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Abstract 

Background  Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a com‑
mon complication of COVID-19. It can originate from various disease etiologies, including severe infections, major 
injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, 
multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups 
holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis.

Methods  We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-
19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different 
approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical 
manifestations within each group with the omics profiles.

Results  The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differen‑
tially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/
extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-
omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS 
patients, which contained several proteins that had previously been implicated in clinical manifestations frequently 
linked with ARDS pathogenesis.

Conclusion  In summary, our results provide evidence for significant molecular differences in ARDS patients from 
different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dys‑
function in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to 
develop prediction models for COVID-19 patient outcomes.
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Background
The ongoing SARS-CoV-2 induced coronavirus disease 
2019 (COVID-19) pandemic has been a major impedi-
ment to human life globally (UNDP 2021; Chriscaden 
2020). One of the main complications of severe COVID-
19 is acute respiratory distress syndrome (ARDS). ARDS 
is a common presentation of critical illnesses, including 
severe infections, major injury, or inhalation of irritants 
(Han and Mallampalli 2015). While COVID-19-related 
ARDS and ARDS originating from other pathologies 
(hereby referred to as non-COVID-19 ARDS) have over-
lapping clinical features, COVID-19 ARDS is character-
ized by a protracted hyperinflammatory state and higher 
rates of thrombosis (Grant et al. 2021; Helms et al. 2020; 
Hue et al. 2020; Bain et al. 2021; Brault et al. 2020; Dos-
tálová and Dostál 2019; Robinson and Krasnodembs-
kaya 2020; Levitt and Rogers 2016; Overmyer et al. 2021; 
Shen et al. 2020). The field currently lacks etiology-spe-
cific therapies and reliable predictors of heterogeneous 
patient outcomes (Veerdonk et al. 2022).

To address these critical knowledge gaps, we recently 
elucidated molecular differences between and within two 
ARDS etiologies—COVID-19 and bacterial sepsis (Batra 
et  al. 2022). Extending this blood-based ARDS com-
parison, we here performed a similar analysis on urine 
samples. It has been suggested that urine-based molecu-
lar profiles reflect an individual’s physiological changes 
(Wu and Gao 2015) and have the potential to be used as 
diagnostic and prognostic biomarkers (Berry et al. 2015; 
Aregger et  al. 2014; Gisewhite et  al. 2021; Currie et  al. 
2018). Previous urine-based COVID-19 studies have 
made substantial efforts to determine molecular mark-
ers distinguishing COVID-19 from healthy controls or 
less severe COVID-19 cases (Li et al. 2020a, 2021; Bi et al. 
2022; Tian et  al. 2020). However, a detailed comparison 
of the molecular differences between two ARDS groups 
has so far been missing.

In this study, we analyzed urine samples from 59 ARDS 
patients, with COVID-19 (n = 42) and bacterial sepsis 
diagnosis (n = 17). We followed a two-step analysis work-
flow to elucidate the differences between the two ARDS 
groups. In the first part, we compared metabolomic 
and proteomic profiles between the two groups to iden-
tify differentially abundant molecules. For a systematic 
cross-omics analysis of these molecules, we performed 
a data-driven network analysis. In the second part of the 
study, we compared the molecular heterogeneity within 
each ARDS group. To this end, we associated the omics 

measurements with clinical manifestations, including 
acute kidney injury (AKI) incidence, platelet counts, 
PaO2/FiO2, and mortality. For further exploration and 
reproducibility of our findings, we share all results, analy-
sis scripts, and de-identified omics data.

Methods
Patient population
The cohort was derived from the Weill Cornell Biobank 
of Critical Illness (WC-BOCI) at Weill Cornell Medi-
cal College (WCMC)/ New York Presbyterian (NYP). 
The process for recruitment, data collection, and sample 
processing has been described previously (Finkelsztein 
2017; Dolinay et al. 2012; Schenck 2019). Patients in the 
WC-BOCI database were admitted to the intensive care 
unit with valid consent between 2015 and 2020. Bacte-
rial sepsis patients (n = 17) were recruited between June 
2015 and January 2019 and COVID-19 patients were 
recruited between March 2020 and April 2020 (n = 42). 
Clinical data such as demographics, vital signs, labs, and 
ventilator parameters were obtained through the Weill 
Cornell-Critical Care Database for Advanced Research 
(WC-CEDAR) and the Weill Cornell Medicine COVID 
Institutional Data Repository (COVID-IDR). Additional 
clinical data were obtained through manual abstraction 
from the electronic health records.

This cohort included 47 (79.7%) males and 12 (20.3%) 
females, with a median age of 58.3. The overall mortal-
ity rate was 27.1%, with 10 out of 42 in COVID-19 ARDS 
and 6 out of 17 in bacterial sepsis-induced ARDS. 45.8% 
of patients suffered from acute kidney injury (AKI), with 
15 out of 42 in COVID-19 ARDS and 12 out of 17 in bac-
terial sepsis-induced ARDS. The sequential organ failure 
assessment (SOFA) index was comparable between the 
two groups, with a median of 10 in the COVID-19 group 
and 9 in the bacterial sepsis group. Detailed demograph-
ics of the patient cohort are provided in Additional file 1: 
Table S1.

Clinical manifestations
Below are the definitions used to diagnose the clinical 
manifestations used in this study.

Acute respiratory distress syndrome (ARDS)
ARDS was assessed using the Berlin definition (Ranieri 
et al. 2012), and followed by a review of the subject’s his-
tory, arterial blood gas, and chest X-ray by two independ-
ent pulmonary and critical care attendings to adjudicate 
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the diagnosis. For bacterial sepsis-induced ARDS, an 
additional criterion was used as outlined in The Third 
International Consensus Definitions for Sepsis and Sep-
tic Shock (Singer et  al. 2016). For diagnosis of COVID-
19, a positive viral swab of the nasopharynx tested for 
SARS-CoV-2 via RT-PCR was required. Patients were 
classified as septic if they had a SOFA score ≥ 2, and had 
a clinically documented or suspected infection that upon 
final adjudication was deemed to be the source of organ 
dysfunction.

Acute kidney injury (AKI)
‘Kidney Disease: Improving Global Outcomes’ definition 
(KDIGO) was used to diagnose AKI. To this end, either 
of the following criteria was required: (a) serum creati-
nine change of greater than or equal to 0.3 mg/dL within 
48  h, (b) serum creatinine greater than or equal to 1.5 
times the baseline serum creatinine known or assumed to 
have occurred within the past 7 days, (c) urine output less 
than or equal to 0.5 mL/kg/h for 6 h (Khwaja 2012).

Sample handling
Urine specimens were obtained from patients admit-
ted to ICU at WCMC/NYP. Briefly, urine samples were 
centrifuged, and the supernatant was stored at − 80  °C 
until the omics profiling was performed. An electronic 
informed consent was obtained from all subjects for 
inclusion. For bacterial-sepsis ARDS, the median time of 
sample collection was 1.8  days after admission, with an 
interquartile range: 1.0–2.0, and for COVID-19 ARDS, 
the median was 7.6 days with an interquartile range: 3.5–
9. Samples from both ARDS groups were profiled at the 
same time in the year 2020.

Proteomic profiling
Proteomic profiling was performed by the Proteomics 
Core of Weill Cornell Medicine-Qatar using the Olink 
platform (Uppsala, Sweden) (Batra et  al. 2022). Briefly, 
manufacturer’s instructions were followed to profile 
the samples using four panels including Inflammation, 
Cardiovascular II, and Cardiovascular III panels. Thor-
ough quality assurance/quality control (QA/QC) was 
performed to monitor the assay’s incubation, extension, 
and detection steps. For (Ct) value extraction, Fluidigm’s 
reverse transcription-polymerase chain reaction (RT-
PCR) analysis software was used at a quality threshold of 
0.5 and linear baseline correction. Further processing of 
Ct values was performed using the Olink NPX manager 
software (Olink, Uppsala, Sweden).

Metabolomic profiling
Metabolic profiling was performed by Metabolon, Inc 
(Morrisville, NC) using ultrahigh performance liquid 

chromatograph-tandem mass spectroscopy (UPLC-MS/
MS) (Batra et  al. 2022). Briefly, samples were subjected 
to methanol extraction and then divided into four ali-
quots for each of the mass spectroscopic methods. Rig-
orous quality assurance/quality control (QA/QC) was 
performed to monitor instrument performance and aid 
in chromatographic alignment. The four mass spectro-
scopic methods used were optimized for acidic positive 
ion hydrophilic compounds, acidic positive ion hydro-
phobic compounds, and basic negative ions, the fourth 
aliquot was analyzed via negative ionization. For metabo-
lite identification, Metabolon’s proprietary software was 
used to deliver high-quality abundances of metabolites.

Data processing
Metabolomic and proteomic profiles were preprocessed 
before downstream analysis: Molecules with more than 
25% missing values were removed, leaving 708 out of 
1112 metabolites and 266 out of 276 proteins. Probabilis-
tic quotient normalization (Dieterle et al. 2006) was used 
to correct sample-wise variation in the data. Data was 
log2 transformed, followed by k-nearest-neighbor-based 
imputation (Do 2018) for the remaining missing values. 
Abundance levels of the following ten proteins were 
measured in duplicates by Olink panels and were there-
fore averaged: CCL3, CXCL1, FGF-21, FGF-23, IL-18, 
IL-6, MCP-1, OPG, SCF, and uPA. All data processing 
was performed using the maplet R package (Chetnik 
et al. 2022).

Differential analysis of molecules
For association analysis, we used linear models with 
metabolites/proteins as the dependent variable and diag-
nosis/clinical manifestations as independent variables. 
Further factors such as age, sex, and BMI were not used 
as covariates in the models, since they are considered 
determinants of disease severity themselves (Docherty 
2020). To control the false discovery rate, the Benjamini-
Hochberg (BH) method (Benjamini and Hochberg 1995) 
was used to correct p-values. All analyses were per-
formed using the maplet R package (Chetnik et al. 2022).

Pathway annotation and filtering
For functional annotation of the differently abundant 
molecules, we used Metabolon’s ‘sub-pathway’ groups 
and signaling pathways from KEGG (Kanehisa et al. 2012) 
for metabolites and proteins, respectively. Additional 
file 2: Table S2 contains the complete list of annotations. 
For our analysis, we considered Metabolon’s sub-path-
ways with the term ‘metabolism’ and non-disease KEGG 
pathways with at least 3 significant molecules.
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Multi‑omic network inference
To generate a multi-omic data-driven network we created 
a Gaussian graphical model (GGM) using the GeneNet R 
package (Schäfer and Strimmer 2005). GGMs are a partial 
correlation-based approach for identifying statistical con-
nections among the molecules. To construct the network, 
pair of molecules (nodes) with significant partial cor-
relations at 5% FDR were included and were connected 
with an edge. Following this, these nodes were annotated 
based on the statistical association results between the 
ARDS groups. To this end, a pscore was computed using 
the following formula: pscore = −log10 p.adj · d , where 
p.adj is the adjusted p-value of the association, and d is 
the direction (− 1/1) of the association based on test sta-
tistic (positive or negative association with the outcome). 
This score was used to color the nodes in the network.

Results and discussion
Molecular associations differentiating COVID‑19 
and bacterial sepsis‑induced ARDS
To identify the molecular differences between COVID-19 
ARDS and bacterial sepsis-induced ARDS, urine-based 
metabolomic and proteomic profiles from 59 samples 
were analyzed (n = 42 COVID-19, and n = 17 bacterial 
sepsis). At a 5% false discovery rate (FDR), 220 molecules 
were significantly different between the two groups, rep-
resenting 150 metabolites (70 higher in COVID-19 ARDS 
and 80 lower), and 70 proteins (28 higher in COVID-19 
and 42 lower) (Fig.  1a). The results of this analysis are 
available in Additional file  2: Table  S2. To aid the func-
tional interpretation of these molecules, metabolites and 
proteins were annotated with ‘sub-pathway’ annotations 
provided by Metabolon and proteins were annotated 

Fig. 1  Molecular signature of COVID-19 ARDS compared to bacterial sepsis-induced ARDS. a Differentially abundant molecules (150 metabolites, 70 
proteins) between the two ARDS groups. b Functional annotations of differentially abundant metabolites and proteins at the pathway level. Overall, 
33 metabolic and signaling pathways with three or more significant molecules were deregulated between the two ARDS groups. FA: fatty acid
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with KEGG pathways (Kanehisa et al. 2012) (Additional 
file  3: Table  S3). Top ranking pathways are shown in 
Fig. 1b. Two of the pathways we identified in this ARDS 
comparison, extracellular matrix (ECM) and cell adhe-
sion molecules (CAMs), have also been implicated in 
previous urine-based studies comparing COVID-19 with 
a control group (Li et al. 2020b). In addition, blood-based 
studies have reported several of these pathways in the 
context of COVID-19 ARDS when compared to healthy 
controls, including amino acid metabolism, lipid metabo-
lism, urea cycle, MAPK, PI3K-Akt, and JAK-STAT signal-
ing (Hou et al. 2020; Grimes and Grimes 2020; Kalil et al. 
2021; Guimarães et al. 2021; Montaldo et al. 2021). Taken 
together, we identified 220 molecules that were differen-
tially abundant between the two ARDS groups, with 33 
distinct biological pathways that had three or more sig-
nificant molecules.

ARDS‑related interaction of mitochondrial dysfunction 
and ECM organization
Predefined pathway annotations provide context for 
already well-characterized biological processes; however, 
the insights they provide into cross-omics associations 
are limited. Therefore, we generated a data-driven multi-
omic interaction network based on Gaussian graphical 
models (GGM) (Schäfer and Strimmer 2005). In earlier 
studies, we have shown that partial correlation-based 
GGMs reconstruct valid biochemical interactions from 
omics data in an unbiased fashion and can even iden-
tify previously unknown interactions between molecules 
(Krumsiek et  al. 2011; Do et  al. 2017; Benedetti et  al. 
2017). The data-driven network contained 3566 statisti-
cally significant interactions between the 708 metabolites 
and 266 proteins (Fig.  2a). It was then annotated using 
the molecules that were differentially abundant between 
ARDS groups. An interactive version of the network is 
available in Additional file 6 for further exploration.

We then generated a subnetwork focusing on sev-
eral processes that have previously been implicated in 
COVID-19, namely mitochondrial dysfunction (Ajaz 
et  al. 2021), coagulopathy via cell-adhesion molecules 
(CAMs) and platelet activation (Tong et al. 2020; Sriram 
and Insel 2021). To this end, we chose two molecules 
belonging to these processes which were also among the 
top metabolomic and proteomic hits in Fig.  1a: Tiglyl 
carnitine, an acylcarnitine that represents mitochon-
drial function (Knottnerus et al. 2018), and glycoprotein 
6 (GP6), which is involved in the extracellular matrix 
(ECM) and the platelet activation pathway.

The subnetwork was constructed by including tiglyl 
carnitine, GP6, and all of their first- and second-degree 
network neighbors, i.e., nodes that were separated from 
the two molecules by one or two edges in the network. 

The resulting subnetwork consisted of 66 molecules (37 
metabolites, 29 proteins) with 106 interactions among 
them (Fig.  2b). Within this subnetwork, tiglyl carnitine 
and GP6 were connected via MCP-3 and N-acetylcar-
nosine. The neighborhood of tiglyl carnitine consisted 
of other acylcarnitines, including butenoylcarnitine 
(C4:1), (S)-3-hydroxybutyrylcarnitine, and 3-hydroxyhex-
anoylcarnitine, all of which were higher in COVID-19 
compared to bacterial sepsis-induced ARDS. The neigh-
borhood of GP6 consisted of additional proteins related 
to ECM or CAMs, including EPHB4, CECAM8, and 
PECAM1, all of which were higher in COVID-19 com-
pared to bacterial sepsis-induced ARDS. The mediating 
inflammatory MCP-3 protein was connected to other 
MCP proteins, which were higher in bacterial sepsis-
induced ARDS than in COVID-19.

Overall, within the subnetwork, we observed cross-
omics connections between clusters of CAMs/ECM and 
a group of acylcarnitines, mediated by a group of inflam-
matory MCP proteins. We speculate that the underlying 
interplay of these depicted biological processes might 
play a role in ARDS pathogenesis.

ARDS‑specific heterogeneity of molecular associations 
across clinical manifestations
In the second part of our study, we tested ARDS group-
specific molecular associations with four clinical mani-
festations: acute kidney injury (AKI), platelet count, 
patient’s oxygen in arterial blood to the fraction of the 
oxygen in the inspired air (PaO2/FIO2) ratio, and mor-
tality. In the bacterial sepsis-induced ARDS group, no 
significant associations with any of these clinical mani-
festations were identified (5% FDR). In COVID-19 ARDS, 
there were 10 molecules associated with AKI, including 8 
metabolites and 2 proteins, no molecules associated with 
platelet count, 6 metabolites associated with PaO2/FIO2, 
and 61 molecules associated with mortality, including  1 
metabolite and 60 proteins. Thus, a molecular compari-
son of heterogeneous presentations across the two ARDS 
groups was not feasible. Detailed results are available in 
Additional file 4: Table S4 and Additional file 5: Table S5.

In the following, we focused on the proteomic mortal-
ity signature distinguishing survivors and non-survivors 
of COVID-19. Among 60 proteins that were significantly 
different between survivors and non-survivors, 22 were 
higher in survivors, 38 higher in non-survivors (Fig.  3a, 
left). Remarkably, in our recent plasma-based study 
(Batra et al. 2022), we did not find any proteins that were 
associated with mortality in the same COVID-19 patients 
(Fig.  3a, right). Of note, the plasma samples were taken 
from the same patients (including one additional patient), 
at the same time as the urine samples and were profiled 
using the same technology.
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Fig. 2  Multi-omic network and extracted ECM/CAM/acylcarnitine subnetwork. a Gaussian graphical model (GGM) of metabolites and proteins. 
Shapes and colors of the molecules in the network are based on the two omics types. b Subnetwork extracted from the full multi-omic GGM, built 
around tiglyl carnitine and GP6. The observed molecular interactions suggest an interplay of ECM derangement, inflammation, and mitochondrial 
dysfunction in ARDS pathogenesis
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For further investigation of the urine-based COVID-
19 mortality signature, we selected significant proteins 
with log2 fold changes larger than 2 (Fig.  3b). Interest-
ingly, several of these 14 proteins have previously been 
described as biomarkers of pathologies that are linked 

to ARDS. For example, NT-proBNP in the urine of pre-
term infants has been shown to inform about pulmonary 
hypertension (Naeem et al. 2020). IGFBP-2 is an indica-
tor of pulmonary arterial hypertension (PAH) (Yang et al. 
2020) and can predict a decline of kidney function in type 

Fig. 3  Proteomics-based mortality signature. a Differentially abundant proteins in COVID-19 survivors and non-survivors, as observed in two bodily 
fluids, urine (n = 42) and plasma (n = 43, one additional patient). 60 proteins were significant in urine proteomic profiles, while none of the proteins 
measured in the plasma of the same patients were associated with mortality. b Top 14 differential proteins from COVID-19 urine-based mortality 
signature with log2 fold change larger than or equal to 2 at 5% FDR
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2 diabetes (Narayanan et al. 2012). FABP4 has been impli-
cated in proteinuria and has been discussed as a marker 
of kidney glomerular damage (Okazaki 2014). CXCL16 
is considered a urinary marker of poor renal outcome in 
diabetic kidney disease (Lee et al. 2021). HO-1 is a can-
didate biomarker for oxidative damage in obstructive 
nephropathy (Li et  al. 2012). VEGFA leads to increased 
inflammation in severe COVID-19 (Huang et al. 2019).

Taken together, these mortality-associated proteins 
have been implicated in ARDS-linked manifestations, 
including kidney dysfunction, pulmonary hypertension, 
and inflammation (Brault et  al. 2020; Revercomb et  al. 
2020; Legrand et al. 2021). This provides insights into the 
potential pathophysiological processes behind the devel-
opment of severe ARDS.

Conclusion
In this study, we presented a first urine-based multi-omic 
comparison of COVID-19 ARDS and non-COVID-19 
ARDS. We compared 42 COVID-19 ARDS patients to 
17 bacterial sepsis-induced ARDS patients using untar-
geted metabolomics (708 metabolites) and targeted pro-
teomics (266 proteins). There were two main findings 
from our work. First, the multi-omic network approach 
highlighted the interplay of mitochondrial dysfunction 
and ECM derangement in ARDS pathogenesis. Second, 
we identified a proteomics-based mortality signature in 
COVID-19 ARDS patients. Notably, within the bacterial 
sepsis-induced ARDS group, no metabolites or proteins 
were found to be associated with any of the four clinical 
manifestations tested. In the following paragraphs, we 
discuss the two novel findings from our study.

Our multi-omic network-based analysis indicated an 
ARDS-related link between CAMs/ECM and mitochon-
drial dysfunction represented by acylcarnitines. In the 
analyzed subnetwork, the connections between these dif-
ferent biological processes were mediated by inflamma-
tory proteins. Previous COVID-19 studies have already 
individually implicated these processes in ARDS, but 
have not proposed a link between these pathways in 
the context of ARDS (Li et  al. 2020b; Ajaz et  al. 2021; 
Knottnerus et al. 2018). Moreover, mechanistically, ECM, 
CAMs, and acylcarnitines have individually been linked 
with inflammation (Sorokin 2010; González-Amaro et al. 
1998; Rutkowsky et al. 2014). Our findings now highlight 
the potential synergy between these different cellular 
pathways in ARDS.

The proteomics-based mortality signature distin-
guishing COVID-19 survivors and non-survivors is 
another potentially novel finding from our study. Sur-
prisingly, the mortality signal was absent in plasma pro-
teomics profiles of the same patients. This could reflect 
frequent kidney involvement in severe COVID-19, 

which leads to the poor renal outcomes observed in 
COVID-19 patients (Legrand et  al. 2021). Moreover, 
the signature contains several proteins implicated in 
pathological processes that have been linked to ARDS, 
including inflammation, kidney dysfunction, and pul-
monary hypertension (Brault et  al. 2020; Revercomb 
et  al. 2020; Legrand et  al. 2021). In terms of clinical 
stratification approaches, a higher-powered study will 
be needed to assess whether machine learning models 
based on our signature are able to predict mortality in 
COVID-19 ARDS patients.

We recognize that our study design has several limita-
tions. (1) Since the patients of the two ARDS groups were 
collected several years apart, differences in sample col-
lection and storage protocols may lead to unaccountable 
variation across measurements. (2) Our cohort has a lim-
ited sample size (n = 59), with imbalanced ARDS groups 
(42 COVID-19 versus 17 bacterial sepsis patients). This 
relatively small sample size could have led to false nega-
tives in our analysis, especially within the bacterial sep-
sis group. (3) Since the coverage of the metabolomics 
and proteomics platforms is limited, there is potential 
for missed associations with unmeasured molecules. (4) 
Our study was limited to statistical associations in a sin-
gle cohort since we did not have access to an independent 
cohort for replication.

In conclusion, we presented a first urine-based 
multi-omic analysis of COVID-19 ARDS compared to 
bacterial sepsis-induced ARDS. Our analysis shows 
molecular similarities and differences between the 
two ARDS groups. The most striking finding was a 
proteomics-based mortality signature specifically for 
COVID-19 ARDS, which will require further investiga-
tion as a potential early biomarker for mortality.
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