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Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged 
organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is 
the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic 
plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development 
of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 
1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy’s involvement in epilepsy has 
recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity 
of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic 
strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its 
role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review 
aims to revise the possible role of autophagy in epilepsy.
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Introduction
Epilepsy is defined as a condition characterized by recur-
rent two or more epileptic seizures, unprovoked by any 
immediate identified cause (Thijs et al. 2019) that is an 
abnormal hyper-synchronous neuronal discharge from a 
defined brain region (Thijs et al. 2019). One seizure attack 
can occur in any subject that is not considered epilepsy, 
but investigations are reasonable to outline the original 
cause of the seizure (Fisher et al. 2022). Nevertheless, 
a history of two or more seizures is defined as epilepsy 
(Thijs et al. 2019). Furthermore, status epilepticus (SE) 
is defined as a seizure that persists for a sufficient length 
of time or is repeated frequently enough that recovery 
between attacks does not occur (Xu et al. 2004). Other 
findings showed that SE is a seizure that persists for 20 
to 30 min, an estimate of the duration necessary to cause 
injury to central nervous system (CNS) neurons (Burman 
et al. 2022). The overall mortality rate among adults with 
SE is approximately 20%, and patients who have a first 
episode of SE are at substantial risk for future episodes 
and the development of chronic epilepsy (Xu et al. 2004; 
Burman et al. 2022). Epilepsy significantly burdens the 
quality of life of affected individuals and their families. 
Epilepsy is a chronic disease experienced by millions and 
a cause of substantial morbidity and mortality. Epilepsy 
affects about 1% of the general population internation-
ally till 2020 (Miller et al. 2020). It has been reported that 
80% of epileptic cases universally are in developing coun-
tries, and it is further common in the elderly (Kissani et 
al. 2020). In addition, 5–10% of old people have a seizure 
at the age of 80, increasing the chance of a second seizure 
by 40–50% (Cretin 2021).

Since the introduction of bromide as an anti-seizure 
drug in 1857, there has been an impressive expansion of 
clinically effective therapies in decreasing the frequency 
and severity of seizures in people with epilepsy. This class 
of symptomatic treatments is widely referred to as anti-
epileptic drugs (AEDs) (Orrego-GonzÁlez et al. 2020; 
Nasif et al. 2021; Komagamine et al. 2021). AEDs includ-
ing phenobarbital and phenytoin were introduced to 
manage epilepsy in 1912 and 1938 respectively (Paprocka 
et al. 2019).

The central mechanism of epileptic seizure is the epi-
leptogenesis process which occurs due to an imbalance 
between inhibitory and excitatory neurotransmitters (Li 
et al. 2020a, b). Epileptogenesis is defined as the process 
of developing epilepsy a disorder characterized by recur-
rent seizures following an initial insult. Seizure incidence 
during the human lifespan is at its highest in infancy and 
childhood. As well, epileptogenesis is a chronic process 
that genetic or acquired factors can trigger, and that can 
continue long after epilepsy diagnosis (Li et al. 2020a, 
b). Decreasing inhibitory gamma-aminobutyric acid 
(GABA) and increasing excitatory glutamate favor the 

progression of epileptogenesis (Li et al. 2020a, b). The 
intention for such inequity is prominently unknown, 
though mutation of voltage-gated Na2+, Ca2+ and K2+ 
channels aggravates neuronal hyper-excitability and 
decreases seizure threshold (Pan et al. 2018). The muta-
tion of the Na2+ channel gene SCN8A is accompanied by 
the development of epileptogenesis (Zaman et al. 2019). 
A comprehensive single-center dataset for SCN8A epi-
lepsy that includes clinical, genetic, electrophysiologic, 
and pharmacologic data confirm a spectrum of severity 
and a variety of biophysical defects of Nav1.6 variants 
consistent with gain of channel function. Na + channel 
blockers in the treatment of SCN8A epilepsy may cor-
relate with the effect of such agents on pathological 
Na + current observed in heterologous systems (Zaman 
et al. 2019). Therefore, mutation of voltage-gated Na+, 
associated neuronal hyper-excitability, and imbalance of 
excitatory/inhibitory circuit can reduce seizure threshold 
leading to the development of epilepsy (Fig. 1).

The causes of primary epilepsy are idiopathic (O’Neill 
et al. 2020). Nevertheless, secondary epilepsy is caused 
by diverse causes, including head trauma, brain infection, 
tumors, and neurodegenerative disorders (Steriade et 
al. 2020). Idiopathic generalized epilepsies (IGEs) affect 
about 1% of the population worldwide and are among 
the most common neurological disorders (Gesche and 
Beier 2022). IGEs are a group of presumably genetic epi-
lepsies encompassing several clinical phenotypes such 
as childhood absence epilepsy and generalized epilepsy. 
In neuronal networks, either a gain of function of recep-
tor channels mediating excitatory neurotransmission or 
a loss of function of receptor channels mediating inhibi-
tory neurotransmission could impair the subtle balance 
of excitation and inhibition in the brain, thus, leading to 
disinhibition and seizures (Lehner et al. 2022). Genetic 
advances and functional characterizations of the patho-
physiological alterations in receptor channel trafficking 
and function are changing our understanding of IGEs 
showed clear that genetic mutation of transmembrane 
ion channels is the underlying cause of many forms of 
human IGEs (O’Neill et al. 2020; Gesche and Beier 2022; 
Lehner et al. 2022). In IGEs, patients are asymptomatic 
between seizures. Radiological investigations are nega-
tive. Frequently, there is an overlap of IGEs, especially 
of those manifesting in later childhood and adolescence. 
Response to AEDs treatment and psychosocial prog-
nosis are good. However, symptomatic (secondary) epi-
lepsy and syndromes usually start in infancy or early 
childhood. In most children, several seizure types occur 
(Steriade et al. 2020). Electroencephalogram (EEG) dis-
charges are less rhythmical and less synchronous than 
in idiopathic generalized epilepsies. There are neurologi-
cal, neuropsychological, and radiological signs of diffuse 
cerebral disease. The only difference between cryptogenic 
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and symptomatic syndromes is that in cryptogenic syn-
dromes the presumed cause cannot be identified (Shell-
haas et al. 2021).

It has been shown that dysregulation of autophagy 
is involved in the pathogenesis of epilepsy (Zheng et 
al. 2018; Ali et al. 2019). It has been suggested that 
autophagy alterations are present in epilepsy. In addi-
tion, rapamycin, a powerful autophagy inducer, strongly 
modulates a variety of seizure models and epilepsies. 
These findings were originally interpreted as the results 
of the inhibition exerted by rapamycin on the molecu-
lar complex named mammalian target of rapamycin 
(mTOR) (Ali et al. 2019; Giorgi et al. 2015). The present 
review features a brief introductory statement about the 
autophagy machinery and discusses the involvement 
of autophagy in seizures and epilepsies. An emphasis is 
posed on evidence addressing both pros and cons making 
it sometimes puzzling and sometimes evident, the role 
of autophagy in the epileptic brain. Therefore, the pres-
ent review aimed to revise the potential role of autoph-
agy in epilepsy, and how modulators of autophagy affect 
epileptogenesis.

Autophagy overview
Autophagy is a major intracellular pathway for the deg-
radation and recycling of long-lived proteins and cyto-
plasmic organelles. Li et al. (2020ab, 2023). Autophagy 
includes micro-autophagy, macro-autophagy and chap-
erone-mediated autophagy (CMA) (Udoh et al. 2022). 
Commonly, macro-autophagy is called autophagy, in 
which cytoplasmic debris is engulfed within multi-mem-
brane vesicles called autophagosomes that delivered their 
contents to lysosomes for degradation (Udoh et al. 2022; 
Broggi et al. 2020). Therefore, autophagy contributes to 
renewing cell constituents by using cytoplasmic macro-
molecules to form energy-rich compounds according 
to the bio-energetic demands (Ren et al. 2022). Differ-
ent autophagy-related proteins ATG7, ATG12, ATG16, 
and LC3 are involved in forming autophagosomes from 
phagophores which are triggered by ATG1 complex, 
Beclin 1 and vacuolar sorting protein 34 (Vps34) com-
plex (Sascha and Dorotea 2020). Nascent autophagosome 
with the assistance of LC3 forms immature autophago-
somes which are converted to mature autophagosomes 
(Puri and Rubinsztein 2020). With autophagic flux’s 
assistance, mature autophagosomes and lysosomes form 

Fig. 1  Pathophysiology of epilepsy. Decreasing inhibitory gamma-aminobutyric acid (GABA) and increasing excitatory glutamate persuade the progress 
and progression of epileptogenesis
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autolysosomes (Wang et al. 2023). Autophagic vacuole 
formation is also activated as an adaptive response to a 
variety of extracellular and intracellular stimuli, includ-
ing nutrient deprivation, hormonal or therapeutic treat-
ment, bacterial infection, aggregated and misfolded 
proteins and damaged organelles (Sascha and Dorotea 
2020). Mediators of class I and class III PI3 kinase signal-
ing pathways and trimeric G proteins play major roles in 
regulating autophagosome formation during the stress 
response (Puri and Rubinsztein 2020) (Fig. 2).

Autophagy signaling
mTOR signaling pathway
Different autophagy signals are involved in the forma-
tion of autophagosomes. The mTOR is the main nega-
tive regulator of autophagy (Caza et al. 2022). It has 
been observed that both starvation and mTOR inhibi-
tor rapamycin inhibit mTOR with subsequent activation 
of autophagy via activation of Atg13, ULK1, and ULK2 
(Nowosad et al. 2020). Moreover, starvation-induced 
autophagy is mediated by attenuating the interaction 
between apoptosis-related protein B cell lymphoma 2 

(Bcl-2), basal cell lymphoma extra-large (Bcl-XL) and 
Beclin-1 (Atg6) (Kadry et al. 2022). Also, starvation via 
activation of c-Jun N-terminal kinase-1 inhibits the inter-
action between Bcl-2 and Beclin-1 leading to the induc-
tion of autophagy (Kadry et al. 2022).

Growth factors like insulin-like growth factor (IGF) 
through activation of IGF receptors (IGFRs) promote 
the activity of tyrosine kinase and Aκt leading to activa-
tion of the mTOR pathway and inhibition of autophagy 
(Sepúlveda et al. 2022). Mild starvation also inhibits the 
mTOR pathway, but the kinase activity remains unaf-
fected leading to acceleration of fusion between the 
autophagosome and lysosomes (Golpour et al. 2022). 
However, when the nutrients are replenished the mTOR 
pathway is inhibited with a significant reduction of 
autophagosomes (Golpour et al. 2022). Moreover, the 
p53 gene negatively and positively regulates the mTOR 
pathway and autophagy (Tong et al. 2020). Genotoxic and 
oncogenic stress activate p53 which induces activation of 
adenosine monophosphate protein kinase (AMPK) and 
phosphate and tensin homology (PTEN) which inhibits 
Aκt signaling (Wang et al. 2021). Inhibition of p53 also 

Fig. 2  Pathway of autophagy. ATG1 complex, Beclin 1 and vacuolar sorting protein 34 (Vps34) triggered the formation of nascent autophagosomes 
from phagophores then with the assistance of LC3 form immature autophagosomes which are converted to mature autophagosomes. With the assis-
tance of autophagic flux, mature autophagosomes together with lysosomes form autolysosomes
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activates autophagy (Wang et al. 2019a, b, c). AMPK 
induces autophagy by inhibition of the mTOR pathway, 
or through activation of U1k1 (Saikia and Joseph 2021). 
Furthermore, inhibition of inositol monophosphatase 
(IMPase) independent of the mTOR pathway induces 
autophagy (Yang et al. 2021). Supporting this notion, the 
inhibition of IMPase by carbamazepine, lithium, and val-
proate improves autophagy in various neuropsychiatric 
disorders (Schmukler and Pinkas-Kramarski 2020).

IP3 signaling pathway
Inositol 1,4,5-trisphosphate (IP3) is a second messenger 
that induces the release of Ca2+ from the endoplasmic 
reticulum (ER). The IP3 receptor (IP3R) was discovered 
as a developmentally regulated glycol-phosphoprotein, 
P400 (Liu et al. 2023). IP3 has been found to release Ca2+, 
but it also releases IRBIT (IP3R-binding protein released 
with IP3). IRBIT is a pseudo-ligand for IP3 that regulates 
the frequency and amplitude of Ca2+ oscillations through 
IP3R (Song et al. 2019). Of note, IP3 inhibits autophagy 
through the activation of endoplasmic reticulum (ER) 
IP3 receptors which induce the release of Ca2+ leading 
to the stimulation of the calpain pathway which inhibits 
autophagy (Chiurillo et al. 2020). However, the reduction 
of IP3 level reduces ER Ca2+ with subsequent activation 
of autophagy through the AMPK-dependent pathway 
(Chiurillo et al. 2020). As well, IP3 receptors inhibit 
autophagy through inhibition of Beclin-1 (Vicencio et al. 
2009).

SIRT1 signaling pathway
Silent information regulator 1 (SIRT1), a nicotinamide 
adenine dinucleotide-dependent deacetylase, is a mem-
ber of the evolutionarily highly conserved superprotein 
family, which is located in the nucleus and cytoplasm. It 
can deacetylate protein substrates in various signal trans-
duction pathways to regulate gene expression, cell apop-
tosis, and senescence, and participate in the process of 
neuroprotection, energy metabolism, inflammation and 
the oxidative stress response in living organisms (Batiha 
et al. 2023). It has been shown that the SIRT1 protein is 
required for the activation of autophagy (Owczarczyk 
et al. 2015). In the aging process, SIRT1 expression is 
reduced leading to a reduction in the activity of autoph-
agy (Miyamoto 2019). The extension of lifespan has been 
linked to the efficient maintenance of autophagic deg-
radation, a process that declines during aging. Interest-
ingly, recent observations have demonstrated that SIRT1 
regulates the formation of autophagic vacuoles, either 
directly or indirectly through a downstream signaling 
network (Owczarczyk et al. 2015). The interactions of 
SIRT1 with the FoxO and p53 signaling can also regulate 
both the autophagic degradation and lifespan extension 

emphasizing the key role of autophagy in the regulation 
of lifespan (Owczarczyk et al. 2015).

These findings indicated that different proteins are 
engaged in the modulation of autophagy which is highly 
dysregulated in aging (Luo et al. 2020) (Fig. 3).

Function of autophagy
Autophagy is mainly cytoprotective and protects differ-
ent organ systems in the body including the CNS, liver, 
kidney, and heart (Tang et al. 2015). As well, autophagy 
promotes life span and has anti-aging effects (Luo and 
Qin 2019). The key role of autophagy is through the 
induction of derivative pathways for misfolded proteins 
and neurodegenerative associated proteins such as tau 
protein and α-Syn (Rana et al. 2021). In addition, autoph-
agy promotes mitochondrial function and prevents the 
development and progression of mitochondrial dysfunc-
tion due to oxidative stress (Rocha et al. 2020). Impaired 
autophagic processes in neurons lead to inadequate 
homeostasis and neurodegeneration such as Alzheim-
er’s disease (AD), Parkinson’s disease (PD), Huntington’s 
disease, and amyotrophic lateral sclerosis (AlAnazi et al. 
2023; Alnaaim et al. 2023). Therefore, autophagy is an 
essential process for all cells including neurons which 
mainly depend on autophagy in regulating homeostasis.

Role of autophagy in epilepsy
It has been suggested that autophagy prevents the devel-
opment and progression of epilepsy through the regu-
lation of the balance between inhibitory GABA and 
excitatory glutamate (Qi et al. 2011). In addition, dys-
functional autophagy occurs in epilepsy, mainly caused 
by an imbalance between excitation and inhibition in the 
brain (Qi et al. 2011). Ras-related protein Rab-26 (Rab26) 
and ATG16L regulate neurotransmitter release through 
autophagy. Rab26 localizes on synaptic vesicles and is 
preferentially oligomerized to its GDP-bound form, 
which binds to ATG16L. This complex links synaptic 
vesicle clusters to the autophagy pathway and may assist 
in the migration of synaptic vesicles to nearby active 
sites, involving the regulation of presynaptic autophagy 
and neuronal activity (Nikoletopoulou and Tavernarakis 
2018). It has been shown that an increased ratio of LC3 II 
to LC3 I and decreased p62 protein levels after epileptic 
seizure onset, reflect an abnormal increase in autopha-
gic activity (Nikoletopoulou and Tavernarakis 2018). 
This may trigger chronic hyper-activation of glutamate 
receptors, slow degradation of GABA-A receptors, and 
formation of protein aggregates which further exacer-
bate neuronal damage in epilepsy (Nikoletopoulou and 
Tavernarakis 2018; Chen et al. 2023). Aberrant autophagy 
in epilepsy also alters the expression or function of ion 
channels such as the GABA-A and glutamate receptors, 
resulting in decreased or increased neuronal excitability. 
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Rapid mobilization of neuronal growth processes that 
establish new synaptic connections may be disrupted by 
abnormal autophagy (Nikoletopoulou and Tavernarakis 
2018; Chen et al. 2023). However, the underlying molecu-
lar mechanisms by which autophagic activity regulates 
these alterations to promote epileptogenesis remain 
unclear.

The lack of autophagy in neurons leads to a strong 
neurodegenerative phenotype and epileptic disorders. 
The contribution of autophagy in brain physiology and 
pathology emphasizes the relevancy of the proper con-
trol of amino acid levels such as glutamate and GABA 
in the brain due to their role as neurotransmitters and 
energy sources (Qi et al. 2011). Autophagy is involved in 
synaptic homeostasis and regulation of neurotransmit-
ters, thus defective autophagy is linked with a reduction 
in the activity of certain neurotransmitters mainly GAB-
Aergic neurotransmitters (Yin et al. 2018). The diversity 
and heterogeneity of GABAergic interneurons affect epi-
leptogenesis and hyper-excitability in epilepsy (Marafiga 
et al. 2021). It has been observed that mTOR/autophagy 
axis controls synaptic plasticity, vesicular release, and 

clustering of GABA receptors with the regulation of 
inhibitory/excitatory balance in the brain (Limanaqi et 
al. 2020). Elevated activity of mTORC1 is implicated 
with increased neuronal excitability. The relevance of 
mTOR regarding temporal lobe epilepsy in animal mod-
els and patients has been rising in importance through-
out. Excessive mTOR signaling through a mutation in the 
tuberous sclerosis complex leads to hippocampal hyper-
excitability linking mTOR with temporal lobe epilepsy 
(Bateup et al. 2013). Over-activation of mTOR and asso-
ciated defective autophagy are linked with the develop-
ment of seizures in children with focal cortical dysplasia 
and tuberous sclerosis complex (Yasin et al. 2013). More-
over, the exaggeration of neuronal mTOR also develops 
in response to the immune system, as autoimmunity 
induces synaptic alteration and the development of sei-
zures (Limanaqi et al. 2019a, b).

In addition, numerous studies ascribe that autoph-
agy dysfunction is associated with the development of 
epilepsy. For example, deficiency of Atg7 and Atg18 
are associated with spontaneous seizure in animal 
model studies (Saitsu et al. 2013; Garyali et al. 2014). 

Fig. 3  Regulation of autophagy: Growth factors like insulin-like growth factor (IGF) through activation of IGF receptors (IGFRs) enhence the activity of 
tyrosine kinase and Aκt leading to activation of the mTOR pathway and inhibition of autophagy
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Particularly, epileptic seizure triggers autophagic dys-
function which further aggravates epileptic seizure in 
a vicious cycle manner (Gan et al. 2015). Autophagy 
activity is highly suppressed in the forebrain in patients 
with tuberous sclerosis complex (McMahon et al. 2012). 
Deletion of Atg7 in mouse forebrain neurons enhances 
seizure initiation and progression due to the hypofunc-
tion of autophagy (McMahon et al. 2012). Therefore, 
defective autophagy promotes epileptic seizure in ani-
mal and human studies (Yasin et al. 2013; McMahon et 
al. 2012). The induction of autophagy and autophagy-
related proteins like Atg7, LC3, and Beclin-1 by endothe-
lial progenitor cells could be a novel therapeutic strategy 
in the management of epilepsy (Ali et al. 2019). Further-
more, epilepsy is associated with over-activation of glu-
tamate and excitotoxicity which induce impairment of 
autophagy in hippocampal neurons (Kulbe et al. 2014). It 
has been reported that autophagy can attenuate neuro-
nal excitotoxicity (Limanaqi et al. 2019a, b)In this state, 
the autophagy process seems to be neuroprotective, and 
autophagy inducers could be effective for both epilepsy 
and autoimmune disease (Wang et al. 2017).

Despite the protective role of autophagy against epilep-
togenesis and epilepsy, though its role in SE is perplexing 
and might be a double-edged sword, may be detrimental 
or harmful. In animal model epilepsy, autophagy-related 
protein LC3-II is increased within 6  h following a kai-
nic acid-induced seizure in mice (Shacka et al. 2007). 
However, the LC3-II level was not correlated with other 
autophagy-related proteins (Shacka et al. 2007). Another 
experimental study demonstrated that LC3-II level was 
increased in parallel with other autophagy-related pro-
teins such as Atg7 in the hippocampus after SE in mice 
(Otabe et al. 2014). These findings indicated that autoph-
agy activity is correlated with SE. Hence, augmentation 
of autophagy function in acute seizure and SE could be 
a compensatory mechanism to restrict neuronal loss 
and promote rearrangement of neurons and synaptic 
instability.

In sum, defective autophagy is associated with the 
induction of epileptogenesis and the development of 
epilepsy. Increasing autophagy activity in epilepsy and 
SE may be a compensatory mechanism to reduce neu-
rotransmitter disturbance and synaptic dysfunction. 
However, the mechanistic role of autophagy in epilepsy is 
not fully elucidated.

Mechanistic role of autophagy signaling in 
epilepsy
mTOR pathway
Of note, mTOR is a serine-threonine kinase that forms 
two protein complexes termed mTORC1 and mTORC2 
(Wong 2013). As a central check point, mTORC1 senses 
both internal and external signals such as nutrient and 

growth factor availability as well as oxidative stress to 
guide protein synthesis (Wong 2013). As well, mTORC2 
is a rapamycin-insensitive complex that contributes to 
cell survival functions, metabolism, proliferation and 
actin polymerization. The exact role of mTORC2 in cel-
lular signaling is still unclear. Several neuropathological 
diseases such as autism, depression and epilepsy have 
been linked to dysregulation of both complexes (LaSarge 
and Danzer 2014). It has been shown that the mTOR 
pathway is involved in the regulation of neurogenesis, 
synaptic plasticity, neuronal development and excit-
ability (LaSarge and Danzer 2014). Exaggerated mTOR 
activity is associated with the development of temporal 
lobe epilepsy, genetic and acquired epilepsy, experimen-
tal epilepsy and Lafora disease (Limanaqi et al. 2020). In 
particular, mTORC1 is mainly involved in epileptogenesis 
(Wong 2013). Genetic deletion of Tac1 and Pten genes 
in forebrain neurons in mice induces disinhibition of the 
mTOR pathway and development of seizure with signifi-
cant reduction of autophagy (Meng et al. 2013). Thus, 
inhibition of the mTOR pathway reduces seizure severity 
through the activation of autophagy (Giorgi et al. 2015). 
Griffith and Wong (2018) illustrated that inhibition of 
mTORpathy according to the findings from preclinical 
and clinical trials may be effective in the management of 
genetic and acquired epilepsies. Besides, different clinical 
studies suggest that mTOR pathway inhibitor rapamycin 
can attenuate and prevent epileptogenesis, and could be 
effective in treating intractable epilepsy (Ostendorf and 
Wong 2015). Therefore, autophagy and mTORpathy are 
considered fundamental pathways in epileptogenesis and 
epilepsy. Recently, Chen et al. (2023) revealed that phar-
macological modulation of autophagy could be a promis-
ing therapeutic opportunity in managing epilepsy (Lv and 
Ma 2020). Likewise, the Rac1 protein which is negatively 
regulated by the mTOR pathway is implicated in epilep-
togenesis (Vaghi et al. 2014). Deletion of the Rac1 protein 
triggers the development of epilepsy by inducing neuro-
nal hyper-excitability and reducing of GABAerigic inhibi-
tory current in the hippocampus through inhibition of 
autophagy (Vaghi et al. 2014; Pennucci et al. 2016). Okura 
et al. (2013) found that rapamycin stimulates the expres-
sion of Rac1 protein. Consequently, defective Rac1 pro-
tein is connected with an exaggerated mTOR pathway 
and defective autophagy. Seizures generated in the hip-
pocampus have also been related to hyperactive mTOR 
signaling in a mouse model harboring PTEN mutations. 
Knock-out of PTEN leads to hyperactive mTOR caus-
ing seizures generated in the hippocampus, mimicking 
the epileptic phenotype of focal cortical dysplasia (Mat-
sushita et al. 2016). Therefore, control of excitability by 
mTOR is crucial to maintain balanced firing of neurons. 
In genetic mouse models, hyper-activation of mTOR sig-
naling due to loss of the upstream regulators phosphatase 
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and tensin homolog (PTEN) or tuberous sclerosis com-
plex (TSC) has been associated with cortical malforma-
tions and the development of epilepsy (Wong and Crino 
2012). In addition, mTOR hyper-activation due to Pten 
deletion has been shown to cause epilepsy (Wong and 
Crino 2012). Future studies are needed to evaluate Pten-
negative and whether this correlates with the levels of 
mTOR hyperactivity and epilepsy severity. Thus, mTOR 
hyperactivity is linked with disturbances of different 
molecular signaling which involved in epilepsy.

Glycogen synthase kinase 3
Glycogen synthase kinase 3 (GSK3) is a threonine/serine 
kinase enzyme that regulates different cellular pathways. 
GSK3 refers to two paralogs that are commonly referred 
to as isoforms, GSK3α and GSK3β (Lin et al. 2020). Over-
expression of GSK3 plays an integral in the inhibition and 
attenuation of the mTOR pathway (Ka et al. 2014). How-
ever, both mTOR and GSK3 upstream are the negative 
regulators of autophagy leading to failure of autophagy as 
in Lafora disease which is an autosomal recessive epilepsy 
characterized by resistance epilepsy and dementia (Lohi 
et al. 2005). Both GSK-3α and GSK-3β are in activated 
states during the most active phase of cell migration. In 
addition to having a positive control or permissive, rather 
than negative, function in cell migration, GSK-3 appears 
to act upstream of the small GTPases ADP-ribosylation 
factor 6 (ARF6) and Rac1. Inhibition of GSK-3 reduces 
activation of Rac1 and migration of cells (Park et al. 
2023). Defective Rac1 protein is associated with increas-
ing activity of the mTOR pathway and subsequent inhi-
bition of autophagy (Matsushita et al. 2016). Therefore, 
GSK-3 inhibits autophagy either directly or indirectly 
via attenuation of Rac1. GSK3 is implicated in the patho-
genesis of AD and epilepsy (Lin et al. 2020). In addition, 
seizure promotes expression of GSK3 which further 
exacerbates AD neuropathology (Lin et al. 2020). There-
fore, GSK-3 represents an attractive target of interference 
in AD-associated seizures, such that inhibiting the activ-
ity of GSK-3 might have therapeutic potential in ame-
liorating epileptic seizures in AD. The expression level 
of GSK-3β and collapsin-responsive mediator protein-2 
(CRMP-2) were raised after seizure induction. The altera-
tion of the expression level of GSK-3β and CRMP-2 after 
seizure induction proposes that GSK-3β and CRMP-2 are 
crucial for epileptogenesis (Lee et al. 2012a, b).

AMP-activated protein kinase
AMP-activated protein kinase (AMPK) is a central regu-
lator of energy homeostasis, which coordinates metabolic 
pathways and thus balances nutrient supply with energy 
demand (Ahmad et al. 2020). Because of the favorable 
physiological outcomes of AMPK activation on metabo-
lism, AMPK has been considered to be an important 

therapeutic target for controlling human diseases includ-
ing metabolic syndrome and cancer (Ahmad et al. 2020). 
Preclinical findings revealed that AMPK the brain from 
seizure-induced neuronal death through induction of 
Bcl-2–modifying factor (Bmf) normally interacts with 
the cytoskeleton, but upon certain cellular stresses, such 
as loss of extracellular matrix adhesion or energy crisis, 
Bmf relocalizes to mitochondria, where it can promote 
Bax activation and mitochondrial dysfunction (Moran 
et al. 2013). In addition, AMPK regulates neuronal acti-
vation during SE, and prevents neuronal injury (Moran 
et al. 2013). Moreover, AMPK which induces autophagy 
by inhibition of the mTOR pathway is also intricate in 
epileptogenesis and epilepsy. It has been shown that 
AMPK agonist metformin can reduce seizure severity 
in animal model studies (Sanz et al. 2021). Singh et al. 
(2018). AMPK improves synaptic plasticity and modu-
lates long-term potentiation preventing neuronal hyper-
excitability and epilepsy (Potter et al. 2010). Intermittent 
caloric restriction induces the expression of autophagy 
and AMPK signaling which attenuate resistance epilepsy 
(Yuen and Sander 2014). Hence, the induction of autoph-
agy by AMPK activators can reduce epileptogenesis and 
the progression of epilepsy.

Autophagy-related proteins
It has been shown that autophagy-related proteins are 
intricate in epileptogenesis and the development of epi-
lepsy. For example, the inactivation or deletion of Atg7 
which is an activator of autophagy triggers recurrent sei-
zures and the development of epilepsy in mice (McMa-
hon et al. 2012). However, previous studies revealed 
that deletion of both Atg5 and Atg7 resulted in neuro-
degeneration without evidence of epilepsy (Hara et al. 
2006; Komatsu et al. 2006). Autophagy-related protein 5 
(ATG5) is one of the key genes for the regulation of the 
autophagy pathway. A clinical study observed that ATG5 
gene polymorphisms Chinese population are linked with 
epilepsy (Zhang et al. 2021). Subgroup analysis showed 
a highly significant association of rs510432 with late-
onset epilepsy, and rs548234 were associated with the 
susceptibility to temporal lobe epilepsy (Zhang et al. 
2021). Of interest, neurodegenerative diseases mainly 
AD is commonly associated with epilepsy even in the 
early stages (Vossel et al. 2013). The interaction between 
apoptosis-related protein Bcl-2 and Beclin-1 (Atg6) is 
dysregulated during epileptic seizure (Li et al. 2018). An 
experimental study showed that Beclin-1 and LC3 levels 
were increased, whereas Bcl-2 level was reduced within 
48 h following seizure in rats (Li et al. 2018). This finding 
indicates that autophagy is activated following epilepsy. 
Also, a Beclin-1-interacting protein Ambra1 is dissoci-
ated from Bcl-2 following autophagy induction leading 
to the activation of autophagy (Li et al. 2018). Therefore, 
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activation of autophagy following epilepsy could be a 
compensatory mechanism to limit neuronal loss. Sup-
pression of autophagy promotes seizure and neuronal 
apoptosis (Mao et al. 2019). In addition, different preclin-
ical studies illustrated that LC3II/LC3I ratio and Beclin-1 
expression were augmented in animal model epilepsy 
(Dong et al. 2013; Wang et al. 2019a, b, c). Remarkably, 
induced autophagy in response to oxidative stress con-
tributes to neuronal cell deaths after seizure in animal 
model study (Cao et al. 2009). Inhibition of oxidative 
stress by antioxidants considerably attenuates autopha-
gic response in pilocarpine-induced epilepsy (Cao et 
al. 2009). These observations indicated that autophagy 
activity in epilepsy is altered in response to the effect of 
oxidative stress.

Phospholipase D
Phospholipase D (PLD) isoenzymes including PLD1 and 
PLD1 have basic cell functions such as vesicular traffick-
ing as well as in brain development. They hydrolyzed 
phosphatidylcholine to generate phosphatidic acid and 
free choline (Nackenoff et al. 2021). PLD participates 
in receptor endocytosis as well as in exocytosis of neu-
rotransmitters where PLD seems to favor vesicle fusion 
by modifications of the shape and charge of lipid mem-
branes (Tanguy et al. 2020). Many mitogenic factors, 
including neurotransmitters and growth factors, activate 
PLD in neurons and astrocytes. Activation of PLD down-
stream of protein kinase C seems to be a required step 
for astroglial proliferation (Nackenoff et al. 2021; Tan-
guy et al. 2020). The post-natal increase in PLD activi-
ties concurs with synaptogenesis and myelinogenesis in 
the brain, and PLD is involved in neurite formation. In 
the adult and aging brain, PLD activity has antiapoptotic 
properties suppressing ceramide formation. Increased 
PLD activities in acute and chronic neurodegeneration 
as well as in inflammatory processes are evidently due 
to astrogliosis and may be associated with protective 
responses of tissue repair and remodeling (Tanguy et al. 
2020). It has been shown that PLD inhibits autophagy 
through activation of mTOR, inhibition of AMPK and 
inhibition of the interaction between Beclin-1 and vacu-
olar sorting protein 34 (Vps34) (Yin et al. 2018; Muk-
hopadhyay et al. 2015; Jang et al. 2014). PLD activity is 
augmented within neurons and astrocytes in animal 
epilepsy models (Kim et al. 2004). PLD1 and PLD2 have 
unique pathophysiological functions in the rat hippo-
campus after kianic acid-induced seizures (Kim et al. 
2004). Of interest, temporal lobe epilepsy-induced sei-
zure provokes BBB injury through the activation of phos-
pholipase A2 (PLA2) (Bera et al. 2022). In vitro study 
showed that expression of PLA2 was augmented in the 
hippocampus of animals and humans with temporal lobe 
epilepsy (Bera et al. 2022). PLA2 triggers autophagy in 

patients with gouty arthritis (Fu et al. 2023). Similarly, in 
vitro study revealed that PLA2 promotes the activation of 
macrophage autophagy (Qi et al. 2011). Thus, activation 
of PLD and PLA2 during seizures may induce significant 
alteration of autophagy function. However, PLD is mainly 
involved in the inhibition of autophagy by activating the 
mTOR signaling pathway, and the inhibition of AMPK 
and autophagic proteins.

SIRT1
SIRT1 is an essential protein required for activation of 
autophagy (Owczarczyk et al. 2015). Reduction of SIRT1 
expression during aging process leads to a decrease in the 
activity of autophagy (Miyamoto 2019). SIRT1 regulates 
the formation of autophagic vacuoles via a downstream 
signaling network (Owczarczyk et al. 2015; Miyamoto 
2019). The possible role of SIRT1 in epileptogenesis is 
complex, as it increased following induced SE in mice. 
Inhibition of SIRT1 by specific inhibitors did not affect 
the frequency, duration, and severity of SE in the animal 
model study without exacerbation of epileptic seizure 
(Hall et al. 2017). Previous studies indicated that SIRT1 
expression was increased in epileptic patients and experi-
mental models of epilepsy within 1 h (Chen et al. 2013; 
Brennan et al. 2016). SIRT1 expression was reduced after 
24 h from SE (Wang et al. 2016). The possible protective 
role of SIRT1 against the development of epileptogenesis 
and progression of epilepsy is related to different mecha-
nisms including activation of autophagy and melioration 
of mitochondrial dysfunction which are induced by epi-
lepsy. In addition, SIRT1 promotes peroxisome prolif-
erator-activated receptor gamma co-activator- 1 alpha 
(PC-1α) which reduces mitochondrial dysfunction and 
prevents the progression of ROS (Wang et al. 2015). Sim-
ilarly, SIRT1 activates forkhead box O3 (FOXO3) which 
activates autophagy and promotes cell survival (Gianna-
kou and Partridge 2004). SIRT1 also inactivates p53 
which is involved in neuronal cell death (Kim et al. 2007). 
Therefore, increasing expression of SIRT1 following SE 
seems to be neuroprotective by inducing autophagy and 
other neuroprotective signaling pathway.

FOXO3 signaling pathway
FOXO3 is a specific transcription factor involved in the 
generation of reactive oxygen species (ROS) and neuronal 
apoptosis (Hagenbuchner et al. 2012). FOXO3 can reduce 
the accumulation of ROS by activating mitochondrial 
antioxidant enzymes (Olmos et al. 2013). In vitro study 
demonstrated that a purified mitochondrial fraction from 
animal and human brains mainly in hippocampal neurons 
contains a large concentration of FOXO3 in response to 
epilepsy (Caballero-Caballero et al. 2013). Augmenta-
tion of FOXO3 is associated with epileptic severity and 
temporal lobe epilepsy (Caballero-Caballero et al. 2013). 
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Expression of neuronal mitochondrial FOXO3 was 
increased in patients with temporal lobe epilepsy as com-
pared to the controls (Caballero-Caballero et al. 2013). It 
has been reported that FOXO3 induces the activation of 
autophagy in neural stem cells (Audesse et al. 2019). In 
response to starvation, FOXO3 expression is upregulated 
leading to the induction of autophagy by promoting the 
formation of autophagosomes, and FOXO3 knockdown 
reduces autophagosomes in skeletal muscles (Mammuc-
ari et al. 2007). A recent study suggests that the ketogenic 
diet could be highly effective in the management of resis-
tance epilepsy through the modulation of neurotransmit-
ters and induction of FOXO3 and autophagy (Ko et al. 
2022). Moreover, FOXO3 has a neuroprotective role and 
reduces seizure severity in acute CNS toxicity by regulat-
ing oxidative stress (Zhang et al. 2020). Besides, the brain 
is highly susceptible to the effect of oxidative stress due 
to extreme metabolic demand and oxygen consump-
tion. Excessive production of ROS and development of 
oxidative stress enhance neuronal hyper-excitability and 
initiation of epileptogenesis and seizure (Geronzi et al. 
2018). However, the role of oxidative stress is not simi-
lar in all types of epilepsy and seizure models (Shin et al. 
2011). Oxidative stress is regarded as one of the essential 
mechanisms in the initiation and progression of epilepsy 
(Aguiar et al. 2012). In addition, epilepsy and SE induce 
cellular injury through the induction of oxidative injury 
of DNA and membrane lipids and protein by reducing 
ATP production (Liang and Patel 2006). Different stud-
ies demonstrated that mitochondrial oxidative stress was 
increased in chronic epilepsy and following SE (Liang 
and Patel 2006; Liang et al. 2000). Kainic-acid-induced 
seizure induces hippocampal mitochondrial dysfunction 
and oxidative stress in the animal model study (Shin et 
al. 2011). These observations proposed a mutual feedback 
loop between epilepsy and oxidative stress in relation to 
the FOXO3 signaling pathway. Therefore, higher expres-
sion of FOXO3 and associated activation of autophagy in 
epilepsy might be a compensatory mechanism to miti-
gate oxidative stress and linked neuronal injury.

p53 gene
Of note, the p53 gene is a transcription factor that regu-
lates the mTOR pathway and autophagy, is involved in 
the induction of apoptosis in response to hypoxia and 
oxidative stress (Morrison and Kinoshita 2000). Oxida-
tive stress can induce the expression of the p53 gene dur-
ing epileptic seizures (Tong et al. 2020; Chuang 2010). 
Importantly, p53 expression is correlated with epileptic 
seizure in animal model studies (Culmsee et al. 2001) and 
temporal lobe epilepsy (Engel et al. 2007). Consequently, 
p53 inhibitors could be effective in the management of 
resistance epilepsy. However, loss of p53 exacerbates epi-
lepsy following SE (Engel et al. 2010). The experimental 

study demonstrated that kainic acid-induced seizure 
was more severe in p53-deficient mice as compared to 
the wild type (Engel et al. 2010). Therefore, the use of 
p53-inhibitors for resistance epilepsy should be revised. 
Autophagy inhibits p53 expression, and deficiency of 
Atg7 promotes p53-dependent apoptosis (Lee et al. 
2012a, b). Thus, autophagy seems to play a critical role 
in the attenuation of epilepsy by inhibiting the expression 
of p53.

IP3/IMPase
Inositol monophosphatase-1 (IMPase-1) is primarily 
responsible for releasing free myo-inositol from several of 
its inositol monophosphates after brain receptor stimula-
tion, or from glucose through the de novo pathway (Chi-
urillo et al. 2020). IMPase-1 is a pivotal enzyme in the 
brain inositol signaling system and appears to be the key 
enzyme required for the replenishment of brain inositol 
implicated in neuronal signaling (Chiurillo et al. 2020). 
The effect of inositol-deficient food supports the role of 
inositol depletion in the effects of lithium on pilocarpine-
induced behavior and epilepsy. However, the relevance of 
this behavior to other more mood-related effects of lith-
ium is not clear (Shtein et al. 2015). Inhibition of IMPase 
by phenytoin provides new insights regarding the mecha-
nism of action of phenytoin in the pathophysiology of 
either bipolar disorder or epilepsy (Mariotti et al. 2010). 
Indeed, IP3 inhibits autophagy via the stimulation of ER 
IP3 receptors (Chiurillo et al. 2020). In addition, IMPase 
inhibits autophagy (Yang et al. 2021) therefore inhibi-
tion of IP3/ IMPase could improve neuronal autophagy. 
Henceforth, lithium is suggested to be effective in treat-
ing resistance epilepsy by inhibiting the IP3/ IMPase axis 
and induction of autophagy (Bojja et al. 2022).

Taken together, these judgments highlighted that dys-
regulation of autophagy signaling is involved in epilepsy 
(Fig.  4). However, the direct responsibility of autophagy 
in epilepsy needs to be verified by additional preclinical 
and clinical studies.

Autophagy activators in Epilepsy
Lithium
Lithium is used primarily for long term prophylactic 
treatment of bipolar disorders to prevent further manic 
and depressive recurrences. In this indication, lithium 
remains the first-line treatment. However, lithium has 
other clinical effects that may be partially independent 
of each other (Bojja et al. 2022). Lithium is a natural ele-
ment discovered in 1817 and used as a mood-stabilizing 
agent in the management of bipolar disorders. Lithium 
has pro-convulsive, anti-convulsive and neuroprotective 
properties (Bojja et al. 2022). Of note, lithium induces 
sustained increases in cerebral gray matter volume in 
patients with bipolar disorders and these changes are 
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related to the therapeutic efficacy of lithium (Lyoo et al. 
2010). In pilocarpine-induced seizure in mice, adminis-
tration of lithium at a low dose (10 mg/kg) reduces sei-
zure severity, though a high dose of lithium (40  mg/
kg) increases seizure severity (Jiang et al. 2018). These 
findings provide a framework for further investigations 
of the underlying electrophysiological mechanisms of 
lithium-induced imbalances in excitatory and inhibitory 
neural circuits that regulate seizure activity (Jiang et al. 
2018). Furthermore, clinical studies reported that long-
term use of lithium is associated with myoclonic, tonic-
clonic and non-convulsive SE (Shorter 2009; Kanner 
2016). Conversely, a large observational study showed 
no clinical evidence for seizure occurrence (Lyoo et al. 
2010). Of note, lithium promotes autophagy by inhibit-
ing a negative regulator IP3 (Sarkar et al. 2005). Lithium 
induces autophagy, and thereby, enhances the clearance 
of autophagy substrates such as α-Syn. The autophagy-
enhancing properties of lithium were mediated by inhibi-
tion of IMPase leading to inositol depletion. This, in turn, 

decreased IP3 levels. This novel pharmacologic strategy 
for autophagy induction is independent of mTOR and 
may help treatment of various neurodegenerative dis-
eases (Sarkar et al. 2005). As well, lithium has direct and 
indirect inhibitory effects on the expression and activ-
ity of GSK3β a negative regulator of autophagy (Motoi 
et al. 2014). However, preclinical studies observed that 
high-dose lithium inhibits autophagy while low dose 
activates autophagy (Shimada et al. 2012). Thus, the lith-
ium-specific dose has an epileptic activity by promoting 
autophagy through mTOR-dependent and independent 
pathways.

Rapamycin
Although rapamycin, the oldest inhibitor of mTOR, was 
discovered more than 30 years ago, changed interest in 
this pathway is evident in the numerous rapalogs recently 
developed. These newer agents borrow from the struc-
ture of rapamycin and, although there are some pharma-
cokinetic differences, they appear to differ little in terms 

Fig. 4  Autophagy and epilepsy. Sirtuin-1 (SIRT1) activates FOXO3, and autophagy, inhibits P53 and promotes peroxisome proliferator-activated recep-
tor gamma co-activator 1 alpha (PC-1α) which reduces mitochondrial dysfunction. Phospholipase D inhibits autophagy through activation of mTOR, 
inhibition of AMPK and inhibition of the interaction between Beclin-1 and vacuolar sorting protein 34 (Vps34). P53 and IP3 inhibit autophagy through the 
activation of the mTOR pathway and endoplasmic reticulum (ER) IP3 receptors, respectively. Additionally, autophagy is activated by Atg7 and glycogen 
synthase kinase 3 (GSK3). GSK3 inhibits the mTOR pathway which is implicated in epileptogenesis
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of pharmacodynamic effects and overall tolerability (Li et 
al. 2014). Rapamycin is a macrolide antibiotic and clini-
cally known as sirolimus. Rapamycin was shown to have 
multiple actions including anti-proliferative and immu-
nosuppressive effects through modulation of mTOR 
and FK506-binding protein (Li et al. 2014). It has been 
shown that autophagy inducers such as rapamycin were 
effective against epileptogenesis and epilepsy in the 
acute and chronic phases of kainic acid-induced seizure 
in mice (Zeng et al. 2009). Direct infusion of rapamycin 
into the hippocampus following SE in mice for 2 months 
did not prevent the seizure, as it recurred following the 
withdrawal of rapamycin (Zeng et al. 2009). This find-
ing indicates that rapamycin has an anti-epileptostatic 
effect as it interferes with epileptogenesis but not epi-
lepsy (Ryther and Wong 2012). However, chronic admin-
istration of rapamycin in rats following SE prevents the 

occurrence of epileptic seizures through the maintenance 
of BBB integrity (Vliet et al. 2012). However, the recur-
rence of epileptic seizures following the discontinuation 
of rapamycin in rats was not mentioned by the authors.

Evidence from clinical studies indicated that rapamy-
cin is effective in patients with tuberous sclerosis com-
plex, and could be as an adjuvant treatment with AEDs 
(Zhao et al. 2023). Zhao et al. (2023). Rapamycin mainly 
inhibits mTORC1 because of the higher sensitivity of this 
complex to the effect of rapamycin. However, mTORC2 
is more resistant to the effect of rapamycin which needs 
long-term duration to be inhibited (Chong et al. 2012). 
Rapamycin’s anti-epileptic mechanism is related to its 
anti-inflammatory and immunomodulatory effects which 
attenuate the inflammatory reactions induced by SE 
(Broekaart et al. 2017). It has been shown that rapamy-
cin and other mTOR inhibitors attenuate T cell migration 

Fig. 5  Mechanistic effects of autophagy inducers in epilepsy: Rapamycin inhibits mTORC1 and attenuates T cell migration and development of 
neuroinflammation which trigger epilepsy. Additionally, Rapamycin activates the FK506-binding protein that regulates gamma-aminobutyric acid (GABA) 
ergic neurons and expression of glutamate receptors in astrocytes thereby reducing seizures. Metformin has anti-seizure activity by activating 5’ AMP-
activated protein kinase (AMPK) signaling and inhibiting mTOR pathways which are dysregulated in epilepsy. AMPK improves the expression of glucose 
transporter 1 (GLUT1) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) which improves mitochondrial biogenesis, and upregu-
lates Sirtuin1 (SIRT1), Forkhead box O3 (FOXO3), progranulin and GABA which induce neuroprotection. Ibuprofen has a neuroprotective and anti-seizure 
effect by inhibiting cyclooxygenase (COX) and heat shock protein 90 (Hsp90) for the induction of autophagy. Lithium inhibits the expression and activity 
of glycogen synthase kinase-3 beta (GSK3β) and inositol trisphosphate (IP3) which are the negative regulators of autophagy
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and development of neuroinflammation which trigger 
epilepsy and SE in different autoimmune disorders like 
new-onset refractory SE and encephalitis-induced sei-
zure (Shimada et al. 2013; Crino 2019). In particular, 
rapamycin by inactivation of mTOR inhibits the excit-
atory circuit in the dentate gyrus and retard the forma-
tion of mossy fiber following SE. Similarly, rapamycin 
reduces the frequency of excitatory post-synaptic cur-
rent and epileptiform activity in mice with experimental 
temporal lobe epilepsy (Tang et al. 2012). Interestingly, 
rapamycin was highly effective against tuberous sclero-
sis complex-induced seizure in animal and human stud-
ies (Goldstein and Hauptman 2021; Zou et al. 2014). 
Rapamycin reduces seizure frequency in patients with 
tuberous sclerosis complex by 25% and also reduces the 
use of AEDs (Zou et al. 2014). A recent clinical study 
on tuberous sclerosis complex patients with resistance 
epilepsy revealed that prolonged use of rapamycin for 
six months reduced seizure frequency by 56.25% (Sad-
owski et al. 2022). Moreover, rapamycin is regarded as a 
potent activator of the FK506-binding protein (Li et al. 
2014) which inhibits the mTOR pathway.  Wang et al. 
(2019a, b, c) observed that rapamycin attenuates pilo-
carpine-induced epilepsy in mice (Wang et al. 2019a, b, 
c). A previous study illustrated that the FK506-binding 
protein regulates GABAergic neurons and expression of 
glutamate receptors in astrocytes thereby reducing sei-
zure activity (Sierra-Paredes and Sierra‐Marcuño 2008). 
Besides, the FK506-binding protein induces autophagy 
and synergies the effect of antidepressant agents (Gassen 
et al. 2015). Antidepressant agents induce autophagy by 
increasing the expression of FK506-binding protein (Gas-
sen et al. 2015). Krueger et al. (2010). Prolonged use of 
everolimus decrease seizure frequency and severity in 
different types of resistance epilepsy (Franz et al. 2018). 
Therefore, rapamycin and everolimus by inhibiting the 
mTOR pathway, activating the expression of FK506-bind-
ing protein and induction of autophagy can attenuate sei-
zure activity and the development of epilepsy.

Ibuprofen
Ibuprofen is an anti-inflammatory drug belonging to the 
non-steroidal anti-inflammatory drug (NSAID) (Varrassi 
et al. 2020). ibuprofen has a neuroprotective and anti-sei-
zure effect by inhibiting cyclooxygenase (COX) enzyme, 
inflammatory signaling pathways and pro-inflammatory 
cytokines (Liu et al. 2020). Preclinical findings revealed 
that ibuprofen reduces the frequency and severity of SE 
in PTZ-induced seizures in rats (Liu et al. 2020). The 
potential epileptic of ibuprofen is merely related to its 
anti-inflammatory effect but could be mediated by induc-
ing autophagy. A preclinical study confirmed that ibupro-
fen attenuates SE by inducing autophagy in astrocytes as 
evident by increased levels of autophagy markers (Peng 

et al. 2019). Moreover, ibuprofen sensitizes CD-44-ex-
pressing cells to the effect of Hsp90 through induction of 
autophagy (Moon et al. 2019). Most NSAIDs are effective 
in reducing epileptic seizure in the experimental model 
(Radu et al. 2017) though selective COX2 inhibitors such 
as celecoxib are more effective than selective COX inhibi-
tors in pilocarpine-induced epilepsy (Radu et al. 2017). A 
cohort study involved epileptic patients revealed that co-
administration of ibuprofen reduces valproic plasma level 
by 7.5–30.6% within 1 week (Moon et al. 2019). There-
fore, the use of ibuprofen in epileptic patients on valproic 
acid should be used with caution. These findings high-
lighted that ibuprofen could be effective in the manage-
ment of epilepsy.

Metformin
Metformin is an insulin-sensitizing drug used in the 
management of type 2 diabetes (Al-Kuraishy et al. 2023). 
Metformin has a neuroprotective effect against different 
neurodegenerative disorders. Metformin improves cog-
nitive dysfunction in animal models of epilepsy (Yimer 
et al. 2019). Metformin with caloric restriction in animal 
model studies reduces seizure risk by increasing AMPK 
and reducing the mTOR pathway (Rubio Osornio MdC et 
al. 2018). Metformin has been established to reduce epi-
leptogenesis in animal models (Yang et al. 2017). Experi-
mental studies established that metformin was effective 
in treating temporal lobe epilepsy and SE in rats (Meh-
rabi et al. 2018). A systematic review revealed the effec-
tiveness of metformin against epilepsy in animal model 
studies (Yimer et al. 2019).

Furthermore, metformin increases the neuroprotec-
tive progranulin and anti-inflammatory cytokines in rats 
with experimental temporal lobe epilepsy (Vazifehkhah 
et al. 2020). A randomized clinical trial discovered that 
metformin reduced seizure frequency in children with 
tuberous sclerosis complex and Lafora disease (Amin et 
al. 2021; Burgos et al. 2023). A cohort study involved 18 
patients with Lafora disease, 8 treated with metformin, 
and 10 untreated showed that metformin was effective 
in reducing seizure severity and frequency (Burgos et al. 
2023). These preclinical and clinical findings indicated 
metformin could be an effective agent against epilepsy 
mainly the refractory one. AMPK and mTOR are highly 
expressed in the brain and interconnected mutually in the 
regulation of energy balance and homeostasis (Li et al. 
2019). AMPK which is activated by starvation and met-
formin activates the catabolic pathway and inhibits the 
anabolic pathway (Zhang et al. 2016). However, mTOR 
which is activated by high energy activates the anabolic 
pathway and inhibits the catabolic pathway (Sangüesa 
et al. 2019). Activation of AMPK by metformin triggers 
inhibition of the mTOR pathway either directly or indi-
rectly. In addition, metformin can inhibit mTOR through 
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the AMPK-independent pathway (Lu et al. 2019). Fur-
thermore, AMPK improves the expression of glucose 
transporter 1 (GLUT1) which is expressed in astrocytes 
and regulates central glucose homeostasis (Koepsell 
2020). Deletion or mutation of astrocyte GLUT1 induces 
seizures in patients with GLUT1 deficiency syndrome 
(Koepsell 2020). AMPK enhances glucose uptake and 
glycolysis of astrocytes by increasing the translocation 
of membrane GLUT1 (Muraleedharan et al. 2020). How-
ever, over-activation of AMPK during brain ischemia has 
deleterious effects (Ramamurthy and Ronnett 2012). In 
brain ischemia, AMPK is activated in the astrocytes due 
to the increase of nitric oxide (NO) which inhibits mito-
chondrial respiration and promotes glycolysis (Rama-
murthy and Ronnett 2012). Moreover, AMPK induces 
the expression of peroxisome proliferator-activated 
receptor-γ co-activator 1-α (PGC1α) which improves 
mitochondrial biogenesis, and upregulates SIRT1 and 
FOXO3 which induces neuroprotection (Steinberg and 
Carling 2019; Greer et al. 2007). In addition, AMPK 
inhibits the synthesis of fatty acids and increases their 
degradation by increasing the expression of malonyl-CoA 
which inhibits fatty acid oxidation (Steinberg and Carling 
2019). Metformin through an AMPK-dependent path-
way inhibits gluconeogenesis in both astrocytes and neu-
rons leading to an increase in glucose flux and increased 
glycolysis in astrocytes (Shaw et al. 2005; Berthier et al. 
2016). Concerning the anti-seizure activity of AMPK, it 
has been shown that AMPK modulates thalamic spike 
wave seizure in hypoglycemia-induced absence seizure. 
In experimental rats, administration of AMPK metfor-
min potentiates seizure network activity via activation 
of postsynaptic GABA-B in the thalamocortical neurons 
(Salvati et al. 2022). Metformin like other AEDs such as 
tiagabine and vigabatrin can trigger absence seizure by 
increasing the availability of GABA which induces stimu-
lation of GABA-B (Yang et al. 2003). Metformin is effec-
tive against temporal lobe epilepsy but exacerbate the 
absence of seizure (Liu et al. 2006). Particularly, absence 
seizure is common in children where metformin is rarely 
used. Therefore, the anti-seizure effect of metformin 
seems to be identical to the effect of AEDs which are 
effective for generalized but not for absence seizure.

Furthermore, some types of epilepsy are associated 
with the up-regulation of the mTOR pathway, and inhibi-
tion of this pathway by AMPK activators such as metfor-
min can reduce seizure frequency and severity (Kim et al. 
2022). In addition, electroconvulsive shock (ECS) which 
is used in severe depression can reduce seizure severity 
through activation of AMPK and inhibition of mTOR 
which is involved in epileptogenesis (Kim et al. 2022). As 
well, mTOR inhibitor rapamycin attenuates lipopolysac-
charide (LPS)-induced absence seizure in rats through 
modulation of neuroinflammation (Russo et al. 2014). 

However, metformin which inhibits the mTOR pathway 
exacerbates the absence of seizure (Salvati et al. 2022). 
Therefore, mTOR inhibitors exert different mechanistic 
pathways against seizure neuro-activity. Particularly, not 
all mTOR inhibitors are effective in mitigating epilepto-
genesis (Koene et al. 2019). For example, experimental 
mTOR inhibitors such as AZD8055 and PF4708671 were 
shown to be ineffective in mice with epilepsy (Koene et 
al. 2019). Similarly, vigabatrin which inhibits the mTOR 
pathway delays but not prevent seizure occurrence in 
animal model studies (Koene et al. 2019). Furthermore, 
different preclinical studies confirmed that metformin 
enhances autophagy (Lu et al. 2021; Bharath et al. 2020; 
Tomic et al. 2011). Metformin improves autophagy func-
tion through modulation of the AMPK/mTOR axis (Lu 
et al. 2021). As well, metformin regulates mitochondrial 
function and attenuates aging-induced inflammation 
by regulating inflammaging and activating autophagy 
(Bharath et al. 2020). In vitro study demonstrated that 
metformin inhibits the growth of melanoma by activating 
autophagy (Tomic et al. 2011). Furthermore, metformin 
attenuates the development of SE by inducing autoph-
agy (Mohamed et al. 2020). These findings suggest that 
metformin has anti-seizure activity by activating AMPK 
signaling and inhibiting mTOR pathways which are dys-
regulated in epilepsy.

Regarding the safety profile of autophagy activators in 
epilepsy, both lithium and rapamycin are not appropri-
ate for long-term due to systemic adverse effects such as 
diabetes inspidus and bone marrow depression caused 
by lithium and rapamycin respectively (Livingstone and 
Rampes 2006; Johnson and Kaeberlein 2016). However, 
long-term adverse effects related to ibuprofen seem to 
be minor compared to lithium and rapamycin. Remark-
ably, metformin which also can be used in non-diabetic 
patients, as it does not cause hypoglycemia, can be used 
for long-term in patients with generalized epilepsy (Al-
Kuraishy et al. 2023; Alrouji et al. 2023). A future per-
spective regarding the use of autophagy activators in 
patients with epilepsy should be concerned with the 
pharmacokinetic and pharmacodynamics interactions 
between autophagy activators and AEDs. Therefore, 
clinical trials regarding the combination of autophagy 
activators with AEDs in different types of epilepsies are 
warranted.

In sum, autophagy inducers play a critical role in reduc-
ing seizure frequency and severity and could be adjuvant 
treatment in the management of epilepsy (Fig. 5).

Conclusion
Epilepsy is a neurological disease characterized by 
repeated seizures. AEDs control epilepsy in about 69%, 
and one-third of epileptic patients are not controlled 
by AEDs called refractory epilepsy. Dysregulation of 
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autophagy is intricate in the pathogenesis of epilepsy. 
Autophagy prevents the development and progres-
sion of epilepsy through regulating the balance between 
inhibitory GABA and excitatory glutamate. Induction 
of autophagy and autophagy-related proteins like Atg7, 
LC3, and Beclin-1 might be an innovative therapeutic 
strategy in managing epilepsy. Despite the protective 
role of autophagy against epilepsy, though its role in SE 
is perplexing and might be a double-edged sword, may 
be detrimental or harmful. Autophagy activators such as 
rapamycin, metformin and ibuprofen play a critical role 
in reducing seizure frequency and severity and could 
be adjuvant treatments in the management of epilepsy. 
Therefore, autophagy activators could be effective in the 
management of epilepsy and can be used as adjuvant 
treatments in the management of resistance epilepsy. 
Additional preclinical and clinical studies are recom-
mended in this regard.
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