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Abstract

It is very likely that perinatal human immunodeficiency
virus type 1 (HIV-1) infection is influenced by a combina-
tion of virologic and host factors. A greater understanding of
the role played by various risk factors for HIV-1 infection is
crucial for the design of new preventive and therapeutic
strategies. In recent years, a number of studies have sug-
gested that host genetic factors are important determinants
of both the susceptibility to perinatal HIV-1 infection and
the subsequent pathogenesis of acquired immunodeficiency
syndrome (AIDS). Control of HIV-1 infection involves the
processing of specific viral peptides and their presentation
to cells of the immune system by highly polymorphic hu-
man leukocyte antigen (HLA) alleles. The contribution of
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multiple HLA class I and II alleles in modulating pediatric
HIV/AIDS outcomes has now been confirmed by several
independent groups. Penetration of HIV-1 into cells is me-
diated by interaction between CD4 and chemokine recep-
tors that serve as entry coreceptors. Genetic polymorphisms
in chemokine ligand and chemokine receptor genes have re-
cently been associated both with mother-to-child HIV-1
transmission and disease progression in children. These
observations suggest a key role for genetic factors in pedi-
atric HIV-1 infection. This article describes the current state
of knowledge regarding host genetic influences on pediatric
HIV-1 infection and discusses the role of these genes in
HIV/AIDS pathogenesis.

Introduction
Globally, UNAIDS and the World Health Organization
(WHO) estimated that 15.7 million women, most of
whom are of childbearing age, were living with hu-
man immunodeficiency virus (HIV) at the end of 1999
(1). With an estimated 1.5 million HIV-positive
women becoming pregnant each year, almost 600,000
children will be infected by mother-to-child transmis-
sion (MTCT) annually. Over 3.8 million children have
died of AIDS since the beginning of the epidemic. In-
fant mortality rates in east and southern Africa are cur-
rently 33–66% higher than they would be without
AIDS. Many of the gains in infant mortality and life
expectancy made by postcolonial African govern-
ments have been completely reversed. As a conse-
quence of this large decline in human resources, the
very future of Africa is threatened (2). Thus, perinatal
HIV-1 infection constitutes a significant global health

problem and the prevention of transmission is a high
public health priority. A greater understanding of the
role played by various risk factors for HIV-1 infection
is crucial for the design of new preventive and thera-
peutic strategies.

Although, vertical transmission of HIV-1 has been
correlated with a wide range of viral, maternal, ob-
stetrical, and behavioral factors (reviewed in 3–6), the
exact factors that influence the transmission of HIV-1
from a mother to her child remain to be identified. In
children with perinatally acquired HIV-1 infection,
the expression of clinical and immunologic signs of
disease appear to follow a bimodal distribution (7).
Approximately 15–20% of infected infants have an
early and severe course of disease and die within the
first 2 years of life. The remaining children progress
more slowly and have a less severe course, surviving
an average of 8 years or more. Several factors have
been suggested to influence disease progression in
children infected with HIV (reviewed in 6,8,9). There
is a broad consensus that intrauterine infection (10,11),
high viral load at birth (12,13), and the viral pheno-
type (14,15) are all major risk factors influencing dis-
ease progression in HIV-1-infected children. 
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A growing body of evidence suggests that host ge-
netic factors are important determinants of both the
susceptibility to perinatal HIV-1 infection and the
subsequent pathogenesis of AIDS (Tables 1 and 2). To
date, work in this area has focused on genes in two
systems critical to the immune response: the family of
molecules that mediate antigen presentation and the
chemokine ligands and receptors that have recently
been identified as cofactors for HIV-1 cell entry. Ac-
cordingly, this review will focus on the role of human
leukocyte antigen (HLA), chemokine receptors, and
stromal-derived factor-1 (SDF1) genes on perinatal
HIV-1 transmission and disease progression to AIDS.

HLA and Effector Cells of the 
Immune System
Genes in the HLA region are grouped in two major
classes: class I (A, B, C, E, F, G) and class II (DM, DP,
DQ, DR). Products of HLA genes mediate intracellular
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antigen processing, transport across cell compart-
ments, and cell-surface presentation of antigenic
peptides to lymphocytes (16). HLA is the most highly
polymorphic biologic system known to exist in hu-
mans. The extensive polymorphism of HLA results in
a broad diversity of potential immune responses
against HIV-1 and other pathogens in human popula-
tions (29). This fact is consistent with observations
that individuals with certain HLA types may be more
susceptible or resistant to HIV-1 infection. Kilpatrick
et al. (17), in a serologic HLA typing study of Scottish
infants, observed that the HLA-A3-B7-DR2 haplotype
was associated with protection against HIV-1 infec-
tion whereas the HLA-A1-B8-DR3 haplotype was in-
creased in frequency among HIV-infected children.
These findings were subsequently confirmed by an-
other group using molecular HLA typing methods. In
that study, the HLA-DR2 allele (DRB1*1501) was as-
sociated with seroreversion while the HLA-DR3
(DRB1*03011) allele was positively associated with
the occurrence of HIV-1 infection among white
American infants (18). Interestingly, the DRB1*03011
allele associations differed sharply between ethnic
groups. In black Americans, this allele was signifi-
cantly associated with a diminution in vertically
transmitted HIV-1 infection. Moreover, several HLA-
DR13 alleles (DRB1*1301,*1302,*1303) were associ-
ated with protection against HIV-1 transmission
among black infants but not in white children. In a re-
cent study, the presence of HLA-A2 was associated
with a 9-fold reduction in the risk of perinatal HIV in-
fection in an East African population (30).

Specific HLA alleles have also been associated
with pediatric HIV disease progression. The HLA DR3
haplotype (DRB1*0301-DQA*0501-DQB1*0201) ap-
pears to be associated with increased incidence of en-
cephalopathy, faster rate of CD4 cell decline, and
death before 2 years of age in African-American chil-
dren (19) and with the development of severe clinical
manifestations in Spanish children (24). Survival of
children in these same studies to at least 2 years of

Table 2. Genetic factors implicated in HIV-1 disease progression among children

Factor Effect Reference

HLA
HLA-A*2301 Rapid progression 23
HLA-DPB1*0101 Survival 19
HLA-DPB1*0301 Slow progression 24
HLA-DR3 (DRB1*0301-DQA*0501-DQB1*0201) Rapid progression 19,24
HLA-DR13 (*1301,*1302,*1303,*1310) Survival 23

Chemokine receptors
CCR5-�32a Slow progression 25–27
CCR2-64I Slow progression 28

aSee Table 3 for more details on CCR5-�32 and rate of HIV disease progression.

Table 1. Genetic factors affecting vertical transmission
of HIV-1

Factor Effect Reference

HLA
HLA-A2 Protection 30
HLA-A3-B7-DR2 Protection 17,18
HLA-Al-B8-DR3 Higher risk 17,18
HLA-DQB1*0604 Higher risk 19
HLA-DR13 Protection 18
(DRB1*1301,*1302,*1303)

Chemokine receptors
CCR5-�32a Protection 20
CCR5-59356-T Higher risk 21
SDF1-3’A Higher risk 22

aSee Table 3 for more details on CCR5-�32 and risk of MTCT.
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probability of in utero exposure to free virus or to
maternal HIV-infected cells is likely to be very high.
However, only a minority of children is ultimately
infected by their mothers. It has been proposed that
fetal alloimmune responses directed against mater-
nal HIV-infected cells or free virus-bearing maternal
major histocompatibility complex (MHC) determi-
nants can account for protection of some children
(38). Evidence that anti-MHC immune responses
can protect against HIV-1 infection comes from a
macaque model in which immunization with a hu-
man lymphoblastoid cell line protected macaques
against subsequent simian immunodeficiency virus
challenge when the challenge virus was grown in
the same cell line (39). Protection in this model cor-
related best with antibodies against HLA class I
molecules (40). In humans, this hypothesis is sup-
ported by a recent study showing that HLA class I
antigen concordance between a mother and her
child is associated with an increased risk of in-
trauterine HIV-1 transmission, whereas maternal-
child HLA discordance results in protection against
transmission (30). 

Chemokine Receptors and Ligands
The search for other HIV receptors in addition to CD4
has permitted the identification of chemokine recep-
tors as coreceptors for HIV cellular entry (reviewed
in 41,42). The CCR5 chemokine receptor that selec-
tively binds �-chemokines such as RANTES, MIP-1
�, and MIP-1 �, appears to be the main coreceptor
for macrophage-tropic or nonsyncytium-inducing
(NSI) HIV-1 strains, whereas the T-cell–tropic or
syncytium-inducing strains preferentially use the
SDF1 chemokine receptor, CXCR4. Some HIV-1 iso-
lates are dual tropic and can use both CCR5 and
CXCR4 receptors. A limited proportion of strains
can also use additional chemokine receptors, such as
CCR2 and CCR3.

Polymorphism of CCR5

Three independent groups have identified a mutant
allele containing a 32 base pair (bp) deletion in the
open reading frame of the CCR5 gene (CCR5-�32)
that induces a frame shift, a premature stop codon,
and loss of a HIV-1 coreceptor activity (43–45). The
frequency of this mutant allele is approximately 1%
in the homozygous state and 10–20% for the het-
erozygous state among North Americans and Euro-
peans, but is lower or absent in subjects of African,
Asian, and Latin American heritages (46). The
CCR5-�32 allele has been identified as natural ge-
netic polymorphism reducing the risk of acquiring
HIV-1 infection and the rate of disease progression
in high risk adults such as homosexuals, intra-
venous drug users, and hemophiliacs (reviewed
in 31,47). The complete absence of CCR5 expres-
sion in CCR5-�32 homozygotes is strongly protec-
tive against infection by macrophage-tropic HIV-1

age and decreased risk of clinical manifestations were
associated with HLA DPB1 alleles (DPB1*0101,
*0301). In a mixed American population, Chen et al.
(23) found a strong relationship between rapid dis-
ease progression in children and presence of the
HLA-A*2301 allele while HLA DR13 alleles were as-
sociated with long-term survival in infected children.

Taken together, these data suggest that the HLA
DR3 haplotype is associated with both increased
risks of vertical transmission of HIV-1 and pediatric
disease progression, while the HLA DR13 and HLA
DPB1 alleles are associated with protection against
HIV-1 infection. Numerous studies have already as-
sociated the HLA-DR3 haplotype with faster AIDS
progression in HIV-seropositive adults (reviewed in
31). However, there is a discordant effect of the HLA
DR3 (DRB1*03011) and HLA-A2 alleles in the black
and white ethnic groups. Seemingly inconsistent re-
sults across ethnic groups may reflect the genetic
heterogeneity of HLA. In fact, the full extent of HLA
polymorphism is not distributed randomly in the
general population. Rather, ethnic and geographic
clustering of HLA types occurs, owing in part to the
unique biologic histories of subpopulations that
have shaped the distribution of HLA alleles over
time (e.g., exposure to infectious agents).

Class I-restricted cytotoxic T lymphocytes (CTLs)
exert significant immune pressure on HIV-1, sug-
gesting that this response might participate in mod-
ulating transmission and disease progression. There
is an inverse correlation between plasma RNA viral
load and HIV-specific CTL frequencies in patients
with HIV-1 infection (32). The impact of CTL re-
sponses in HIV-infected pregnant women on vertical
transmission has been recently investigated. CTL
precursor frequencies specific for pol and nef HIV
variants were higher during pregnancy in nontrans-
mitting than in transmitting mothers (33). Because
nef represents an early transcript during the replica-
tion of HIV, a strong nef-specific CTL response may
be important for the clearance of HIV soon after
protein expression and the control of further viral
dissemination. Interestingly, a nef-specific CTL re-
sponse has also been observed in uninfected chil-
dren born to HIV-positive women (34). A study by
Wilson et al. (35) demonstrated that amino acid sub-
stitutions within the targeted CTL epitopes and im-
mune escape from CTL recognition are associated
with transmitting mothers. However, the transmit-
ted virus can be a CTL-susceptible form, suggesting
inadequate in vivo immune control. Although the
CTL response is an important mediator of protective
immunity and has been implicated in controlling
virus load, the maternal CTL response is insufficient
to determine the fate of HIV vertical transmission.

Because HIV-1 is known to infect cells within
the placenta (36,37), the increased frequency of
chorioamnionitis in mothers with AIDS could po-
tentially result in an increased exchange of maternal
and fetal cells. These observations suggest that the



strains and infected heterozygotes progress more
slowly to AIDS and death, compared to those bear-
ing two functional CCR5 alleles. Heterozygosity for
the �32 allele has been associated with some reduc-
tion in heterosexual transmission in one study (48)
but other groups (49,50) have not been able to con-
firm this observation. Recent studies have demon-
strated that most vertical transmission occurs with
macrophage-tropic or NSI viral isolates (15,51) and
that progression to AIDS occurs more rapidly in
infants with NSI strains (14), suggesting that the
polymorphism of CCR5 might influence pediatric
HIV-1 infection. The role of CCR5-�32 allele in peri-
natal HIV-1 transmission and subsequent disease
progression has recently been examined in over 3000
infants from different populations (20,25–28,52–55).
Table 3 summarizes the results of published reports
on the association between CCR5-�32 chemokine
receptor allele in children and the risk of vertical
transmission of HIV-1 or disease progression. Taken
together, these data suggest that CCR5-�32 het-
erozygosity alone is not protective against MTCT of
HIV-1. Moreover, the protective effect of CCR5-�32
homozygosity observed in adult HIV-1 transmission
was not conclusively demonstrated in vertical trans-
mission, presumably because the total number of
homozygote children found in these studies was too
low. A larger number of mother–child pairs is thus
required to determine the true impact of CCR5-�32
homozygosity in MTCT. 

Although most studies have shown that CCR5-
�32 heterozygosity has no effect on MTCT of HIV-1,
the role of this polymorphism in pediatric HIV dis-
ease progression remains a controversial issue. Re-
duced rates of disease progression have been ob-
served in mixed American and French cohorts,
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although no effects were found in other cohorts com-
posed mainly of Hispanic and African-American
children (see Table 3). The mechanism of the protec-
tive effect of the �32 mutation is still unknown, but
it is tempting to speculate that reduced expression of
the CCR5 coreceptor at the cell surface may be asso-
ciated with decreased efficiency of HIV-1 NSI strains
entry and replication in CD4 T cells. 

Other genetic polymorphisms have been iden-
tified within the CCR5 regulatory region, some of
which have been reported to affect the rate of HIV
disease progression in adults (56–58). A recent
study in a mixed American population of 1442
infants has demonstrated that homozygosity for
CCR5-59356-T allele is strongly associated with a
higher rate of vertical transmission of HIV-1 among
black infants (21).

Polymorphism of CCR2

Adults who possess the CCR2-64I allele (isoleucine
substitution for valine at position 64) are not pro-
tected against HIV-1 infection, but progress less
rapidly to disease once infected (56,58,59–61). This
protective effect is more pronounced among Africans
than non-Africans. The fact that CCR2 is a sporadic
coreceptor for HIV-1 macrophage-tropic strains and
that CCR2-64I does not affect CCR2 protein expres-
sion makes it difficult to explain the protective effect
observed in adults. However, CCR2-64I is in linkage
disequilibrium with CCR5-59653T polymorphism
located in the CCR5 promoter region (61). It has
been suggested that CCR2-64I could interfere with
CCR5 coreceptor expression, but this hypothesis
was rejected by a recent in vitro study showing that
the CCR2-64I allele does not influence CCR5 tran-
scription or mRNA levels (62). Another possibility

Table 3. Summary of published reports on the association between heterozygosity for CCR5-�32 chemokine
receptor allele and the risk of MTCT of HIV-1 or the rate of disease progression

Risk Factor

Population (n) Patients Risk of MTCT Rate of HIV progression Reference

African American 144 None None 52

Argentinean 886 None None 28,53

Austrian 79 ↓ NS 20

French 512 None ↓ 25

Mixed American 122 None NS 54

Mixed American 831 None NS 55

Mixed American 457 NS ↓ 26

Mixed American 41 NS ↓ 27

Spaniard 73 None None 38

NS, not studied; ↓, decreased.
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rapidly advancing upon the postgenomic era, in which
detailed genetic information will allow us to deter-
mine risk profiles for a wide range of diseases. More-
over, the identification of such genetic factors in HIV
disease will undoubtedly enhance our understanding
of the pathogenesis of this infection and may lead to
the development of novel therapies and interventions.
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