorization of an 
ALS cerebellum sample to a specific ALS subtype (spo-
radic ALS or C9orf72-related ALS), the topmost deter-
minative genes were C9orf72 and PRDM13. C9orf72 is 
widely accepted as the most common genetic cause of 
amyotrophic lateral sclerosis (Yang et al. 2020), while the 
PRDM13 gene, although not yet related to ALS, plays a 
major role in neuron differentiation and maintenance 
by encoding a transcriptional repressor (Bessodes et  al. 
2017; Leszczyński et al. 2020).

Furthermore, the SAP18 gene, with a mean average 
importance score of 5.33 for the ALS subtype categoriza-
tion in frontal cortex samples (Additional file 1: Table S1), 
has been shown to be related to brain cell dysregula-
tion and development of amyloid plaques in both Down 
Syndrome and Alzheimer’s disease (Sharma et al. 2021), 
while BAG1, also one of the topmost determinative genes 
for the ALS categorization, as a member of PQC system 
proteins, is highly expressed in muscle of TG-ALS mice 
(Cicardi et  al. 2018). For the classification of an ALS 
frontal cortex sample to a specific ALS type (sporadic 
ALS or C9orf72-related ALS), apart from the C9orf72 
gene, among the topmost determinative genes was also 
ATP2A1, a gene associated with glucose metabolism, 
related to the downregulation of Muscular differentiation 
and proliferation in ALS (Silroy and Bhowal 2018).

In summary, these findings indicate that the proposed 
methodology allows not only detection of genes with 
diagnostic value, but also of genes with a role in disease 
pathogenesis.

Additionally, when the methodology was applied in 
the evaluation dataset highly accurate machine learn-
ing classifiers were constructed ("Gene selection and 
classifier construction" section), while the genes identi-
fied as determinative for the classification of a motor 
neuron sample as sporadic ALS or healthy (Additional 
file  1: Table  S1) were widely referenced in ALS and 
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neurodegeneration literature. More specifically, the top-
most determinative genes (genes with mean average 
importance score >  = 3) for the existence of sporadic ALS 
in motor neuron samples were ΑΝΧΑ5, DDB1, EPB41 
and PRUNE. All 4 genes have already been associated 
with ALS pathology. It has already been proposed that 
apoptosis plays a crucial role in ALS neurodegeneration 
and the ΑΝΧΑ5 gene encoding for Annexin A5, which 
is strongly involved in apoptosis and survival mecha-
nisms, has been characterized as a candidate gene for 
ALS (Morello et  al. 2017). Moreover, DDB1 encodes 
DNA Damage Binding protein 1, which associates with 
CUL4 protein to assemble an ubiquitin ligase. The CUL4/ 
DDB1 ubiquitin ligase has been shown to participate in 
proteasomal degradation of Nrf2, a transcription factor 
that regulates the expression of genes involved in cellu-
lar protection against damage by oxidants, electrophiles 
and inflammatory agents. The function of Nrf2 has been 
proved to be altered in ALS (Dinkova-Kostova et al. 2018; 
Higa and Zhang 2007). As for EPB41, the gene has been 
identified as one of the 3 ALS-decreased differentially 
expressed genes (DEGs) in blood nearest to susceptibility 
loci (along with METTL21A and TIAM1). This observa-
tion indicates that the under-expression of EPB41 is not 
a simple marker of disease progression. The gene seems 
to be involved in disease-causing pathogenic mechanisms 
instead (Swindell et  al. 2019). Finally, PRUNE has also 
been mentioned in ALS literature. More specifically, it 
has been detected to be one of the top 5 DEGs in Sensory 
Neurons of mutant SOD1 mice (Liu et al. 2020).

The fact that our methodology, in addition to detect-
ing ALS-related genes, also reveals neurodegeneration-
associated genes that have not yet been related to ALS 
pathology in a computationally efficient manner, further 
strengthens the value of our findings since it can guide 
future research and leads to identifying causative, under-
lying disease mechanisms. This is the main advantage of 
using the SES algorithm over conventional feature selec-
tion methods, like the LASSO algorithm (which has 
been proved to be dependent on the heterogeneity of 
the analyzing brain region) or simple outlier detection. 
Especially for the outlier detection case, we showed that 
a marked difference in the gene expression is not always 
sufficient for deciding whether this gene is determina-
tive for disease diagnosis or not (Figs.  2, 3). As for the 
LASSO algorithm, our results indicate that the success of 
the feature selection process it performs varies, which is 
a sign of overfitting, and most probably depends on the 
expression patterns of the studied brain region (cerebel-
lum XGBoost classifiers trained on the LASSO-selected 
genes outperformed cerebellum XGBoost classifiers 
trained on the SES-selected genes, while the exact oppo-
site was observed for the frontal cortex classifiers). In 

contrast, the performance of the classifiers trained on the 
SES-selected genes seems to be independent of the brain 
region under study (Table 4).

In general, LASSO was able to perform equally well 
with SES in detecting highly-accurate gene subsets from 
high dimensional gene expression data for both gene 
expression datasets. However, LASSO-identified genes 
might not be as valuable as the genes selected by SES, as 
LASSO captures only correlations between features and 
the target variable, while SES focuses on detecting fea-
tures that are causally related with the target variable. 
Furthermore, in all cases, the genes selected by LASSO 
were fewer than those selected by SES. However, we 
cannot argue whether the genes selected by SES are 
more widely varied than those selected by LASSO. If we 
wanted to make a fair comparison regarding the number 
of genes each algorithm selects, we should have also fol-
lowed a tenfold 50-repetition process with SES (as we did 
with LASSO) by taking into account only the first SES 
regression model per repetition. In a similar study that 
performed the same comparisons (Lagani et al. 2017), it 
was shown that LASSO selects more varied genes than 
SES. This is expected, since LASSO retrieves a superset 
of the Markov Blanket of the target variable (the Markov 
blanket plus some additional noisy features), while SES 
detects a subset of it (the parents and children of the 
target variable) (Lagani et al. 2017). In general, the com-
parison between SES and LASSO requires more research 
and might be use-case specific. Selecting the optimal 
approach would involve, apart from the observed accu-
racy in specific models and datasets, several qualitative 
factors that cannot be easily assessed and/or quanti-
fied; nevertheless, when targeting statistical correlations 
rather than causal relationships, the selected genes are, 
based on our results, less capable to assist in understand-
ing the disease deeper.

Therefore, we additionally used the SHAP values to 
interpret the classifiers trained on the LASSO-selected 
genes (Additional file 1: Table S4). For the classification of 
the C9orf72-related familial ALS and sporadic ALS cere-
bellum and frontal cortex samples (development dataset), 
most of the genes identified as determinative for the clas-
sifiers trained on LASSO genes, had also been detected 
as determinative for the classifiers trained on the SES-
selected genes. However, in many cases genes that were 
ranked among the topmost determinative (m.a. impor-
tance score > 3) for the LASSO-selected-genes trained 
classifiers, detected to have noticeably lower importance 
(m.a. importance score =  < 3) for the SES-genes-trained 
classifiers.

After a thorough research of ALS literature, we found 
that the majority of the genes identified among the top-
most determinative for the classifiers trained on the 
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LASSO-selected genes had already been reported in the 
literature, either displaying abnormal expression pat-
terns in ALS cases or participating in pathways that are 
disrupted when the disease occurs, due to dysfunction in 
another gene in the same pathway. The latter is the case 
for DSCAM, which has been ranked among the topmost 
determinative genes for the classification of a cerebellum 
sample as ALS or healthy-control by the LASSO-genes 
trained classifiers (Additional file  1: Table  S4). DSCAM 
encodes a cell-surface receptor, while a specific DSCAM 
isoform (DscamTM2) is involved in axon processes and 
DSCAM gain-of-function axon phenotypes have been 
reported to be suppressed in ALS due to dysfunction 
in protein VAP (Yang et  al. 2012). Additionally, for the 
further classification of an ALS cerebellum sample as 
C9orf72-ALS or sporadic ALS by the classifiers trained 
on LASSO-selected genes, HOXC10 was identified as the 
second most determinative gene (ranked immediately 
after C9orf72) (Additional file  1: Table  S4). Differential 
expression of HOXC10 in ALS has already been reported 
by several groups (Loffreda et  al. 2020; Shtilbans et  al. 
2011).

On the other hand, for the classification of a frontal 
cortex sample as ALS or healthy, among the four topmost 
determinative genes identified for the classifiers trained 
on the LASSO-selected genes, aberrant expression of two 
of them has already been detected in neurological disor-
ders. More specifically, DDTL overexpression has been 
reported as possibly being involved in the pathology of 
Schizophrenia (Nakamura et  al. 2015), while increased 
levels of ACYP have been detected in Alzheimer’s disease 
patients’ fibroblasts (DeglInnocenti et  al. 2019). For the 
further classification of an ALS frontal cortex samples to 
a specific subtype (C9orf72-ALS or sporadic ALS), the 
genes identified as the topmost determinative for the 
LASSO-genes-trained classifiers had also been identified 
as important, but not among the topmost determina-
tive, for the SES- genes-trained classifiers. GP9 was one 
of those genes. In fact, GP9 has already been associated 
with neural-dysregulation and neurotoxicity, as aberrant 
expression of this gene has been measured in blood cells 
of Epilepsy and Multiple Sclerosis patients (Li et al. 2022; 
Berge et al. 2019).

As for the motor neuron classifiers trained on the 
LASSO-selected genes, apart from DDB1, which had also 
been identified among the topmost determinative for 
the SES-genes-trained classifiers, the rest of the topmost 
determinative were uniquely associated with the LASSO-
genes-trained classifiers. Interestingly, abnormal expres-
sion patterns for all of them have already been detected 
either in ALS patients [MIR16 (Joilin et al. 2019; Liguori 
et al. 2018), CCDC85B (Miller et al. 2018)] or in Alzhei-
mer’s Disease patients (GJA5) (Ziff et al. 2022).

These results further indicate that LASSO, like LOF, 
focuses on the outliers of the dataset when performing 
feature selection and thus, in our case, the genes with 
aberrant expression patterns were selected. In contrast, 
we have proven that SES doesn’t fully rely on outlier 
detection when performing feature selection (Figs. 2, 3). 
Based on the above, we can claim that our methodology 
is capable to better detect genes that are more likely to be 
involved more directly in the pathological events leading 
to ALS pathology, rather than simply identifying genes 
and pathways that are dysregulated once the disease has 
occurred.

Conclusion
In conclusion, this study introduces a novel methodology 
aiming at reducing  gene expression data dimensionality 
and identifying causal ALS genes that may be responsible 
for the occurrence of ALS in general, or of a specific ALS 
subtype (sporadic ALS or C9orf72-related familial ALS). 
Using these genes, more accurate machine learning clas-
sifiers that can diagnose ALS and its specific subtypes can 
be built. More importantly, the more informative genes 
are detected with low computational effort. In addition, 
our proposal can be deemed as a generic methodology 
that is applicable to other diseases as well.
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