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Abstract 

The homologous to the E6-AP carboxyl terminus (HECT)-type E3 ubiquitin ligases are the selective executers in the 
protein ubiquitination, playing a vital role in modulation of the protein function and stability. Evidence shows the 
regulatory role of HECT-type E3 ligases in various steps of the autophagic process. Autophagy is an intracellular diges-
tive and recycling process that controls the cellular hemostasis. Defective autophagy is involved in tumorigenesis and 
has been detected in various types of cancer cells. A growing body of findings indicates that HECT-type E3 ligases, in 
particular members of the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) includ-
ing NEDD4-1, NEDD4-L, SMURFs, WWPs, and ITCH, play critical roles in dysregulation or dysfunction of autophagy 
in cancer cells. The present review focuses on NEDD4 E3 ligases involved in defective autophagy in cancer cells and 
discusses their autophagic function in different cancer cells as well as substrates and the signaling pathways in which 
they participate, conferring a basis for the cancer treatment through the modulating of these E3 ligases.
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Introduction
The E3 ubiquitin-protein ligases, the matchmakers in the 
ubiquitination cascade, are implicated in the regulation 
of various steps of the autophagic process, the major lys-
osome-dependent degradation pathway (Yin et al. 2020). 
Autophagy provides a homeostatic control mechanism 
and has been found to be defective in cancer (Russell and 
Guan 2022). Regarding the relevant clinical and thera-
peutic aspects of autophagy, there is emerging attentions 

in the exploring the responsible factors affecting the 
autophagy machinery in the diseases. By a comprehen-
sive databases search, we found that, during recent years, 
there has been continuously growing evidence that 
shows a key role of HECT-type E3 ligases, particularly 
members of Neural precursor cell expressed develop-
mentally downregulated protein 4 (NEDD4) family, in 
defective autophagy in cancer. Thus, the present review 
was conducted to address the following questions: (1) 
which members of the NEDD4 E3 ligase family are impli-
cated in defective autophagy in cancer cells?, (2) which 
types of cancers are affected?, (3) what is their activity in 
autophagy in different cancer cells; autophagy inhibitor 
or autophagy inducer and tumor promoter or tumor sup-
pressor ?, (4) what are their new substrates and molecular 
mechanisms underlying their effects?, (5) How can they 
be targeted to conquer different cancers?. To this end, 
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the following sections were arranged. First, an overview 
of NEDD4 ubiquitin ligases as well as the autophagy pro-
cess and its role in cancer cells were briefly presented in 
the following introduction subsections. Afterward, all 
published data regarding the role of NEDD4 ubiquitin 
E3 ligases in the autophagy process in cancer have been 
reviewed and discussed in detail.

NEDD4 ubiquitin E3 ligases: a snapshot view of enzymatic 
activity and structure
E3 ubiquitin ligases are the selective executers in the pro-
tein ubiquitination and, thus, implicate in the two major 
protein degradation pathways, the ubiquitin–proteasome 
system (UPS) and autophagy (Yin et  al. 2020). Ubiqui-
tin is a highly conserved 76 amino acid globular protein. 
Ubiquitination is a reversible enzymatic conjugation 
event, which forms an isopeptide bond between the car-
boxyl group of C-terminal Glyc76 on ubiquitin and the 
ε-amino group of a Lysine residue on the substrate. Ubiq-
uitin attachment onto target proteins includes a multi-
step reaction that needs the sequential and coordinated 
activity of a cascade of three enzymes: a ubiquitin-acti-
vating enzyme (E1), a ubiquitin-conjugating enzyme (E2), 
and a ubiquitin ligase (E3). The E3 ligases transfer acti-
vated ubiquitin to a Lysine residue on the target substrate 
through an interaction involving both the E2 conjugating 
enzyme and the substrate (Vere et al. 2020).

NEDD4 is a well-known family of the homolo-
gous to the E6AP carboxyl terminus (HECT)-type E3 
ligases. NEDD4 family comprises nine E3 ligase mem-
bers: NEDD4-1, NEDD4L, WW domain-containing E3 
ubiquitin-protein ligase 1 (WWP1), WWP2, NEDL1 
(HECW1), NEDL2 (HECW2), Smad ubiquitin regula-
tory factors (SMURF)1, SMURF2, and ITCH. NEDD4 
members show a highly similar domain architecture con-
sisting of an N-terminal protein kinase C-related mem-
brane/lipid-binding C2 domain mediating attachment of 
NEDD4 E3 ligases to membrane compartments (Dunn 
et  al. 2004; Plant et  al. 2000; Angers et  al. 2004; Kumar 
et  al. 1997), two to four tryptophan-tryptophan (WW) 
domains located in the central part (N-terminus) for the 
substrate recognition and binding through the interac-
tion with Proline-rich motifs (mainly PPxY) or phospho-
rylated Serine/Threonine-Proline regions on the target 
substrate (Kumar et  al. 1997; Staub and Rotin 1996), as 
well as the catalytic HECT domain at the C-terminus 
(Kumar et  al. 1997; Weber et  al. 2019; Dodson et  al. 
2015). The HECT domain directly catalyzes the covalent 
bond between ubiquitin and target substrates through a 
two-step reaction: first, they capture the activated ubiq-
uitin from E2 conjugating enzymes in a transthiolation 
reaction on their catalytic cysteine, and then, the ubiqui-
tin moiety is transferred to a lysine on the substrate. The 

HECT domain is highly conserved and consists of N- and 
C-terminal lobes connected by a flexible linker chain. The 
N-lobe contains the E2-binding site (Fotia et  al. 2006), 
while the C-lobe carries the active-site cysteine catalyz-
ing the thioester bond with the ubiquitin moiety (Ver-
decia et  al. 2003; Huang et  al. 1999). The flexible linker 
permits the C-lobe to move around and assist the ubiq-
uitin transfer from the E2 to the E3 (Weber et al. 2019). 
In basal status, the NEDD4 E3 ligases can be kept in a 
catalytically inactive state through an autoinhibitory con-
formation in which the N-terminal domains (either the 
C2 or WW domains) interact with the C-terminal HECT 
domain to luck the HECT activity and prevent substrate 
or E2 access (Wan et al. 2011; Wiesner et al. 2007; Wang 
et al. 2019; Zhou et al. 2014).

Proteins can be modified by mono-ubiquitination, 
as a result of the attachment of a single ubiquitin, or by 
polyubiquitination through the sequential attachment of 
ubiquitin moieties on lysine residues. Ubiquitin contains 
seven internal lysine residues (K6, K11, K27, K29, K33, 
K48, and K63) that can accept another ubiquitin mol-
ecule in subsequent rounds of ubiquitination, finally gen-
erating multiple types of polyubiquitin chains (Vere et al. 
2020; Xu et  al. 2009). Mono- or polyubiquitination and 
the exact composition of linkage chain determines the 
distinct fate of the substrates. For example, K63-linked 
poly-ubiquitylated and mono-ubiquitylated substrates 
are preferentially degraded by the autophagy/lysosome 
system, whereas K48-linked ubiquitination is mainly 
believed to target substrates for proteasome degradation 
(Kwon and Ciechanover 2017). Of note, K63-linked and 
K48-linked polyubiquitination compete with each other 
to activate autophagic proteins in response to stress con-
ditions or to degrade them when the stress situation is 
resolved, respectively. In particular, K48-polyubiquitina-
tion-mediated degradation of autophagy proteins is nec-
essary to terminating the autophagy response (Yin et al. 
2020).

An overview of autophagy
The intracellular protein homeostasis is majorly con-
trolled by using two pathways of protein degrada-
tion, the UPS and autophagy. Whereas the UPS is the 
main cellular pathway to degrade short-lived proteins, 
autophagy is the fundamental catabolic mechanism for 
degrading and recycling damaged organelles as well as 
long-lived proteins, protein aggregates, and protein com-
plexes. Autophagy is a conserved self-digestion process, 
through which cytosolic constituents are sequestered by 
lipid bilayer vesicles and subsequently transferred to lys-
osomes for degradation (Cao et al. 2021).

Autophagy exists in a basal (constitutive) as well as 
stimulated state. Basal autophagy occurs in most cells and 
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tissues under normal physiological conditions to main-
tain cellular homeostasis. Basal autophagy is also respon-
sible for cellular architectural alterations that happen 
during development and differentiation (Adelipour et al. 
2022; Hu et al. 2019). However, stimulated autophagy can 
occur in response to cellular stresses such as nutrient or 
growth factor starvation, high temperature, overcrowd-
ing, hypoxia, endoplasmic reticulum (ER) stress, and 
microbial infection (Cao et al. 2021). In response to such 
stresses, autophagic degradation is activated to provide 
biosynthetic demands, reprogram cellular metabolism, 
and permit cell viability. Notably, starvation induces non-
selective autophagy that engulfs any cytosolic constitu-
ents. Starvation-induced autophagy permits the cell to 
recycle nutrients from digested organelles and proteins, 
thereby maintaining the cellular biosynthetic capacity via 
providing amino acids for de-novo protein synthesis, and 
preserving the cellular energy source (ATP) by supplying 
free fatty acids and amino acids for the Krebs cycle. How-
ever, selective autophagic degradation acts by recognition 
and targeting specific cellular material, such as protein 
aggregates (aggrephagy), injured organelles (mitophagy 
for the mitochondria disposal, ERphagy for the ER dis-
posal, and pexophagy for the perioxisomes disposal), as 
well as intracellular pathogens (xenophagy) (Lamark and 
Johansen 2021; Janssen et al. 2021).

The autophagy process consists of an orderly set of 
events: the initiation, phagophore nucleation, seques-
tration and autophagosome formation, the fusion of the 
autophagosome with the lysosome, and cargo digestion 
and recycling. The promotion of autophagy is started 
with the nucleation of a sequestering membrane, creating 
a cup-shaped phagophore, which stems from lipid bilay-
ers provided majorly by the ER, but also by endosomes 
and the Golgi apparatus. A part of cytosol, including 
organelles, is subsequently engulfed by the elongating 
phagophore to create a double-membrane vesicle called 
the autophagosome. Eventually, the outer membrane of 
the autophagosome merges with the lysosomal mem-
brane to create an autolysosome compartment, where 
engulfed cytosolic components are degraded by the 
acidic lysosomal hydrolases (Cao et al. 2021; Sidibe et al. 
2022).

The core autophagic machinery relies on autophagy-
related (ATG) proteins, which assemble into functional 
complexes that are recruited to autophagy membrane 
compartments and work in sequential order to deliver 
the cytosolic cargo to the lysosomes (Zhou et  al. 2022). 
The master regulator of autophagy is the mammalian 
target of rapamycin complex 1 (mTORC1), which inhib-
its autophagy by suppressing the activity of Unc-51-like 
kinase 1 (ULK1) (Dossou and Basu 2019; Ganley et  al. 
2009; Hosokawa et  al. 2009; Jung et  al. 2009; Noda and 

Fujioka 2015). ULK1 is a serine/threonine kinase and 
one of the most upstream ATG proteins required for 
the initiation steps of autophagy in mammalian cells. 
Under stressful conditions, AMP-activated protein 
kinase (AMPK) suppresses mTORC1 and activates 
ULK1 that forms a stable protein kinase complex with 
autophagic proteins ATG13, ATG101, and FIP20 to initi-
ate autophagy (Dossou and Basu 2019).

The activated ULK complex localizes to discrete sites 
on the ER and induces the phagophore nucleation via 
phosphorylating components of the class-III phos-
phatidylinositol 3-kinase (PI3KC3) complex comprising 
Beclin-1, Vps34/PI3K, Vps15, ATG14L, UV resistance-
associated gene (UVRAG), and Rubicon. Upon phospho-
rylation, the PI3KC3 complex induces local production of 
phosphatidylinositol-3-phosphate (PI3P) at ER structures 
termed omegasomes, where the effector proteins are 
recruited to initiate the phagophore nucleation (Karana-
sios et al. 2016).

ATG proteins orchestrate the elongation and expansion 
of the phagophore membrane to the autophagosome. The 
ATG5 ~ ATG12-ATG16L complex recruits ATG8 [micro-
tubule-associated protein 1 light chain 3 (LC3)] protein 
that is subsequently lipidated by the sequential activity of 
ATG4B as well as ATG7 and ATG3 (Carlsson and Simon-
sen 2015). The lipid conjugation process is initiated via 
converting LC3 to the active cytosolic isoform LC3-I by 
the protease activity of ATG4B, in which ATG4B cleaves 
LC3 to expose the C-terminal Glycine for the subsequent 
lipidation reaction. ATG3/ATG7 mediate conjugation of 
membrane-associated phosphatidylethanolamine (PE) 
and convert LC3-I to lipidated LC3-II (Fig.  1). Indeed, 
LC3-II is a membrane-anchored form of LC3 that is 
essential for phagophore elongation and for facilitating 
the specific recruitment of cargos in selective autophagy 
(Kabeya et al. 2000; Walker and Ktistakis 2020).

For the selective autophagic degradation, specific 
autophagy adaptors (receptors), such as p62 [also called 
sequestosome 1 (SQSTM 1)] (Pankiv et  al. 2007; Zheng 
et al. 2009; Wurzer et al. 2015), autophagy and Beclin 1 
Regulator 1 (AMBRA1) (Rita, et  al. 2018), Optineurin 
(OPTN), nuclear dot protein 52 kDa (NDP52) (Heo et al. 
2015; Mostowy et  al. 2011; Thurston et  al. 2009; Muh-
linen et al. 2012), and neighbor of BRCA1 gene (NBR1) 
(Walinda et al. 2014; Riley et al. 2010; Kirkin et al. 2009), 
attach a ubiquitin-tagged cargo to a nascent autophago-
some by concurrently binding the cargo and LC3-II on 
the sequestering membrane. These adaptors possess a 
ubiquitin-associated domain (UBA) and an LC3-interact-
ing region (LIR) allowing their binding to ubiquitinated 
cargoes and LC3-II, respectively (Wurzer et  al. 2015; 
Kirkin et  al. 2009; Long et  al. 2010; Isogai et  al. 2011). 
Indeed, autophagy adaptors act not only as a bridge 
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between ubiquitinated cargoes and LC3-II by the UBA 
domain but also as a transporter for cargo delivery to 
autophagosomes by the LIR domain.

The search strategy
A systematic literature search was performed in elec-
tronic databases, including Web of Science, PubMed, 
Scopus, and Google Scholar, without any language 
restrictions, to find all published articles dealing with 
the aims of the present study. The search was performed 
using the terms [(autophagy) AND (E3 ubiquitin ligase) 
AND (“HECT” OR “homologous to the E6AP car-
boxyl terminus” OR “NEDD4” OR “Neural precursor 
cell expressed developmentally downregulated protein 
4”) AND (“cancer” OR “tumor”)] in titles and abstracts. 
In addition, the references of enrolled studies were also 
manually checked to find other related publications that 
were potentially missed from database searching.

The role of NEDD4 E3 ubiquitin ligases in the autophagy 
process in cancer
Although autophagy can maintain the normal physi-
ological function of cells, excessive autophagy can 
lead to diseases. The dysregulation of autophagy has 
been found to exert a role in various human diseases, 
such as neurodegenerative disorders (Fleming et  al. 
2022), rheumatic diseases (Celia et al. 2022), muscular 

diseases, cardiovascular diseases (Gatica et  al. 2022), 
and cancer (Gundamaraju et  al. 2022; Ariosa et  al. 
2021). Autophagy has been known to be a double-edged 
sword in cancer biology, acting both as a protector of 
cancer cell survival and a tumor suppressor depending 
on the cancer type and stage of cancer development. 
On the one hand, autophagy suppresses tumor growth 
in the early stages by inhibiting the proliferation of pre-
cancerous cells, scavenging toxic molecules correlated 
with tumorigenesis, and removing damaged organelles. 
On the other hand, autophagy is able to induce tumor 
growth and survival in later stages. Tumors are under 
highly stressful conditions such as hypoxia and nutri-
ent deprivation, and autophagy can increase stress 
tolerance and provide nutrients to meet the metabolic 
demands of cancer cells, thereby enhancing cancer-cell 
survival (Gundamaraju et al. 2022; Ariosa et al. 2021).

In addition, a fine-tuning of autophagic activity is 
important for the appropriate cellular hemostasis and 
growth, and defective autophagy with either excessive 
or low activity can cause cancer cell formation. Accu-
mulating findings indicate that the dysregulation of 
NEDD4 family E3 ligases can be one of the molecular 
mechanisms attributed to the dual role of autophagy in 
cancer cells. A systematic search in different electronic 
databases indicated that, among HECT-type E3 ligases, 
members of the NEDD4 family including NEDD4-1, 
NEDD4L, SMURF-1, SMURF-2, WWP1, WWP2, and 

Fig. 1  The schematic view of the role of NEDD4 E3 ubiquitin ligases in the autophagic process in cancer cells
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ITCH have been investigated in many various cancers 
with defective autophagy, as reviewed in next sections.

Autophagic‑mediated roles of NEDD4‑1 in cancer cells
The ubiquitin E3 ligase NEDD4-1 has been found to 
involve in the proliferation, migration, invasion, and drug 
sensitivity of cancer cells. NEDD4-1 exerts the dichoto-
mous roles as an oncoprotein (Eide et al. 2013; Amodio 
et al. 2010; Wang et al. 2007; Xu et al. 2015; Huang et al. 
2017; Li et al. 2015; Sun et al. 2017; Kim et al. 2008a; Jung 
et al. 2013; Singh et al. 2011; Verma et al. 2017; Yim et al. 
2009) and a tumor suppressor (Zhou et al. 2014; Trotman 
et al. 2007; Liu et al. 2013; Huang et al. 2015; Huang et al. 
2020a; Zeng et al. 2014; Platta et al. 2012) in cancer cells 
(Fig. 2A). The expression of NEDD4-1 has been reported 
to be elevated in several types of cancers including colo-
rectal (Eide et  al. 2013; Kim et  al. 2008a), gastric (Kim 
et  al. 2008a), breast (Jung et  al. 2013; Singh et  al. 2011; 
Verma et  al. 2017; Yim et  al. 2009), non-small-cell lung 
carcinoma (Amodio et al. 2010), bladder, prostate, cervi-
cal (Wang et al. 2007; Li et al. 2015), hepatocellular car-
cinoma (HCC) (Huang et  al. 2017), and glioma (Zhang 
et  al. 2013). Its oncogenic or tumor suppressor activi-
ties are mainly mediated by ubiquitination of proteins 
with oncogenic or tumor suppressor functions such as 
PTEN (Amodio et al. 2010; Wang et al. 2007; Kim et al. 
2008a; Jung et al. 2013; Singh et al. 2011; Yim et al. 2009), 
MDM2 (Xu et  al. 2015), CNrasGEF (Zhang et  al. 2013; 
Pham and Rotin 2001), N-Myc and C-Myc (Liu et  al. 
2013), Her3 (Verma et al. 2017; Huang et al. 2015), SAG 
(Zhou et  al. 2014), AKT (Huang et  al. 2020a; Fan et  al. 
2013), and Ras (Zeng et al. 2014). In mechanism, the dual 
role of NEDD4-1 in cancer cells is ascribed to its non-
selective ability to interact with the Proline-rich motifs 
that are universal regions in many proteins with different 
activities (Huang et al. 2019).

Growing evidence has shown that NEDD4-1 can 
also play the role in the autophagy process in cancer 
cells, thereby affecting tumor growth. Although some 
conflicting results have been published on the role of 
NEDD4-1 in the regulation of autophagy, the most of 
available investigational evidence appears to imply the 
pro-autophagic activity of NEDD4-1 in basal and star-
vation-promoted autophagy (Li et  al. 2015; Sun et  al. 
2017; Pei et al. 2017; Xie et al. 2020) as well as selective 
autophagy such as mitophagy (Sun et al. 2017), infection-
promoted autophagy (Pei et  al. 2017), and aggrephagy 
(Lin et al. 2017; Xie et al. 2022).

Li et  al. found that the overexpression of NEDD4-1 
in cancer cells, such as the lung and prostate, can pro-
mote autophagy initiation by inhibiting mTORC1 to 
protect cancer cell survival. Notably, the knockdown of 
NEDD4-1 strongly elevated the active levels of mTOR 

protein, and as a result, inhibited autophagy activation 
and proliferation in lung and prostate cancer cells, sup-
porting the association of elevated levels of NEDD4-1 
with the induction of the protective autophagy in cancer 
cells (Li et al. 2015).

NEDD4-1 has been also found to regulate other steps 
of the autophagy process, including the phagophore 
nucleation and elongation as well as the substrate selec-
tion during mitophagy. NEDD4-1 can positively regulate 
the phagophore nucleation via targeting Beclin-1 in can-
cer cells (Sun et al. 2017; Pei et al. 2017). NEDD4-1 was 
detected to promote K6- and K27-conjugate polyubiquit-
ination of Beclin-1, resulting in increased stability of Bec-
lin-1 and elevated autophagy (Pei et  al. 2017), which is 
consistent with the finding that showed the knockdown 
of NEDD4-1 caused a significant reduction of Beclin-1 
protein and the inhibition of protective autophagy in can-
cer cells (Sun et al. 2017). Further investigations revealed 
that vacuolar protein sorting 34 (VPS34) is the other tar-
get of NEDD4-1 in the autophagy machinery and plays 
an important role in the NEDD4-1-mediated ubiquitina-
tion of Beclin-1 in cancer cells (Xie et  al. 2020). VPS34 
is the catalytic subunit of the PI3KC3 complex, which 
interacts with autophagic proteins such as Beclin-1 at the 
phagophore assembly sites to form functional complexes 
activating the phagophore formation (Mizushima 2018). 
Of note, the existence of VPS34 appears to be indispensa-
ble for the Beclin-1 stabilization. Interestingly, NEDD4-1 
undergoes auto-ubiquitination that serves it as a scaffold 
for engaging the ubiquitin-specific protease 13 (USP13) 
to form a NEDD4-1/USP13 deubiquitination complex, 
which subsequently deubiquitinates and stabilizes VPS34 
to induce phagophore nucleation in cancer cells. On the 
other hand, VPS34 depletion in lung cancer cells was 
found to not only impair the activity of NEDD4-1 to sta-
bilize Beclin-1 (Xie et al. 2020), but also cause NEDD4-
1-mediated proteasomal degradation of Beclin-1 via 
K11-linked ubiquitination (Platta et  al. 2012). This sug-
gests that the VPS34/Beclin-1 complex formation is 
essential for the NEDD4-1-mediated K6- and K27-linked 
ubiquitination and stabilization of Beclin-1. Thus, it can 
be proposed that VPS34, after activation by NEDD4-1, 
forms a complex with Beclin-1 and subsequently presents 
it to NEDD4-1 for K6- and K27-linked ubiquitination.

The NEDD4-1 can also involve in the phagophore 
elongation and substrate selection in cancer cells 
through interaction with LC3 and the autophagy recep-
tor SQSTM1. Notably, the contribution of NEDD4-1 to 
autophagy was first explored by Behrends et al. through 
the network organization of the human autophagy sys-
tem which revealed an interaction between NEDD4-1 
and LC3 (Behrends et  al. 2010). The subsequent study 
by Li et al. showed that downregulation of NEDD4-1 in 
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Fig. 2  Molecular targets and pathways involving tumor promoter and tumor suppressive activities of NEDD4 E3 ubiquitin ligases, including 
NEDD4-1 (A), NEDD4-L (B), SMURFs (C), WWP1 (D), and ITCH (E)
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prostate and lung cancer cells could reduce cancer cell 
proliferation and inhibit autophagy, which was accompa-
nied by a reduction in the formation of LC3-positive pha-
gophores and a decreased conversion of LC3-I to LC3-II 
(Li et  al. 2015). Supportingly, further investigations by 
Sun et al. indicated that the knockdown of NEDD4-1 in 
HCC, neuroblastoma, and lung cancer cells caused the 
aberrant aggregation of the LC3 puncta and the presence 
of deformed mitochondria as well as reduced autophago-
some biogenesis, which appeared as a severe defect in the 
activation of starvation-induced autophagy or mitophagy. 
Indeed, NEDD4-1 can directly interact with LC3 through 
a conserved LC3-binding motif in a region located 
between the WW and the C2 domains, thereby forming 
a functional complex and positively regulating autophagy 
at the phagophore elongation step (Sun et al. 2017). It is 
noteworthy that the interaction of NEDD4-1 with LC3 
was found to be not only for association with autophago-
somes (Sun et al. 2017) but also for activation of this E3 
ligase to interact with and polyubiquitinate SQSTM1 
(Sun et al. 2017; Lin et al. 2017). The NEDD4-1 depend-
ent-polyubiquitination of SQSTM1 was detected to be 

mainly through K63 linkage (Lin et  al. 2017), which is 
necessary for the SQSTM1-mediated selective autophagy 
(such as mitophagy), but not for its proteasomal degra-
dation (Lin et  al. 2017; Kim et  al. 2008b; Johansen and 
Lamark 2011; Rogov et al. 2014; Stolz et al. 2014).

Thus, it can be concluded that, in cancer cells highly 
expressing NEDD4-1, such as prostate, HCC, neuro-
blastoma, and lung, NEDD4-1 can mediate starva-
tion-induced autophagy and mitophagy, by inducing 
autophagosome biogenesis and stabilizing autophagy 
receptor SQSTM1, to protect cancer cell survival and 
growth.

On the other hand, a low expression of NEDD4-1 
in cancer cells, like melanoma, was found to be associ-
ated with the activation of the immunoglobulin-con-
taining and Proline-rich receptor-1 (IGPR-1)–mediated 
autophagy (Sun et  al. 2021). IGPR-1 is a cell adhesion 
molecule that is overexpressed in some cancer cells and 
induces autophagy with a remarkable implication for 
tumor growth and angiogenesis (Sun et al. 2021; Rahimi 
et al. 2012; Woolf et al. 2017; Amraei et al. 2020). Acti-
vation of IGPR-1 by AKT/protein kinase B (PKB) and 

Fig. 2  continued
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inhibitor of nuclear factor kappa-B kinase subunitβ 
(IKKβ) can induce autophagy at the initiation step 
through a mechanism involving activation of AMPK 
(Amraei et al. 2020; Ho et al. 2019). Sun et al. showed that 
increased expression of NEDD4-1 in melanoma cells can 
suppress IGPR-1–induced autophagy and tumor growth, 
by promoting K63- and K48-linked polyubiquitination 
and lysosomal degradation of IGPR-1 (Sun et al. 2021).

Therefore, a well-regulated NEDD4-1 can induce or 
halt autophagy in favor of cellular hemostasis. When 
its expression or activity is dysregulated, NEDD4-1 can 
cause protective autophagy in favor of the cancer cell 
requirement (Table 1).

Autophagic‑mediated roles of NEDD4L in cancer cells
Accumulating investigations have reported different roles 
of the ubiquitin E3 ligase NEDD4L in cancer biology in 
various types of malignancies (Fig. 2B). NEDD4L exerts a 
tumor suppressive role and is correlated with poor prog-
noses in cancer cells where its expression is low, such 
as multiple myeloma (MM) (Huang et  al. 2022), non-
small cell lung carcinoma (Sakashita et al. 2013), malig-
nant gliomas (He et  al. 2012), and gastric cancer (Jiang 
et al. 2019; Gao et al. 2012). On the other hand, NEDDL 
also shows an oncogenic activity with a highly elevated 
expression in cutaneous T-cell lymphoma (Booken et al. 
2008), gallbladder cancer (by modulating the transcrip-
tion of matrix metalloproteinase genes MMP-1 and 
MMP-13) (Takeuchi et al. 2011), prostate carcinoma (by 
ubiquitination and degradation of TGF-β) (Hellwinkel 
et al. 2011), and melanoma (Kito et al. 2014) [by ubiquit-
ination and degradation of melanosomal transmembrane 
protein Melan-A/MART-1 (Lévy et al. 2005)].

Novel evidence recently reported by Huang et al. shows 
that NEDD4L favors the tumor suppressive function and 
involves in the drug sensitivity in the MM cancer cells, 
by acting as an autophagy activator (Huang et al. 2022). 
It was indicated that MM cells express low levels of 
NEDD4L and that the low NEDD4L expression by malig-
nant plasma cells is a risk factor in MM patients (Huang 
et al. 2022). Notably, the low expression of NEDD4L was 
found to intensify bortezomib resistance in  vitro and 
in  vivo mainly due to autophagy impairment (Huang 
et al. 2022). Clinical and molecular assessments revealed 
that increased expression of NEDD4L coincided with 
autophagy activation, which was correlated with a signifi-
cantly elevated probability of responding to bortezomib, a 
prolonged response duration, and improved overall prog-
nosis in MM patients (Huang et al. 2022). Further inves-
tigations showed that NEDD4L induces autophagosome 
biogenesis by reducing the activated levels of mTOR 
and increasing the LC3-II/-I ratios as well as inhibiting 
proteasome-dependent protein degradation via binding 
the 19S proteasome and limiting its proteolytic function 
(Huang et  al. 2022). Of note, the 19S proteasome is the 
regulatory subunit of the 26S proteasome that degrades 
ubiquitinated proteins and is a responsible factor for 
bortezomib resistance (Barrio et  al. 2019; Oerlemans 
et  al. 2008). To sum up, these findings, in addition to 
representing NEDD4L as a newly recognized autophagy 
activator, suggest both the application of NEDD4L as a 
new biomarker for predicting MM patients’ response to 
bortezomib as well as the usefulness of NEDD4L activa-
tors in combination with bortezomib as a novel thera-
peutic approach for the MM treatment. The autophagic 
activity of NEDD4L was further supported by another 

Table 1  The target substrates of NEDD4 E3 ubiquitin ligases in the autophagic process in cancer cells

E3 ligase Expression level Cancer types Molecular target Autophagy Step Effect on cancer cells

NEDD4-1 High Prostate, HCC, Lung, 
Neuroblastoma

mTORC1 (−) Initiation (+) Protective

VPS34 (+) Beclin-1 (+) Phagophore nucleation (+) Protective

LC3-I (+)
SQSTM1 (+)

Phagophore elongation (+) Sub-
strate selection (+)

Protective

Low Melanoma IGPR-1 (−) Initiation (−) Inhibitive

NEDD4L Low Multiple myeloma mTORC1 (−)
LC3-I (−)

Activating autophagy
(autophagy step was not defined)

- Inhibitive
- Involving in drug response

Low Pancreas ULK1 (−)
ASCT2 (−)

Phagophore nucleation (−) Inhibitive

SMURF1 Not defined HCC UVRAG​ Phagophore nucleation ( +) Inhibitive

WWP1 High AML Not defined Autophagosome formation (−) Protective

Low Melanoma KLF5 (−)
BAP1 (−)

Initiation (+) Inhibitive

WWP2 Not defined Not defined NDP52 (+)
OPTN (+)
SQSTM1 (+)

Selection (+) Not defined
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study that indicated NEDD4L mediates ER stress-
induced autophagy as well as autophagy induced by both 
basal and nutrient starvation conditions in cultured cer-
vical cancer cells and in the mouse (Wang et  al. 2016). 
Especially, it was shown that, upon ER stress, NEDD4L 
is upregulated by the spliced form of X-box binding pro-
tein 1 (sXBP1), a transcription factor that regulates the 
expression of a variety of genes essential for recovering 
ER activity after ER stress (Wang et al. 2016).

On the other hand, findings reported by Lee et  al. 
indicated that pancreatic cancer cells with low levels of 
NEDD4L predominantly relied on autophagy activation, 
which was associated with tumor growth and survival in 
both in vitro and in vivo studies (Lee et al. 2020a). Over-
expressed NEDD4L was found to repress autophagy in 
pancreatic cancer cells by decreasing cellular levels of the 
autophagy protein ULK1 (Lee et  al. 2020a; Nazio et  al. 
2016) and the glutamine transporter ASCT2 (Lee et  al. 
2020a). The interesting finding was that ASCT2, stabi-
lized by the loss of NEDD4L, exerted an essential role in 
activating autophagy in NEDD4L-downregulated pan-
creatic cancer cells, in addition to its direct activity in 
delivering key substrates for mitochondrial metabolism 
(Lee et al. 2020a). Of note, it was shown that NEDD4L, 
through inhibiting autophagy, impaired mitochondrial 
metabolism by disrupting the cellular oxygen consump-
tion rate (OCR), the mitochondrial membrane potential 
(MMP), and mitochondrial morphology to ultimately 
suppress pancreatic tumor growth. Notably, the low 
expression of NEDD4L in pancreatic cancer cells caused 
ULK1- and ASCT2-mediated autophagy as well as 
ASCT2-mediated glutamine uptake to provide adequate 
fuel to activate mitochondrial metabolism and enhance 
mitochondrial functional integrity, thereby prevent-
ing cell death and further facilitating the tumor growth 
(Lee et  al. 2020a). The suppressive role of NEDD4L in 
autophagy is further supported by the Nazio et al. study 
that showed NEDD4L mediates K27- and K29-linked 
polyubiquitination and subsequent proteasome degrada-
tion of ULK1, thereby inhibiting phagophore formation 
and autophagy response (Nazio et al. 2016) (Table 1).

Autophagic‑mediated roles of SMURFs in cancer cells
SMURF1 and SMURF2, a SMURF1-related protein, 
are members of the NEDD4 family, which regulate sev-
eral biological networks such as “transforming growth 
factor-β” and “bone morphogenetic protein” signaling 
pathways (Zhu et al. 1999; Lin et al. 2000; Kavsak et al. 
2000; Ebisawa et al. 2001; Tajima et al. 2003; Murakami 
et  al. 2003). These E3 ligases act in multiple biologi-
cal processes including cell growth and differentiation, 
cell adhesion and migration, cell polarity, as well as 
autophagy, whereby participate in various physiological 

functions including bone formation, embryogenesis, 
and cancer development (Fig. 2C) (Shimazu et al. 2016; 
Sahai et al. 2007; Li et al. 2016; Fukuchi et al. 2002; Sato 
et al. 2022; Yu et al. 2020).

SMURF1 and SMURF2 have been found to be criti-
cal determinants of basal autophagy (Feng et  al. 2019) 
and selective autophagy including mitophagy and xen-
ophagy (Orvedahl et  al. 2011; Borroni et  al. 2018a; 
Franco et  al. 2017); however, underlying molecular 
mechanisms are not clearly known. Growing evidence 
indicates that the autophagic activity of SMURFs plays 
the important role in cancer biology.

Recently, Feng et  al. reported that ubiquitination of 
UVRAG, an important regulator of mammalian cell 
autophagy, by SMURF1 induces phagophore nuclea-
tion and suppresses the HCC growth (Feng et al. 2019). 
SMURF1 was found to recruit and directly interact 
with UVRAG through the PPxY motif, and subse-
quently catalyze the K29- and K33-linked polyubiqui-
tination of UVRAG at K517 and K559 residues (Feng 
et al. 2019). Interestingly, it was revealed that SMURF1-
mediated ubiquitination does not target UVRAG for 
proteasomal or lysosomal degradation, but positively 
regulates the autophagic activity of UVRAG (Feng et al. 
2019). Indeed, ubiquitination of UVRAG at K517 and 
K559 by SMURF1 impedes its interaction with Rubi-
con (Feng et  al. 2019) that negatively regulates the 
maturation of autophagosomes through binding to the 
UVRAG-PI3KC3 complex (Nakajima et al. 2017; Wang 
et al. 2015). Rubicon interacts with the catalytic subunit 
of PI3KC3, thus suppressing its lipid kinase activity. In 
sum, UVRAG ubiquitination inhibits Rubicon-PI3KC3 
interaction, boosts the PI3KC3 activity, and, ultimately, 
induces phagophore nucleation (Feng et  al. 2019). The 
ubiquitination of UVARG by SMURF1 was detected 
to be significantly elevated in HCC cells cultured in a 
glucose-depleted medium, showing that SMURF1 can 
mediate starvation-induced autophagy in HCC cells 
(Feng et al. 2019). Subsequent in vitro and in vivo stud-
ies indicated that UVRAG ubiquitination by SMURF1 
could significantly facilitate the phagophore formation 
and lysosomal degradation of the epidermal growth 
factor receptor (EGFR), decrease the EGFR signaling, 
and suppresses proliferation of HCC cells and tumor 
growth in mice (Feng et al. 2019). The inhibitory effect 
of SMURF1 on HCC initiation and progression can 
be supported by another study that showed the nega-
tive impact of SMURF1 on the role of “melanoma cell 
adhesion molecule” in maintaining the transformative 
phenotype of HCC cells (Tang et  al. 2015). Besides, 
SMURF1 has been also found to act as an autophagy 
receptor whereby interacts with hepatic lipid drop-
lets and ER via its C2 membrane-binding domain and 
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targets them for degradation by the autophagy pathway 
(Orvedahl et al. 2011) (Table 1).

The E3 ubiquitin ligase SMURF2 is another NEDD4 
family member that plays a controversial role in cancer 
biology; some studies have indicated a tumor suppressive 
role of SMURF2 (Sato et  al. 2022; Yu et  al. 2020; Fuku-
naga et  al. 2008; Zhang et  al. 2015a; Chandhoke et  al. 
2016), whereas others reported its tumor-promoting role 
(Fukuchi et  al. 2002; David et  al. 2014). The autophagy-
mediated tumor suppressor role of SMURF2 is supported 
by findings that show SMURF2 can bind and ubiquitylate 
Lamin A and its disease-correlated mutant variant Prog-
erin (Borroni et al. 2018b). Lamin A is a major structural 
component of the nuclear lamina, and mutations in its 
encoding gene and/or changes in its expression levels 
lead to cancer and a variety of distinct degenerative dis-
eases (Borroni et  al. 2018b). Of note, histopathological 
evaluation of microarray data from several human can-
cer tissues, including breast cancer, breast invasive ductal 
carcinoma, and prostate cancer, indicated a recipro-
cal association between elevated levels of SMURF2 and 
reduced levels of Lamin A, and vice versa (Borroni et al. 
2018b). Notably, subsequent investigations revealed that 
SMURF2-mediated ubiquitination of Lamin A and Prog-
erin induces their disposal through the autophagic deg-
radation pathway, in a tissue-specific manner (Borroni 
et  al. 2018b). Accordingly, the abovementioned findings 
suggest that the tissue-specific autophagic activity of 
SMURF2 may be responsible for its controversial role in 
cancer development.

Autophagic‑mediated roles of WWPs in cancer cells
The ubiquitin E3 ligase WWP1 is another member of the 
NEDD4 family showing an important role in the mainte-
nance and development of cancer, acting as either onco-
protein or tumor suppressive (Fig. 2D) (Kuang et al. 2021; 
Huang et al. 2020b). WWP1 is commonly overexpressed 
and genetically amplified in multiple types of human 
cancers, such as breast cancer (Kuang et al. 2021; Chen 
et al. 2007a; Nguyen Huu et al. 2008), prostate adenocar-
cinoma (Kuang et al. 2021; Chen et al. 2007b; Lee et al. 
2019), gastrointestinal cancers (Kuang et al. 2021; Zhang 
et  al. 2015b; Zhang et  al. 2015; Cheng et  al. 2014; Lin 
et al. 2013; Chen and Zhang 2018), as well as acute mye-
loid leukemia (AML) (Kuang et  al. 2021; Sanarico et  al. 
2018) where acts as an oncoprotein E3 ligase. WWP1 has 
been reported as a component of the UPS system ubiq-
uitinates several numbers of proteins and regulates vari-
ous cellular processes such as protein degradation and 
trafficking as well as cell signal transductions such as the 
EGFR, TGF-β, PI3K-AKT, and WNT (Kuang et al. 2021; 
Huang et al. 2020b). This E3 ligase induces tumorigenesis 
by modulating post-translational stability or functions of 

various substrates with the tumor suppressive activity, 
such as PTEN (Lee et al. 2019; Lee et al. 2020b), TGF-β 
type 1 receptor (Komuro et  al. 2004), SMADs (Morén 
et al. 2005; Seo et al. 2004), p63 (Li et al. 2008; Chen et al. 
2018), p53 (Laine and Ze 2007), p27kip (Sanarico et  al. 
2018; Cao et al. 2011), and HER4/ErbB4 (Feng et al. 2009; 
Li et  al. 2009) as well as those with the tumor-promot-
ing activity such as CK2β (Kim et  al. 2018) and DVL2 
(Nielsen et al. 2019; Zhao et al. 2021).

Of note, WWP1 was recently found to inhibit the 
autophagy signaling in AML cells where it is highly 
expressed (Sanarico et  al. 2018). Sanarico et  al. (2018) 
showed that WWP1 knockdown in AML cells induced 
autophagy by promoting autophagosome formation. 
Notably, autophagy activation upon WWP1 depletion 
inhibited the growth and proliferation of AML blasts 
and delayed leukemia progression in mice bearing AML 
cancer, while the ectopic expression of WWP1 acceler-
ated the growth of AML cells. Shortly after WWP1 inac-
tivation, the autophagosome formation in leukemic cells 
was detectable by the elevated conversion of LC3-I into 
the lipid-bound LC3-II as well as by accumulation of the 
autophagy-associated protein ATG7 and the reduced 
levels of the autophagy receptor SQSTM1, indicating 
an elevated autophagic turnover (Sanarico et  al. 2018). 
Another piece of evidence showing localization of this 
E3 ligase in the main nucleation sites of the autophago-
some maturation such as the endosomes, plasma mem-
brane, and Golgi apparatus (Chen et  al. 2008) further 
supports such a negative impact of WWP1 on the early 
steps of autophagy (Sanarico et  al. 2018). Thus, WWP1 
can prevent autophagosome building in AML by inter-
fering with the degradation and/or function of proteins 
contributed to the phagophore nucleation and elongation 
steps. Mechanistically, however, it remains unknown how 
WWP1 modulates autophagy and whether ATG7 and 
LC3 may be WWP1 targets during autophagy activation. 
Nevertheless, although further research is warranted to 
elucidate the related substrates of WWP1 in the regula-
tion of the autophagy process, the current findings sug-
gest this E3 ligase is an important negative regulator of 
autophagy in AML.

On the other hand, there is evidence showing that 
WWP1 can act as the autophagy activator and tumor 
suppressor E3 ligase in skin cells (Jia et  al. 2021), by 
ubiquitination and inducing proteasomal degradation of 
oncoprotein KLF5 (Human Kruppel-like factor 5) tran-
scription factor (Jia et al. 2021; Chen et al. 2005). Notably, 
KLF5 is de-ubiquitylated by BRCA1 associated protein-1 
(BAP1) (Jia et  al. 2021; Qin et  al. 2015) and suppresses 
autophagy by activating the PI3K-AKT-mTOR signaling 
(Jia et al. 2021) that can inhibit the autophagy initiation 
and the autophagosome formation via modulating the 
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activity of AMBRA1 and ULK1 complex (Xu et al. 2020; 
Nazio et al. 2013). Recently, Jia et al. (2021) showed that 
the WWP1- BAP1-KLF5 axis is dysregulated in mela-
noma cancer; WWP1 was lowly expressed in melanoma 
cells and tissues whereas KLF5 and BAP1 were highly 
expressed and closely related to tumor metastasis. In 
melanoma patients, the expression level of WWP1 was 
positively associated with good prognosis whereas the 
expression levels of KLF5 and BAP1 were found to be 
positively associated with poor prognosis (Jia et al. 2021). 
Subsequent investigations showed that WWP1 overex-
pression in melanoma cells could mediate K48-linked 
ubiquitination of KLF5 and induce its proteasomal deg-
radation, whereas BAP1 overexpression reverted this 
modification and increased KLF5 protein expression 
(Jia et al. 2021). Notably, overexpressed KLF5 could sup-
press melanoma cell autophagy by activating the PI3K-
AKT-mTOR pathway, thereby inducing melanoma cell 
malignant phenotypes in vitro as well as progression and 
metastasis of melanoma in vivo (Jia et al. 2021) (Table 1). 
The contrary autophagic roles of WWP1 in AML and 
melanoma cancers can be due to different cellular con-
texts with different signaling networks regulating WWP1 
or affected by WWP1.

WWP2 is another member of the NEDD4 family, most 
closely related to WWP1 and ITCH, and to a more lim-
ited extent to NEDD4-1 and NEDD4L (Weber et al. 2019; 
Lee et  al. 2019; Chen and Matesic 2007). Several ubiq-
uitination substrates have been reported for WWP2, 
including the tumor suppressor PTEN (Chen et al. 2016; 
Maddika et  al. 2011), the RNA-editing enzyme ADAR2 
(Marcucci et al. 2011), the catalytic subunit of RNA poly-
merase II (Caron et  al. 2019; Li et  al. 2007), the signal-
ing protein I-SMAD7 (Soond and Chantry 2011), as well 
as the EGR2 (Chen et al. 2009) and OCT4 transcription 
factors (Xu et al. 2004). It was also recently reported that 
WWP2 can ubiquitinate autophagy receptors NDP52, 
OPTN, and SQSTM1, by which induces autophagy, par-
ticularly mitophagy (Jiang 2022). These autophagy recep-
tors can selectively deliver cargo to the autophagosome 
through their binding to the LC3 protein that presents 
as a phospholipid conjugate with the autophagosome 
membrane (Farré and Subramani 2016; Kirkin and Rogov 
2019; Heo et al. 2019) (Table 1). To the best of our knowl-
edge, the effect of the autophagic role of WWP2 in can-
cer cells has not been investigated and are needed to be 
evaluated in future research.

Autophagic‑mediated roles of ITCH in cancer cells
The ubiquitin E3 ligase ITCH also called atrophin-1 
interacting protein 4 (AIP4), has been found to involve 
in regulating immunological responses (Aki et al. 2015) 
and cancer progression (Yin et al. 2020b). A mounting 

body of reports exhibits the multifaceted oncogenic 
and tumor suppressor functions of ITCH in different 
human malignancies (Fig.  2E), due to its dynamic and 
context-dependent role in tumor cells (Yin et al. 2020b). 
This arises from the versatility of ITCH in mediating 
both proteolytic (K48) and non-proteolytic (K63, K27, 
and K33) ubiquitination of a growing list of tumor-
related substrates (Yin et  al. 2020b), such as the p53 
family members p63 and p73 (Rossi et  al. 2005; Rossi 
et  al. 2006; Melino et  al. 2006; Bellomaria et  al. 2010; 
Browne et  al. 2011; Bernardini et  al. 2008), the tumor 
suppressor RASSF5/NORE1 (Suryaraja et al. 2013), the 
large tumor suppressor 1 (LATS1) (Ho et al. 2011; Salah 
et  al. 2011), the lysosomal-associated protein multis-
panning transmembrane 5 (LAPTM5) (Ishihara et  al. 
2011), the epithelial kinase receptor ErbB4 (Sundvall 
et  al. 2008), NOTCH1 (Qiu et  al. 2000), SMAD2 (Bai 
et  al. 2004), and the Wnt/β-catenin signaling pathway 
(Goto et al. 2020).

Interestingly, there are also independent reports 
(Chastagner et al. 2006; Marchese et al. 2003; Chhangani 
et  al. 2014; Rossi et  al. 2014) that, when taken together, 
confer evidence for an autophagic-mediated oncogenic 
role of ICTH in cancer cells. The first evidence of the 
ITCH autophagic activity can be concluded from the 
reports that showed the involvement of ITCH in lyso-
somal degradation of target substrates including Deltex 
and the chemokine receptor CXCR4, through their poly-
ubiquitination (Chastagner et  al. 2006; Marchese et  al. 
2003). Another finding that can reinforce an implica-
tion of ITCH in the autophagy process is a finding that 
revealed ITCH recruits denatured cytosolic proteins as 
well as components of the autophagy machinery such as 
LC3 and SQSTM1 (Chhangani et al. 2014). Further sup-
porting is the results of high throughput screening of 
ITCH inhibitors that indicated clomipramine, an anti-
depressant drug earlier found to impede autophagy by 
blocking autophagolysosomal fluxes (Rossi et  al. 2009), 
could specifically interact with the HECT domain of 
ITCH and irreversibly block its ubiquitination activity, 
coinciding with inducing autophagosome accumulation 
and autophagy inhibition (Rossi et al. 2014). In addition, 
ITCH has been detected to be over-expressed in various 
human cancers such as ovarian, breast, sarcomas (Salah 
et  al. 2011), and anaplastic thyroid carcinoma (Ishihara 
et  al. 2008), and ITCH depletion could potentiate the 
effect of chemotherapeutic drugs (Rossi et al. 2014). Con-
sistently, the results of treating a panel of breast, prostate, 
and bladder cancer cell lines showed that clomipramine, 
concomitant with ITCH suppressive activity, could also 
synergize with chemotherapeutics in killing tumor cells, 
supporting the role of ITCH-dependent autophagy in 
cancer progression (Rossi et al. 2014).
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Altogether aforementioned findings manifest a pro-
autophagic function of ITCH in cancer cells, where its 
expression is high and can promote cell growth. How-
ever, further proof-of-concept studies are needed to 
clarify the exact molecular mechanisms underlying the 
autophagic activity of ITCH in cancer cells expressing 
high levels of ITCH. Nevertheless, available data suggest 
the ITCH-dependent autophagy as a novel mechanism in 
tumorigenesis.

Therapeutic perspectives of NEDD4 targeting in cancer
Targeting ubiquitin enzymes has been found to be an 
attractive therapeutic strategy for cancer treatment 
(Beurden-Tan et  al. 2017). Since E3 ubiquitin ligases 
determine substrate specificity, their targeting seems 
to be a more specific approach compared to E1/E2 
enzymes. There have been findings that show HECT 
domains of E3 ligases provide druggable targets for can-
cer treatment (Mund et al. 2014; Quirit et al. 2017). For 
instance, experimental studies indicated that pan-HECT 
inhibitors, heclin and indole-3-carbinol derivatives, could 
suppress the HECT E3 ligase activity of the NEDD4 fam-
ily enzymes and, thereby, decrease cancer cell prolifera-
tion and growth (Lee et al. 2019; Mund et al. 2014; Quirit 
et  al. 2017). However, as explained in the last sections, 
each member of the NEDD4 E3 ligase family indicates 
multi-faced roles, pro- or anti-autophagic and tumor-
suppressor or –promotor, in various types of cancer cells. 
Thus, strategies for specific modulation, induction or 
inhibition, of each NEDD4 E3 ligase may be more suita-
ble for cancer treatment than strategies using pan-HECT 
inhibitors.

NEDD4-1 has been found to induce autophagy and 
proliferation in the prostate, HCC, neuroblastoma, and 
lung cancer cells (Li et al. 2015; Sun et al. 2017; Pei et al. 
2017), suggesting that NEDD4-1 inhibition is a suit-
able therapeutic strategy for treating these cancer cells. 
However, NEDD4-1 is also relevant for ubiquitination 
and lysosomal degradation of pro-autophagic oncopro-
tein IGPR-1 and, as a result, for inhibiting the autophagy 
process and proliferation in melanoma cancer cells (Sun 
et al. 2021). Thus, NEDD4-1 inducers can be useful treat-
ments for IGPR-activated cancer cells such as melanoma.

Further, NEDD4L was found to inhibit ULK1- and 
ASCT2-mediated mitophagy whereby suppress-
ing adequate fuel supplementation via mitochondrial 
metabolism, leading to inducing cell death and inhibit-
ing tumor growth in pancreatic cancer cells (Lee et  al. 
2020a). NEDD4L can also exert pro-autophagic and 
tumor suppressor activities in multiple myeloma and 
cervical cancer cells and increases the drug sensitivity 
in multiple myeloma (Huang et al. 2022). These findings 
show the usefulness of NEDD4L inducers as a promising 

therapeutic approach for the treatment of pancreatic, 
multiple myeloma, and cervical cancers.

Autophagy induction via SMURF1-mediatd activa-
tion of UVRAG was shown to functionally result in 
autophagic degradation of oncoprotein EGFR and, con-
sequently, suppress HCC cell proliferation and tumor 
growth (Feng et  al. 2019). SMURF1 also shows tumor-
promotor activity in breast cancer cells where the ubiq-
uitination function of SMURF2 can promote SMURF1 
degradation and, consequently, may rescue important 
tumor suppressive substrates of SMURF1 to prevent 
malignant migration of tumor cells (Fukunaga et  al. 
2008; Borroni et al. 2018b). Thus, SMURF1 and SMURF2 
inducers can be considered as effective treatments for 
HCC and breast cancer, respectively.

The WWP1 downregulation was found to induce 
autophagy activation which, in turn, suppresses the 
growth and proliferation of AML blasts and delays leuke-
mia progression in mice bearing AML cancer (Sanarico 
et al. 2018), showing that WWP1 inhibition can be a val-
uable therapeutic approach for AML cancer. Ubiquitin-
mediated degradation of oncoprotein KLF5 by WWP1 
could induce autophagy signaling, thereby inhibiting 
melanoma cell malignant phenotypes in  vitro as well as 
progression and metastasis of melanoma in vivo (Jia et al. 
2021). Therefore, WWP1 inducers can be accounted for 
the therapeutic treatment of melanoma cancer. In the 
case of ITCH, the pro-autophagic and oncogenic roles 
in breast, prostate, and bladder cancer cells have been 
found and, thus, suggest ITCH inhibitors as the potential 
therapeutic tool in these cancer (Rossi et al. 2014).

To sum up, therapeutic inhibition or induction of each 
NEDD4 E3 ligase should be decided based on the type of 
cancer. Besides, a combination treatment by NEDD4-1 
and WWP1 inducers for melanoma cancer, NEDD4-1 
and ITCH inhibitors for prostate cancer, NEDD4-1 and 
SMURF1 for the HCC, as well as SMURF2 inducers and 
ITCH inhibitors for the breast cancer can be considered 
as the effective therapeutic approaches.

Concluding remarks

–	 NEDD4-1 can govern both stabilization and degra-
dation of target substrates via catalyzing different 
K-linkage types of ubiquitin chains, including K6 and 
K27 (for stabilizing Beclin-1), K11 (for proteasomal 
degradation of Beclin-1), K63 and K48 (for lysoso-
mal degradation of IGPR-1), and K63 (for stabilizing 
SQSTM1).

–	 In prostate, HCC, neuroblastoma, and lung can-
cer cells, NEDD4-1 is highly expressed and favors 
tumorigenesis and positively regulates autophagy 
initiation via the inhibition of mTORC1, the phago-
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phore nucleation via stabilization of VPS34-Beclin-1 
complex, the phagophore elongation via interaction 
with LC3-I, as well as cargo selection via stabiliza-
tion of the autophagy receptor SQSTM1. However, 
NEDD4-1 depicts the tumor suppressive and anti-
autophagic roles in melanoma cancer cells where 
it negatively regulates autophagy via destabilizing 
IGPR-1.

–	 NEDD4L catalyzes K27- and K29-linked ubiquitina-
tion of ULK1 for proteasomal degradation.

–	 In MM cancer cells, NEDD4L favors a tumor sup-
pressive role and positively regulates autophagy ini-
tiation via the inhibition of mTORC1 as well as the 
phagophore elongation via increasing lipidation of 
LC3-I to LC3-II. NEDD4L also acts as a tumor sup-
pressor and negatively regulates autophagy initiation 
via destabilizing ULK1 and ASCT2.

–	 SMURF1 stabilizes UVRAG by catalyzing the K29- 
and K33-linked ubiquitination at K517 and K559 res-
idues.

–	 In HCC cells, SMURF1 shows a tumor suppressive 
role and positively regulates the phagophore nuclea-
tion by enhancing the PI3KC3 activity via stabiliza-
tion of UVRAG. SMURF1 also acts as an autophagy 
receptor whereby targets hepatic lipid droplets and 
ER through a mechanism involving its C2 mem-
brane-binding domain.

–	 WWP1 exerts the autophagy inhibitor and the tumor 
promotor roles in AML cancer cells where it nega-
tively regulates the phagophore nucleation and elon-
gation likely via targeting ATG7 and LC3. WWP1 
also shows the pro-autophagic and tumor suppres-
sive activities in melanoma cells through mechanisms 
remaining unknown yet.

Conclusion
Regarding the versatility of NEDD4 E3 ubiquitin ligases 
in catalyzing both proteolytic and non-proteolytic ubiq-
uitination of a wide range of target substrates, their role 
in defective autophagy in cancer cells can be concluded 
to be context-dependent.
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