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Abstract

Background: Herpesviruses are widespread viruses,
causing severe infections in both humans and animals.
Eradication of herpesviruses is extremely difficult be-
cause of their ability to establish latent and life-long
infections. However, latency is only one tool that has
evolved in herpesviruses to successfully infect their
hosts; such viruses display a wide (and still incompletely
known) panoply of genes and proteins that are able to
counteract immune responses of their hosts. Envelope
glycoproteins and cytokine inhibitors are two examples
of such weapons. All of these factors make it difficult to
develop diagnostics and vaccines, unless they are based
on molecular techniques.
Materials and Methods: Animal herpesviruses, be-
cause of their striking similarity to human ones, are
suitable models to study the molecular biology of her-
pesviruses and develop strategies aimed at designing

neurotropic live vectors for gene therapy as well as en-
gineered attenuated vaccines.
Results: BHV-1 is a neurotropic herpesvirus causing
infectious rhinotracheitis (IBR) in cattle. It is a major
plague in zootechnics and commercial trade, because of
its ability to spread through asymptomatic carrier ani-
mals, frozen semen, and embryos. Such portals of infec-
tions are also important for human herpesviruses, which
mainly cause systemic, eye, and genital tract infections,
leading even to the development of cancer.
Conclusions: This review covers both the genetics and
molecular biology of BHV-1 and its related herpesvi-
ruses. Epidemiology and diagnostic approaches to her-
pesvirus infections are presented. The role of herpesvi-
ruses in gene therapy and a broad introduction to classic
and engineered vaccines against herpesviruses are also
provided.

Introduction
Herpesviruses have recently become a major
subject in virology. They cause widespread infec-
tions whose main feature is the establishment of
latency. This trait makes it very difficult to erad-
icate herpesviruses, because no therapies or vac-
cines have been proved to be fully effective
against them. Animal herpesviruses may serve as
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a valuable model to investigate the immune re-
sponse of host organisms as well as to design and
assay new vaccines against these infectious
agents. Vaccine development has been widely
investigated in the bovine herpesvirus 1 (BHV- 1)
model, giving rise to a wide number of publica-
tions on the subject. Such a model should be
very informative for other herpesviruses-caused
diseases, including human ones.

BHV-1 is the causative agent of infectious
bovine rhinotracheitis (IBR) in cattle. IBR is
widespread all over the world, occurring mainly
as an enzootic disease. In most European Com-
munity (EC) countries, crowding of livestock in
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large-scale farms often leads to severe outbreaks
of respiratory infectious diseases.

Efforts aimed at controlling IBR derive
from the economic losses caused by the disease
and economic interests relying on commercial
trade of breeding animals. Only "IBR-free" an-
imals, frozen semen, or embryos are allowed
for international trade. Indeed, most EC coun-
tries have stated freedom from IBR as a pre-
requisite for the import of live cattle, semen, or
embryos.

Etiopathogenesis
Etiology
BHV-1 is the etiologic agent of different clinical
syndromes, including in primis IBR. It belongs to
a family of neural-targeting herpesviruses (fam-
ily Herpesviridae, subfamily Alphaherpesvirinae,
genus Varicellavirus). Different isolates can be
identified by molecular methods, including viral
DNA analysis [restriction endonuclease digestion
patterns of viral DNA (1-4)], Southern hybrid-
ization, and mapping studies (5); traditional
methods rely on serological tests (6) and viral
antigen characterization. Each herpesvirus iso-
late can contain many different strains, each be-
ing distinguishable from each other by sequence-
based methods (7); e.g., Cooper and Los Angeles
(LA) are the most common BHV- 1 strains in
Europe and the United States, respectively (8).

Pathogenesis and Clinical Features

Clinical steps in the pathogenesis of herpesvirus
infections are acute disease, latency, and reacti-
vation. Such viruses are transmitted directly by
aerosol or by close contact among infected ani-
mals. Indirect transmission may occur via con-
taminated food or water, or semen for artificial
insemination. The potential portals of entry are
the nasal cavity, oropharynx, eyes, and genital
tract. Normally, the first round of viral replica-
tion takes place in the epithelial cells at the portal
of entry. The symptoms of the acute disease re-
stricted to local areas (the upper respiratory tract
and eyes) are mainly associated with destruction
of infected epithelial cells caused by virus repli-
cation. The highest virus titers are produced and
excreted at this stage of infection. These infec-
tions are usually self-limiting, thanks to a prompt
immune response, and recovery usually takes
place within 1 to 2 weeks. Local lesions, how-
ever, may facilitate secondary bacterial infec-

tions, causing more severe damage, such as
pneumonia.

The virus may spread in the infected host by
viremia, gaining access to a broader range of
tissues and organs and causing a variety of dis-
eases-e.g., abortion and enteritis are the most
serious consequences of BHV-1 infections. Fur-
thermore, the virus can enter nervous cells, es-
tablishing a latent infection in sensitive ganglia.
It is not yet clear whether the infection of the
central nervous system (CNS) by herpesviruses is
achieved via axonal transport (during its initial
replication at the portal of entry, the herpesvirus
may enter the axons of local nerve cells) or via
viremic spread (9).

Clinical symptoms of infection with herpes-
viruses are characterized by a large variability in
severity: they may be mild and localized or they
may include severe generalized illness, leading in
some cases to death or, in contrast, going unno-
ticed. The pathology of BHV- 1 -caused diseases is
largely due to respiratory infection; after a pri-
mary infection, virus replicates in epithelial cells
of the high respiratory tract, causing necrosis. In
some cases, BHV-1 can propagate itself in the
organism by a systemic route or to the lungs,
inducing a bronchopneumonia often compli-
cated by secondary bacterial superinfections
(10). During primary infection, when virus is
replicating intensively, a large amount of viral
particles is present in nasal exudates; the infected
animals are highly contagious to others in their
surroundings.

In cattle, clinical symptoms of the respiratory
disease are the following: after 2 to 6 days, py-
rexia, reduced appetite (anorexia), dyspnoea (in-
creased respiratory rate), cough, bilateral nasal
discharge, and depression occur, often accompa-
nied by conjunctivitis and mucopurulent ocular
secretions. Auscultation reveals the presence of a
tracheitis. Animals recover within 2 weeks, ex-
cept when bacterial superinfection occurs (in ap-
proximately 10% of the affected animals). In this
case, bronchopneumonia can cause death.

Infections of the genital tract are frequently
caused by artificial insemination practice. The
minimal dose to infect a cow by artificial insem-
ination has been estimated to be 32 infectious
viral particles. In males, preputial and penile mu-
cosae seem to be the tissues of the male genital
tract supporting BHV- 1 replication (11). Clinical
signs vary from mild to severe balanoposthitis
and may be associated with a decrease in semen
quality (reduced motility and morphological ab-
normalities of sperm cells) (12). Because semen
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is usually contaminated with virus from prepu-
tial and penile mucosae, seminal plasma rather
than sperm cells contains the virus.

In females, infection may lead to infertility
disturbances, mainly endometritis (13). The risk
of transmitting BHV-1 to inseminated cows by
using BHV-1-seropositive bulls for artificial in-
semination is substantially reduced by pread-
sorption of semen (14) and by testing semen
batches. When IBR develops in a herd that in-
cludes pregnant cattle, abortions may occur after
3 to 6 weeks post infection, mainly between the
5th and 8th month of pregnancy. Under field
conditions, about 25% of pregnant cattle un-
dergo abortion after an outbreak of IBR (15).

Calves can also become infected at and after
birth. Cows suffering from acute infection can
infect newborns directly in the uterus, through a
systemic route, or via contaminated nasal secre-
tions. Parturition is associated with increased
blood levels of glucocorticoids; also, labor consti-
tutes a stress in and of itself, adding to the endo-
crine status. Physiologically, parturition repre-
sents a risk situation that might result in bovine
rhinotracheitis virus reactivation and/or, re-ex-
cretion. It is well established that latent IBR-
causing virus can undergo reactivation by both
stressing conditions or administration of glu-
cocorticoids (16).

Epidemiology and Diagnosis
Epidemiology
IBR is considered a species-specific cattle disease.
Other animal herpesviruses, strictly related to
BHV- 1, cause similar diseases in pigs, goats,
minks, and ferrets. Human herpesviruses are re-
sponsible for systemic, eye, and genital infec-
tions, in both children and adults. Some herpes-
viruses have been related to tumor onset, e.g.,
Burkitt's lymphoma, and nose-pharyngeal carci-
noma.

BHV-1 comes in contact with herds mainly
through introduction of new animals, either in
the acute phase of a primary disease or when
latently infected. As illustrated in Figure 1, even
semen from infected bulls and infected embryos
are suitable viral carriers. Once the virus enters a
herd, it is mainly spread by direct contact be-
tween animals (through respiratory, ocular, or
genital secretions). An indirect route of spread is
also possible, by means of contaminated instru-
ments. Since Switzerland and Denmark suc-
ceeded in BHV-1 eradication, attention has been

focused on virus eradication in the other EC
countries. Presently, a number of countries have
entered eradication programs. In the countries
where BHV- 1 infection has a high prevalence,
eradication is only economically feasible by pre-
venting new infections while increasing the cull-
ing of infected animals. Awareness of epidemio-
logical risks and improvement of management
both play an important role in limiting or even
avoiding viral spread within and between herds
(17). A hallmark of the herpesvirus biological
cycle is its ability to establish latent, life-lasting,
and periodically reactivating infections in the
host. It is the most harmful herpesvirus property,
which makes the use of semen from BHV- 1-
seropositive bulls or embryos a major concern.
Bulls, once infected, must be regarded as lifelong
potential BHV-1 sources. In fact, BHV-1 spreads
along the nerves to the sympathetic ganglia,
where it remains latent for life (11), until a
proper stimulus induces its reactivation (18).
Several conditions that are common in livestock
breeding are quite stressful, making cattle prone
to bacterial and viral infections as well as to
herpesviruses reactivation. These include in-
creased levels of corticosteroids, pregnancy,
transport, entrance into a new herd, concomi-
tant viral or bacterial infections, poor manage-
ment conditions, and deficient diet.

In bovine species, transport of the virus is
associated with an increase in corticoid blood
level; thus virus-carrying animals are simulta-
neously submitted to stressful conditions. Trans-
port is indeed responsible for reactivation of IBR
virus. BHV-1 re-excretion and rise in neutraliz-
ing antibodies are direct and identifiable indica-
tors of reactivation (19).

Other stressful situations may play an impor-
tant role in BHV-1 infection of cattle-e.g., co-
infection with other pathogens, such as bovine im-
munodeficiency-like virus (BIV) (20). Inadequate
diet and mineral deficiency may also affect acute-
phase reactivation of BHV-1 infection (21).

Much of the dynamics of BHV-1 infection,
however, is unclear-i.e., how long BHV- 1 can
circulate in a herd, whether all susceptible ani-
mals become infected, or whether circulating
BHV- 1 is present after all the animals have sero-
converted. Knowledge of transmission parame-
ters and population dynamics of BHV-1 under
field conditions can give information pertinent to
the prevention of viral persistence, avoidance of
virus spread, eradication of virus, and protection
for the target population (22).

A herd is currently considered IBR-free if
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two consecutive serological tests (ELISA) of se-

rum or milk samples give negative results in all
animals. Infection-free status can be maintained
by ensuring closed management conditions as

much as possible. Contact and mixing of a herd
with other herds or new animals should be
avoided. Artificial insemination must be carried
out only with semen from IBR-free sires. To
control for infection-free status, all breeding sires
and at least 10% of cows in each herd should be
tested for IBR by ELISA every 6 months, and all
animals must be BHV-1 negative (23).

Diagnosis
Sensitive methods of diagnosis, even if followed
by an adequate prophylaxis, must take in ac-
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count the latency that is typical of herpesviruses.
Clinical diagnosis can be carried out in acute
herpesvirus infections, but laboratory tests are
required for detection of latent virus (18). In
such conditions, latent virus can be only detected
in sensory nervous ganglia, e.g., trigeminal gan-
glia after respiratory infection or sacral ganglia
after genital infection by co-cultivation tech-
niques (24) or by in situ hybridization (25).
Current methods of analyzing herpesviruses in
diagnostic virology laboratories include virus
isolation, immunofluorescence staining of tissues
by specific antibodies, and serological tests. Mo-
lecular methods, based on nucleic acid analysis,
are undoubtedly the most sensitive and effective
for determining latent infections, but these
methods are not yet widely practiced.
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Isolation of herpesvirus is a laborious proce-
dure, has a long turnaround time, and requires
processing of samples within 24 hr after their
collection (26). Moreover, some tissues contain
enzymes that are toxic for cultured cells or viral
inhibitors, thus interfering with virus isolation
procedures (27). Typical examples are toxic com-
ponents hindering viral detection in semen. Sev-
eral pretreatment methods such as kaolin ad-
sorption and centrifugation steps have been
developed, but simply diluting semen before in-
oculating cell cultures has seemed to give the
best results (27,28). In vitro lymphoproliferative
assay is not reliable in detection of virus in ani-
mals latently infected or immunized (29).

Serological tests (ELISA, passive hemoaggluti-
nation, viral neutralization) have been used to de-
tect specific antibodies against BHV-1 or specific
viral antigens (30-33). More recently, single
BHV-1 glycoproteins (gI, gEll or gIV) expressed by
baculovirus have been shown to be potential diag-
nostic antigens for detection of anti-glycoprotein-
specific antibodies in ELISA, Western blot, and dot
blot assays (34). But serological tests are generally
time-consuming and lack sensitivity, allowing
false-negative results. Moreover, standardization of
methods across different laboratories is necessary
to ensure recognition of seropositive subjects with
low-antibody titers (35). Methods based on fluo-
rescent antibodies require a large number of virus-
infected cells and often autofluorescence can mask
the specific immunofluorescence (36).

More specific procedures, based on various
types of DNA probes, have been used in dot-blot
hybridization assays to detect herpesviruses ge-
nome (37,38), but these methods usually lack sen-
sitivity too. Polymerase chain reaction (PCR) -based
assays have been successfully developed, showing
high sensitivity for latent infections and virus in
semen (39). Different PCR strategies have been
successfully carried out to amplify target regions (tk
or glycoproteins genes) of herpesvirus genome
(40-46). Combined molecular approaches also
provide methods of differentiating between viral
subtypes, which is valuable for assessing organ tro-
pism and epidemiological status (47).

Virological and serological examinations have
shown the importance of various other viruses as
initiative agents during the acute phase of the dis-
ease. Secondary bacterial infections may lead to
chronic pneumonia. Chlamydia, Mycoplasma, Strep-
tococcus, Corynebacterium, and Klebsiella are fre-
quently occurring agents; e.g., severe lesions
caused by Pasteurella haemolitica and/or Pasteurella

multocida (48) are in concomitance with BHV-1
infections.

Molecular Approaches
Structure of Viral Particle
BHV- 1 virion is surrounded by a lipidic envelope,
bearing a number of virus-encoded glycoprotein
spikes. These glycoproteins are thought to medi-
ate several key steps during the early stages of
infection, including viral attachment and pene-
tration into the host cell. Later during infection,
newly synthesized viral glycoproteins are also
present on the surface of infected cells (Fig. 2).

Envelope Glycoproteins and Their Role in BHV-1
Infection
Herpesviruses have a number of genes encoding
glycoproteins; the corresponding gene products
range from 15 to >100 kDa. They are often N- or
0-linked to oligosaccharides and they can form
homo- and heterodimers. Most BHV- 1 glycopro-
teins are homologous in function and structure
to those specified by herpes simplex virus type 1
(HSV- 1) (49). Because of the striking similarity
between animal and human herpesviruses,
BHV- 1 may serve as an excellent model for an-
alyzing the structure and life cycle of herpesvi-
ruses. Because of their location in the viral en-
velope and on the surface of infected cells,
glycoproteins are important targets for host im-
mune response. Some glycoproteins are neces-
sary for replication in cell culture (49); their
main features are presented in Table 1.

Herpesvirus glycoproteins (gI, gII, and gIV)
are involved in several steps of viral replication:
they are responsible for the initial attachment of
the virus to the cellular receptor and the subse-
quent penetration of the host cell; they account
for the tropism of the virus for tissues and or-
gans; and they are involved in envelopment of
the capsid, viral egress and transmission of infec-
tion by cell-to-cell spread (50-52). Some glyco-
proteins are receptors for the Fc fraction of im-
munoglobulins-e.g., gI and gE are predicted to
form a Fc receptor, whereas gC has been shown
to bind complement factor C3b (49,53). The ini-
tial attachment of herpesviruses to permissive
cells is mediated by an interaction of gIII mole-
cules with cellular glycosaminoglycan heparin-
sulfate through heparin-like receptors (54).

Recently, the existence of multiple alphaher-
pesvirus co-receptors that interact with gIlI and
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Fig. 2. BHV-1 particle
structure and lytic cycle.

mediate herpesvirus entry has been shown. Two
of them have been already identified and are
called herpesvirus entry mediators A and B
(HveA and HveB). Their role and the binding-
entry mechanisms are being investigated (55).
HveA, a protein belonging to the tumor necrosis
factor (TNF) receptor family, is the major recep-
tor for the entry of HSV into human lymphoid
cells, but not into other cell types (56). HveB is a
secondary receptor for HSV- 1, corresponding to
poliovirus receptor-related protein 2; it fails to
mediate the entry of wild-type HSV-1 or BHV-1
strains, showing that multiple alphaherpesvirus
co-receptors may exist, differing in their specific-
ity toward individual viruses in the superfamily.

Glycoproteins are also involved in virus at-
tachment, which is a complex event where high-
affinity receptors play a critical role (57-59). gH
and gL are necessary for fusion between the
virion envelope and cell membrane (60). Al-
though herpesvirus polypeptide synthesis is tem-
porally controlled (a, or immediate early; X3, or
early; and y, or late genes) the kinetics of virus

replication is actually very rapid following at-
tachment and entry into the cell (61,62).

BHV-1 gil is a homodimer protruding from
the viral envelope where it works as a major viral
attachment protein (63,64). It serves as a general
membrane anchor to mediate virus attachment to
permissive cells, thus participating in the penetra-
tion process (65). gI in particular is responsible for
heparin-binding, which is an important herpesvi-
rus mechanism of attachment to permissive cells.
In fact, some herpesviruses, e.g., HSV- 1 and
BHV-1, initially attach to cells through binding to
heparin-like moiety on the plasma membrane
(66).

Regulation of Lytic and Latent
Infection
Viral Genome and Its Regulation
The herpesvirus genome is a linear, double-
stranded DNA (dsDNA) molecule ranging from
120 to 230 kb in size. Its structure consists of a

____ 1_ _
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Table 1. Glycoproteins of BHV-1

Protein Gene Location ID MW Gly Function Reference

gI = gB UL27 env E + 130 74 55 N Heterodimer 72, 57
(101) Binding to heparin-like factors

Attachment, entry, fusion, cell to
cell spread

gIl = gH UL22 env E - 108 N Entry, cell-to-cell spread, egress 188, 189
(88)

gIll = gC UL44 env NE + 91 N, 0 Hemagglutinin (virulence factor) 54, 57, 66, 190
(54) Binding to heparin-like factors

and to C3b
gIV = gD US6 env CE + 71 N, 0 Binding to mannose-6-phosphate 57, 59, 52, 50,

(45) receptors 51
Entry, cell-to-cell spread

gE US8 env NE + 92 N Neuroinvasiveness 53, 154, 173,
(61) Fc receptor (with gI) 179

Cell-to-cell spread
gX = gG US4 Secreted NE - (65) N, 0 Function unknown 191, 192
gK UL53 env ? - (35) N Syncytium formation 193
gI US7 env NE - (40) ? Neuroinvasiveness 49

Binding to Fc receptor (with gE)
Cell-to-cell spread

gM ULIO env NE - (43) N Spread in CNS, membrane 194
penetration

gL ULI Secreted E - (17) 0 Conserved 195
Entry, cell-to-cell spread

CE, conditional essential (i.e., essential in some conditions only); E, essential; env, envelope; Gly, Glycosylation; ID, immunodominant;
MW, molecular weight (unglycosylated MW, kDa); NE, nonessential; N, 0, N-linked and O-linked glycans; UL, unique long; US,
unique short.

unique long segment (UL), an internal repeat
(IR), a unique short segment (US), and a ter-
minal repeat (TR), which is inverted with re-
spect to the IR. A consequence of such a ge-
nome structure is the ability to invert the US
relative to the UL, leading to two isomeric
structures of the DNA molecule (7,67). The
biological implications of this inversion are not
known.

Large herpesvirus genomes carry many
open reading frames (ORFs), coding for a num-
ber of structural and regulatory proteins. Vi-
ruses belonging to a herpesvirus superfamily
share homology in many ways: BHV-1 gI and
HSV-I gB share structural homology (56.3%
nucleotide similarity and 45.9% amino acid
similarity) (68) as well as functional homology
(69). gI also shares extensive similarity with gB
glycoprotein from pseudorabies virus, varicel-
la-zoster virus, cytomegalovirus (CMV), and
Epstein-Barr virus (EBV) (70-72). BHV-1 gIV
shares amino acid and functional similarity

with HSV-1 and other herpesvirus gD glyco-
proteins. BHV-1 genome comprises 67 unique
genes and 2 duplicated genes in the inverted
repeats. Thus, BHV-1 may encode at least 69
proteins.

Glycoproteins, which are mainly expressed
on the virus envelope, share a remarkable degree
of structural and functional conservation in
many herpesviruses, including some that are
only distantly related (70,73). The architecture of
many genomic regions is strictly conserved
within herpesviruses, while similarity varies
characteristically from gene to gene (74).

Molecular virology of BHV- 1 and other
herpesviruses has advanced considerably in
the last few years, propelled by genome
projects and by inquiries into the functions of
key viral proteins. Thanks to international co-
operation, the nucleotide sequences of many
herpesviruses are now known or close to being
completely determined (49).
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Lytic Cycle

Northern blot analysis shows that herpesvirus
genes are transcribed and expressed in a cascade,
and are temporally and spatially regulated (75).
As shown in Figure 2, immediately after the
release of viral genome from the capsid, imme-
diate early (IE) genes are transcribed, producing
the alpha proteins. These activate the transcrip-
tion of early (E) genes and the synthesis of beta
proteins. Late-gene (L) activation is delayed; the
expression of gamma proteins occurs once the
synthesis of virion DNA has been taken up

(62,76,77).
The regulation of this process is mediated by

genes that are clustered in the inverted repeats and
adjacent segments: three major immediate-early
proteins, BICPO, BICP4, BICP22, circ protein, and
the early protein BICP27 have been identified and
characterized (49,78-80). These proteins were

studied by using various promoter-reporter genes
(e.g., CAT gene) in transient expression assays, ob-
serving both transactivation and transrepression,
depending on the effector protein and the target
promoter. The deletion of circ gene allows recom-

binant virus to live in cell culture (81). Herpesvirus
genomes are linear molecules in virions. Upon in-
fection of host cells, the linear dsDNA genome

becomes circular, before DNA replication occurs.

During viral replication and virion assembly, circu-
lar replicative-form genomes undergo specific
cleavage in linear unit-length molecules. This is the
phase when the inversion of the short segment is
most likely to occur (82). Tissue damage caused by
herpesvirus infection is due to cell lysis, which
takes place once new viral particles are formed and
released into extracellular fluids, carrying cells to
death.

The circ gene is IE transcripted, once the ge-

nome ends are covalently joined (83). Compo-
nents of virions entering the host cell may trigger
the IE phase of the subsequent replication cycle.
The late tegument protein encoded by UL48
gene, a-TIF, was shown to stimulate the E1 pro-

moter, resulting in transactivating transcription
(84,85). a-TIF is a transactivator that can recruit
a homeodomain protein into a transcriptional
regulatory complex. It has homeodomain recog-

nition properties and virus-specific cis-regulatory
specificities. It activates transcription from the
response element. A domain in the response el-
ement is responsible for the differential cis-ele-
ment recognition and transcriptional activation.
This demonstrates how, through selective asso-

ciation with homologous but different homeodo-

main co-regulators, a single homeodomain pro-
tein can direct differential transcriptional
regulation (86). The IE proteins are important for
the regulation of the productive cycle of herpes-
virus replication (87). An auxiliary function in
this process was attributed to VP8, the UL47 gene
product (88). Alternative splicing is a device for
coordinating IE gene expression (89).

Latent Infection
Latency and reactivation are undoubtedly ways
in which herpesviruses adapt to escape host-im-
mune response, yet these are not the only ones.
Local spreading through intercellular junctions
and intra-axonal transport reduce the need for
high amounts of infectious virus. The effective-
ness of the humoral immune response is thus
reduced, making it easier for virus to spread
within the host organism. Herpesviruses use very
subtle ways to circumvent the actions of the
immune system, as shown by molecular analysis
of herpesvirus genes and proteins. For example,
gIII can bind to the third complement compo-
nent (C3) in a species-specific manner and this
binding destabilizes the C3 convertase and thus
blocks the alternative pathway of the comple-
ment system (90). BHV-1 gIII belongs to the
immunoglobulin superfamily and is antigenically
related to a cell-surface glycoprotein expressed
by macrophages and other leukocytes. There-
fore, it may evade certain immune functions by
molecular mimicry (63,73). Similarly, it is
known that gE and gI build up a complex that
acts as an Fc-receptor, preventing normal action
of antibodies (91). Major histocompatibility com-
plex (MHC) class I expression is reduced follow-
ing infection with herpesviruses (92). This may
have a major impact on the pathogenesis of the
infection, because failure of antigen presentation
helps virus to evade detection by cytotoxic lym-
phocytes. Nevertheless, the most important way
for the virus to escape the immune response
resides in the establishment of latency. Molecu-
lar events leading to and controlling latency are
not yet completely understood.

Two conditions have to be fulfilled to allow
the establishment of biologically significant la-
tency, i.e., latency that allows the virus to remain
in an infected host for long periods of time. First,
long-living and therefore nonreplicating, highly
differentiated cells, such as neurons and lym-
phoid cells, are ideal for harboring virus during
latency. Second, in sharp contrast to productive
infection and replication in peripheral tissues,
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latently infected cells must not be destroyed.
Thus, both induction of apoptosis and destruc-
tion by immune mechanisms must be prevented.
Either no viral protein at all may be newly syn-

thesized during latency, or the protein has to be
tolerated by the immune system. Consequently,
productive viral replication must be interrupted
at an early stage. Only restricted viral transcrip-
tion has been detected in cells latently infected.
The significance of these latency-associated tran-
scripts (LAT) is still under speculation (9).

The latent virus represents the long-term
reservoir in an immune host that becomes rele-
vant upon reactivation. Certain conditions of the
host or certain stimuli may lead to reactivation
from latency and re-excretion. The reactivated
BHV-1 is transported intra-axonally back to the
periphery, to the original portal of entry, where
it is available for transmission to other suscepti-
ble hosts. Viral replication in the course of reac-

tivation may cause recurrence of the disease.
During latent infection of neurons, gene ex-

pression is strictly limited (Fig. 3). Investigations
into the molecular basis of latency have shown
that the genome is transcriptionally active in
latently infected ganglionic neurons and tran-
scription is restricted to a region containing the

promoter and the ORF coding for latency-related
(LR) RNA (93). The expression of S-phase regu-

latory proteins, such as cyclin A, leads to neuro-

nal apoptosis of infected cells. LR gene product
(LRP) is a nuclear protein expressed in trigeminal
ganglionic neurons of latently infected cattle. It
inhibits S-phase entry and blocks cell-cycle pro-

gression through binding to cyclin A. Conse-
quently, interactions between LRP and cell-cycle
regulatory proteins promote survival of postmi-
totic neurons during acute infection and/or viral
reactivation (94,95). LR promoter has strict
orientation preferences in different cell types,
indicating that the LR gene of BHV- 1 is regulated
by tissue- and species-specific transcription fac-
tors as well as viral or virus-induced factors
(96,97). The unique promoter with detectable
activity in latently infected ganglionic neurons is
the LAT promoter, which controls transcription
of the BICPO gene in the opposite orientation.
Such transcripts may encode regulatory proteins
or are likely to act by an antisense effect
(93,97,98).

Splicing junction sites of LTR were recently
identified, suggesting alternative splicing of LTR
occurs in acutely infected or latently infected
cells. Such a mechanism may give rise to protein
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isoforms endowed with different biological prop-
erties (99).

As reported for other herpesviruses, the
acute-phase kinetics of BHV- 1 gene expression
in trigeminal ganglia neurons is similar to the
lytic-phase kinetics in non-neuronal cells. Ki-
netic experiments also show that efficient tran-
scription of IE genes in trigeminal ganglia of
cattle does not occur, even during a primary
infection (100). Viral enzymes, such as thymi-
dine kinase, although nonessential for virus
replication in cell culture, may supply meta-
bolic functions that are normally down-regu-
lated in neurons and thus enable the herpes-
virus to come out of hiding (101).

Reactivation is a process that is entirely
distinct from establishment and maintenance
of latency and through which latent viral ge-
nomes enter a new lytic cycle (102). During
latency, no viral antigens are synthesized, but
genome of latent virus can be found in nuclei
of GO cells in ganglia. Additional sites of la-
tency have been recently shown in lymph
nodes and nasal mucosae, which host viral
replication (103). Upon reactivation, the virus
re-establishes its lytic cycle of replication.
Shielded from effector cells of the immune
system, it migrates to peripheral tissues, where
it is excreted and may be transmitted. Al-
though a strong immune response is provoked
in infected organisms during primary replica-
tion, herpesviruses have developed several
strategies to escape immune surveillance and
to establish virus latency in the infected gan-
glia, thus creating the opportunity to start
a new infection under a reactivating stimulus
(9).

Immunology of BHV-1
Immunology of BHV-1 Infection
In order to develop better vaccines against her-
pesvirus infections and to design live viral vec-
tors, it is crucial we understand the relation be-
tween virus and host organism defenses and how
the virus escapes them. We need to learn not
only how immune responses are involved in re-
covery from primary and secondary infection but
also how the establishment of latency can be
prevented and, once it is established, how clinical
reactivation and viral spread can be avoided.
Natural infections caused by BHV-1 in cattle are
a suitable and convenient model to design, de-
velop, and test vaccines against herpesviruses.

Indeed, all current strategies have already been
assayed in BHV- 1 vaccinology. Here we focus on
the immunological picture of this herpesvirus;
vaccine approaches will be presented below.

Exposure to BHV-1 wild-type, conventional
live, killed, and genetically engineered vaccines,
including DNA vaccines, induces specific re-
sponses that are able to neutralize virus and kill
infected cells. Responses to BHV-1 are both hu-
moral (Th2) and cell mediated (Thl); the first
prevents viral infection and the latter helps the
host recover after infection. The immune re-
sponse against BHV- 1 acts through B and T cells,
along with nonspecific responses, which are me-
diated by polymorphonuclear neutrophils, mac-
rophages, natural killer (NK)-like cells, inter-
feron (IFN), and complement enzymes; all of
them work in concert to fight against infection.

Cell-mediated immune response is first de-
tected about 5 days postinfection (pi) and takes
place at approximately 8 to 10 days pi. Infection
induces neutralizing antibodies capable of pre-
venting attachment and penetration; these anti-
bodies can also take part in antibody-mediated
complement lysis of infected cells or in antibody-
dependent cell cytotoxicity. Neutralizing anti-
bodies, mainly IgM, followed by IgG, are usually
detected around 10 days after infection. Mucosal
immunity also becomes activated, as shown by
IgA found in nasal and genital secretions. The
virus also induces specific cellular responses in-
cluding induction of cytokines, which either di-
rectly or indirectly inhibit virus replication by
activation of effector cells (104). Lymphocytes,
NK-like cells, macrophages, and polymorphonu-
clear neutrophils can kill virus-infected cells ei-
ther directly, via MHC-I recognition, or by inter-
acting with antibody to induce cell death by
antibody-dependent cell cytotoxicity (105). Kill-
ing of virus-infected cells occurs after the expres-
sion of viral antigens on the surface of infected
cells (106).

The relation between the timing of cell kill-
ing and completion of virus assembly explains
whether the cycle of infection is aborted or pro-
ductive viral replication occurs. Indeed, any en-
hancement of viral killing dramatically reduces
viral load. The role of antibody is critical in pre-
venting infection and viral spread. Conversely,
cell-mediated immunity may help recovery from
infection. In most cases the peak activity of these
cellular responses occurs at 7-10 days pi (107).
The role of most viral proteins is not presently
known, except for that of the major glycopro-
teins, which act as targets for cell-mediated im-
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munity (cell interaction and lysis by NK cells)
(106) and that of antibody-activated CD4+ T
lymphocytes (108) or CD8+ cytotoxic lympho-
cytes (109).

Since all these events can occur at the same
time, they mutually reflect each other. Further-
more, the relative importance of each effector
mechanism clearly depends on whether the an-
imal is exposed to the virus for the first time
(primary infection) or has received a secondary
exposure following vaccination or infection with
field virus. Following a primary infection, when
there are no antibodies interfering with virus-
cell interaction at the receptor level, initial inter-
action is mediated by viral glycoproteins. The
synthesis of viral proteins then induces a cascade
of events, stimulating nonspecific immune re-
sponses of the host via induction of early cyto-
kines. Nonspecific immune responses activated
by viral products are the first aid to clearing out
the infection, both directly and indirectly. Mac-
rophages drive specific immune responses by
producing cytokines and subsequently respond-
ing to cytokines produced by T cells to kill virus-
infected cells. This activity becomes detectable
within 2 days pi in lung parenchymal cells and
3-5 days later in peripheral blood leukocytes.
Interactions between various effector functions
result in limiting virus replication. Cell-mediated
immunity is probably more important in recov-
ery from initial infection, but it works in concert
with nonspecific and humoral immune response
to ensure rapid clearance of the virus (107).

During the course of an acute viral infec-
tion, BHV- 1 induces immune suppression
through a mechanism that is not yet well iden-
tified. BHV- 1 is known to down-regulate the
expression of MHC class I molecules on the
surface of infected cells (92,93). It probably
interferes with the protective function of CD8+
cytotoxic T lymphocytes (CTLs), which are in-
volved in lysis of BHV-1-infected cells (109).
Other effector mechanisms are likely to play a
role: CD4+-mediated CTL activity has been
proposed as a strategy aimed at providing cel-
lular protection in BHV-1 infection. Stimula-
tion of peripheral blood mononuclear cells
(PBMC) of cattle immunized with attenuated
live BHV-1 has shown that cytolytic effector
cells are primarily CD4+-mediated stimulated
CD8+ T lymphocytes, able to lyse primarily
macrophages infected with BHV- 1 (110). This
is a sort of selective removal of viral antigen-
associated antigen-presenting cells (APCs). In
acute viral infection BHV- 1 can induce apopto-

sis simply through attachment of the viral par-
ticles to target cells (111). Therefore, CTLs
serve as a major immune mechanism against
BHV- 1 infection as well as selective eliminators
of infected cells (110).

BHV-1 and Cytokines

Cytokines are physiologically important immu-
nomodulators that are produced by many differ-
ent cell types and that exert broad pleiotropic
effects. Many of these effects are important in
host defense mechanisms against viral infections.
Even without complete bovine gene maps, those
developed thus far have been used to identify
genetic markers that are associated with in-
creased zootechnics production or enhanced dis-
ease resistance and that can be manipulated in
selective breeding programs. This type of study
makes it possible to correlate, for instance, a
specific interferon (IFN) genotype and the sever-
ity of clinical development following herpesvirus
infection (1 12).

IFN-y plays an important role in the gener-
ation of non-MHC-restricted cytotoxic responses
of cattle to BHV-1, which represents the most
apparent cellular-mediated immune response
during BHV-1 infection (105). More recent stud-
ies on the role of IFN-y in host immunity to other
herpesviruses revisited the issue of IFN-'y's es-
sential participation in the control of infection.
IFN-y seems to be required to contain the initial
infection, but the functions mediated by T cells
appear to proceed effectively even in the absence
of IFN-y (113). The conclusion is that IFN-y, by
enhancing T cell-mediated clearance mecha-
nisms, might be a critical mediator of immunity
to herpesvirus. IFN--y should be considered in
terms of the major and compensatory mecha-
nisms available to the body to effect immunity to
viral infection (114). Some herpesviruses (e.g.,
HHV-8) were recently shown to express a pro-
tein hampering IFN-,y actions. Such a discovery
will shed new light on molecular mechanisms
that intimately regulate virus-host interactions.

a- and 1-IFN inhibit the induction of TK
enzyme activity in vitro ( 115). Interleukin-2
(IL-2) was originally considered a T cell growth
factor; it is a glycoprotein secreted by a subset of
T cells and large granular lymphocytes after stim-
ulation. IL-2 supports growth and differentiation
of antigen-activated T lymphocytes, and play a
role in a cascade of immunological events: it is
known to affect the growth of B cells, NK and
lymphokine-activated killer (LAK) cells, and to
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influence the oxidative burst by mononuclear
phagocytes (116). IL-2, when administered in
vivo to BHV-1-infected calves, enhances antivi-
ral immunity through both PBMC-mediated lysis
of BHV- 1-infected cells and serum neutralization
antibodies to BHV- 1, without causing side ef-
fects. Therefore, IL-2 may be an effective adju-
vant to immunize against infectious diseases
(117,118). It has also been shown that in vivo
administration of bovine IL-iI3, a macrophage/
monocyte-derived cytokine, induces immu-
noenhancing activity against BHV- 1, therefore
IL-11, may, too, be an effective adjuvant to
BHV-1 immunization (119-121).

BHV-1 as a Viral Vector
Methods of introducing foreign DNA into cells
have led to many recent advances in molecular
genetics. Transfer of therapeutic or prophylactic
genes to the body to treat both inherited and
acquired diseases are among the most revolu-
tionary technologies currently developed. Ade-
novirus, baculovirus, papovavirus, and poxvirus
have been used as vectors for transient overex-
pression of recombinant proteins and for vaccine
development. In addition, several viral vectors
have been considered potential tools for gene
therapy. Indeed, herpesviruses are attractive vec-
tor candidates for three major reasons: they can
efficiently infect postmitotic nondividing neu-
rons; they can establish a latent infection in some
nondividing neuronal cells; and their genome,
which is quite large, is relatively easy to manip-
ulate (122,123). Further experiments are re-
quired for defining parameters that control viral
and cellular gene expression in neurons, to ac-
complish consistent, regulated, and predictable
gene expression.

HSV-based vectors can deliver foreign genes
into postmitotic cells, leading to the development
of gene therapy approaches to treat neurological
diseases and cancer. BHV-1 has several proper-
ties that make it an ideal candidate to serve as a
vector for heterologous genes. First, BHV-1 in-
fects only cattle, thus entailing few public health
considerations. Second, live, attenuated vaccine
strains of BHV-1 already exist and have been
safely used in cattle for many years. Third, alpha-
herpesviruses have been used to express genes
from other viruses (124). Thus, engineered
BHV-1 can prove useful as a vector for the ex-
pression of foreign proteins with immunogenic
purposes, once two minimal requirements are

fulfilled. First, viral vector should have a nones-
sential site into which foreign genes can be in-
serted without hampering viral replication; sec-
ond, its genome must be large enough to
accommodate foreign DNA, allowing it to be
packed up efficiently (in HSV and other herpes-
viruses, up to 20 kb can be accommodated)
(54,114,124).

Recombinant IBRV vectors expressing foot-
and-mouth disease virus capsid VPI epitopes have
been described (125). Other IBRVs carry genes
coding for "late" glycoprotein and "early" enzymes
of porcine pseudorabies virus (126,127). Bacterial
genes have also been successfully expressed in
BHV- 1, e.g., Escherichia coli lacZ gene (54).

BHV- 1 vector has proven its effectiveness in
delivering foreign products (e.g., antigens) to
mucosal surfaces of the respiratory tract (54).
Moreover, BHV- 1, being a neurotropic virus like
HSV- 1, is also considered a suitable candidate for
neuronal gene delivery.

Prophylaxis: Vaccines and
Eradication
IBR-free countries have achieved this status by
applying diagnostic and slaughtering programs
for serologically positive animals. Such a method
works well where an infection shows a low prev-
alence (128). In countries with high infection
rates, however, diagnosis-and-eradication proce-
dures would cause large financial losses. Here the
best way to eradicate infection is based on com-
bined vaccination- eradication programs. Indeed,
vaccination is the most cost-effective measure to
prevent and limit infections. The primary aim in
using BHV- 1 vaccines is to reduce signs of disease
and thereby the economic impact of BHV-1 in-
fections. Currently available vaccines do not pre-
vent the establishment of BHV- 1 in a latent state.
It is not known whether passive immunity can
prevent viral excretion and latency after primary
infection. However, passive immunity acquired
from colostrum was proved to protect newborn
calves against the fatal multisystemic diseases
caused by BHV- 1 infection (129). Maternal anti-
bodies do not prevent initial viral replication,
allowing onset of latency. Once maternal anti-
bodies get lost, animals likely become seronega-
tive carriers of latent virus, since seroconversion
or reactivation can take place. IBR control pro-
grams should therefore take into account the
existence of latently infected seronegative ani-
mals (130).
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BHV-1 is a suitable example showing the
evolution of possible conventional and modern
vaccine strategies over many years. Classic vac-
cines belong to two different classes: live atten-
uated and inactivated agent vaccines. Conven-
tional killed or modified live vaccines were the
only vaccines available until a decade ago. They
did not reduce the prevalence of IBR infection.
Recent advances in genetically engineered tech-
niques as well as better understanding of the
virulence factors and protective components of
BHV- 1 have led to the development of a remark-
able new generation of vaccines: a variety of
subunit, synthetic, peptide, DNA, and live-agent
recombinant vaccines are now available (131).

Live and Killed Conventional Vaccines

The first isolation of BHV- 1 was published in
1956 (132) and, in that same year, the first at-
tenuated live vaccine was reported (133). Since
that time, a wide variety of live and killed vac-
cines has been developed. Virus strains used to
prepare live vaccines are usually attenuated by
multiple passages in cell culture (134). A widely
used live BHV- 1 vaccine contains RLB 106 strain,
a temperature-sensitive virus obtained by treat-
ment with nitrous acid and selection (135). Live
vaccines have been developed for intramuscolar
or intranasal application, and usually induce a
strong and long-lasting immunity. However, a
major constraint limiting the use of such vac-
cines is the lack of simple methods to differenti-
ate vaccine strains from field strains. Restriction
analysis, albeit effective, is not easy and cannot
be quickly carried out (136). Another disadvan-
tage is the lack of well-characterized mutations/
deletions in vaccine virus; this may lead to
genomic recombinations with wild-type strains,
thus allowing a harmful reversion to virulence of
live vaccines (137).

The virus strains used in killed vaccines, once
grown in cell culture, are inactivated by chemical
or physical treatments, for example, alkylating
agents or heat. Adjuvants must be added to en-
hance protective immune responses evoked by
the inactivated virus alone. The choice of adju-
vant, the inactivating agent, and the amount of
antigen are critical factors for the quality of an
inactivated vaccine (138). The subunit vaccine is
a special type of killed vaccine that does not
contain the whole virion but selected compo-
nents of it, for instance, envelope glycoproteins
(139).

Live vaccines are more effective than killed

ones, because they better simulate a natural in-
fection. Killed vaccines, on the other hand, are
usually safer because of their inability to replicate
in the host. Live and killed conventional BHV- 1
vaccines have been compared: the efficacy of live
vaccines was found to be superior to that of
killed vaccines (140).

Conventional vaccines usually prevent se-
vere clinical signs from developing after BHV-1
infection, and thereby diminish economical
losses. Most conventional BHV-1 vaccines only
restrict the amount of virus shed after infection
in herds. A disadvantage of conventional vac-
cines is their interference with routine sero-epi-
demiological surveys, which make eradication
programs hard to be applied. Moreover, some
conventional live BHV- 1 vaccines have given rise
to several unwanted side effects, such as mild
disease or even death after vaccination (141),
transmission after intranasal vaccination (142),
reactivation of latent vaccine strain (143), en-
hancement of keratoconjunctivitis (144) and
abortion (145), and ovarian lesions (146,147). In
addition, BHV-1 vaccines have been found on
occasion to be contaminated (148). Killed vac-
cines may induce local tissue reactions or abscess
and hypersensitivity reactions (131).

Engineered Subunit Vaccines
In order to develop effective strategies of subunit
immunization, it is important to recognize the
role of major glycoproteins both in inducing an-
tibody and in stimulating cell-mediated re-
sponse. Since BHV- 1, like other viruses, enters
cells by interacting with host cell receptors, a
convenient point of intervention is to counteract
interactions between host cells and viral surface
glycoproteins. BHV- 1 glycoproteins gI, gIII, and
gIV are involved in attachment to host cells and
in virus entry. Animals immunized against gI,
gIll, and gIV produce neutralizing antibodies able
to block virus infectivity in vitro and even signif-
icantly limit virus replication in vivo (149). Ma-
jor BHV- 1 glycoproteins are known immuno-
dominant antigens (150,151): bovine immune
responses are addressed to gI (homologous to
HSV-1 gB), glll (homologous to HSV-1 gC), and
gIV (homologous to HSV-1 gD) (152-155).

A second target for vaccines is proteins elic-
iting cytotoxic responses. These are targeted by
cytotoxic T cells, which lyse virus-infected cells
before the virus carries out its replicative cycle,
thus reducing the overall virus load and clinical
disease. The IE proteins of herpesviruses are pri-
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mary targets of CTLs (1 56). Efficient genetically
engineered vaccines should induce the produc-
tion of antibodies or stimulate cytotoxic T cells
directed against early surface glycoproteins ex-
pressed on host cells long before infectious viral
particles are released; this should be more effec-
tive than mere killing of intact virus or virus-
budding infected cells. gI and gIV glycoproteins,
early expressed after cell infection and long be-
fore BHV-1 is released from virus-infected cells,
were shown fit to immunize cattle (61).

Subunit vaccines are safer than live ones,
being made of recombinant viral antigens. How-
ever, all such vaccines need adjuvants to evoke a
stronger and effective immune response. The
search for better adjuvants has brought about an
evaluation of the role of cytokines in such vac-
cines: the immune response to subunit vaccines
is enhanced when IL-2 or IL-1iB are added to
common adjuvants (118,120).

Major viral proteins involved in infection
and replication have been produced in various
expression systems (157-159). Challenge of an-
imals vaccinated with recombinant gIV produced
in different expression systems (E. coli, vaccinia
virus, adenovirus, baculovirus, and mammalian
cells) showed that all proteins were immuno-
genic, but not all raised neutralizing antibodies in
vaccinated hosts, thus blocking onset of clinical
symptoms and virus shedding. For example, E.
coli produced recombinant gIV was immuno-
genic, but homologous proteins from mamma-
lian and insect cells showed a better capacity for
inducing neutralizing antibody and reducing vi-
ral shedding (160-162).

In some cases, immunogenicity of single an-
tigens or subunits can be improved by rebuilding
a whole particle through addition of phospholip-
ids, cholesterol, or steroid adjuvants such as Quil
A. BHV- 1 antigens induced strong immunity
when administered as liposomes or through im-
munostimulating complexes (ISCOMS) technol-
ogy (163). Virus-like particles expressing vari-
cella zoster virus (VZV) antigens have also been
shown to induce protective immunity in mice
(164). Timing and controlled release of antigens
may also help to establish an effective immunity
in the host (163,165,166).

Modified Live Vaccines

Recent advances in our understanding of specific
virulence genes of BHV- 1 and other herpesvi-
ruses have made possible the specific deletion of
genes to accomplish genetic attenuation of viral

strains (167). Some structural genes (e.g., gIII,
gE) and some genes involved in nucleic acid me-
tabolism (e.g., tk gene) can be deleted without
significantly affecting viral replication in vitro.
This opens the way to the development of BHV- 1
strains carrying specific deletions (168-172).

The deletion of tk, a gene involved in nucleic
acid metabolism, or the ablation of sequences
coding for glycoprotein genes (e.g., gC or gE)
caused a dramatic change in virulence of BHV- 1
in vivo (Fig. 4). This approach also allowed de-
velopment of diagnostic in vitro tests to differen-
tiate vaccinated animals from seronegative latent
carriers (154,155,173). Through this strategy
marker vaccines have been developed, i.e., vac-
cines based on single or multiple deletion of in-
essential genes, allowing discrimination between
vaccinated and naturally infected animals
through their antibody responses. In other
words, vaccinated animals lack antibodies
against a strongly immunogenic but unprotective
viral protein that evokes immune responses in
hosts following natural infection with field viral
strains. Such marker protein is not expressed in
vaccine viruses, allowing a suitable immuno-
screening procedure to be set up and carried out.
Hence, a marker vaccine, used in conjunction
with suitable serological tests, enables use of di-
agnosis-and-eradication strategies in highly in-
fected herds, because vaccination cannot be mis-
led with natural infection, significantly reducing
viral transmission rate. Additional advantages of
marker vaccines are (1) the seroepidemiology of
infections can be studied in a vaccinated popu-
lation; (2) the use of vaccines no longer interferes
with serological diagnosis on a herd or individual
level; and (3) the efficacy of vaccines can be well
evaluated under field conditions (20,56,174).
Modified-live BHV-1 virus mutants, irreversibly
attenuated by deletions in tk gene and marker
genes, e.g., gE, provide safe, efficacious, and ra-
tionally designed vaccines. In conjunction with
sensitive and specific differential ELISA diagnos-
tic tests, these latter vaccines enable veterinari-
ans to distinguish vaccinated animals from those
infected with field strains (175).

A tk-deficient, gC-deleted, mutant BHV- 1
protected cattle against IBR and reduced viral
shedding upon challenge (176). Calves inocu-
lated with genetically engineered gG- or gE-de-
leted mutant strains were better protected
against challenge than those given a gI or gI/gE
double-deleted mutant virus (168). Although
gE-negative BHV-1 can establish latency in tri-
geminal ganglia (103), no adverse effects were
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Fig. 4. Live attenuated
BHV-1 vaccines carrying
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in prophylaxis and eradica-
tion of BHV-l infection are
shown.

observed in calves (177,178). Mutant viruses
carrying different deletions in genes encoding
nonessential glycoproteins (gC, gE, gI, and gG)
were compared after induction of cell-mediated
immune response. The gC-negative mutant
showed the best response (179). An alternative
modified BHV-1 marker vaccine was obtained
by introducing bacterial ,B-galactosidase-coding
gene (lacZ) within the tk sequence. The resultant
recombinant strain contains a chimeric reporter/

marker gene as well as the tk gene deletion. This
attenuated virus, expressing n-gal marker, was

easily distinguishable from wild-type strains by
phenotypic/histochemical assay (180).

It is possible to produce polyvalent vaccines
by engineering herpesviruses to express foreign
antigens at the same time. Large genome of
BHV- 1 and other herpesviruses may allow the
use of multiple insertion sites. It would provide
the opportunity to introduce a number of genes
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belonging to viruses, bacteria, or parasites. Cyto-
kines, which have a major role in modulating
immune response of the host, have been recently
inserted in the BHV-1 modified genome.

In developing next-generation vaccines, we

need to consider the balance of CD4+ T helper (Th)
cell subsets induced. Since the present perception is
that Thl cells, which secrete IL-2 and IFN-,y, are

associated with the induction of cellular immune
responses, and Th2 cells, which secrete IL-4, IL-5,
IL-6, and IL-10, evoke high-titer antibody re-

sponses, depending on the type of Th bias required,
it is possible to direct the immune response by
immunization in the presence of cytokines. Since
cytokines are involved in mediating host protection
against pathogens, the potential of a strategy in
which delivery of cytokines by insertion of the
corresponding encoding genes in recombinant
BHV- 1, administered as vaccine, is clear. Bovine
IL-2 and IL-4 expressed in recombinant BHV-1

were secreted as biologically active glycoproteins
( 181). IL- I1 has been shown to be an immunolog-
ical adjuvant that influences a broad spectrum of
biological activities within the hematopoietic and
immunological systems (182). For instance, ad-
ministration of IL-1 ,B and modified live BHV- 1 vac-

cine enhanced both the humoral and cellular im-
mune response against BHV- 1 (119,120).
Therefore recombinant BHV- 1 has been chosen
to set a system of in vivo cytokine delivery (183).
The creation of recombinant BHV-1 expressing
biologically active cytokines overcomes the two
drawbacks of co-administration of cytokines as

adjuvants: the toxic side effects often resulting
from the administration of large doses required
to develop an adjuvant effect and the difficulty of
administering the cytokine adjuvant at the local-
ized site of infection.

Genetic Immunization (DNA Vaccines)
One of the major problems with many vaccines is
the duration of immunity. Moreover, many vac-

cines are not effective when administered in the
presence of maternal antibodies. Genetic immu-
nization can overcome these problems, because
plasmids encoding specific genes can work and
express in vivo corresponding proteins when in-
troduced into animals and humans. Nucleic acid
vaccination appears to be quite efficacious, and
plasmids are easily prepared, purified, and deliv-
ered in hosts. Moreover, DNA vaccines are safer
than viral strains and antigens mixtures, and in-
expensive compared to other vaccines. The first
experiments were promising: five injections with

a plasmid encoding BHV-1 gD elicited protective
immunity in calves (184).

While subunit vaccines primarily elicit Th2
response, DNA immunization with plasmids
encoding single glycoproteins stimulate Thl re-
sponses (184). Both subunit vaccines, live mod-
ified viral vectors as well as genetic immuniza-
tion, present a major advantage in evoking
multiple protection for a wide variety of proteins
belonging to a single or different pathogen. The
type and the duration of immune response may
also be specifically addressed by administering
cytokine-coding genes.

Conclusions and Perspectives
BHV-1 may serve as a general model for a better
understanding of herpesvirus infections in natu-
ral hosts and may also be of value as a model for
herpesvirus-caused diseases, which are also im-
portant for humans. The increasing literature
dealing with BHV-1 provides proof of economic
and scientific importance of herpesviruses today.

Herpesviruses survive in nature thanks to a
double-track strategy. During primary infection, vi-
ral dissemination within susceptible populations
raises a strong immune response and in most cases
the population does not display infection-associ-
ated diseases creating a long-term reservoir (latent
virus) that becomes meaningful upon reactivation.
Then, apparently healthy animals are able to re-
excrete and transmit the virus to nonimmune and
immune hosts. Herpesviruses have an efficient ma-
chinery for making this strategy effective. A set of
essential genes is able to produce a high titer of
infectious particles during primary infection and
reactivation. A second set of nonessential and con-
ditional-essential genes are required to establish
latency, reactivation, virulence, and modulation of
the host's immune response. In recent years, wide
breakthroughs have led to the discovery of the
BHV- 1 life cycle; however, its efficiency in infecting
and replicating depends not only on viral but also
on the host's factors (9).

Efficacy and safety are the main criteria for
assessing the quality of vaccines (185). The effi-
cacy of vaccines is primarily assessed by a vacci-
nation-challenge experiment in the target host
(bovine). Subsequently, the vaccine's ability to
reduce virus transmission is evaluated and eval-
uation of the vaccine's effectiveness is finalized
in a field trial. Safety of BHV-1 vaccines is as-
sessed by a series of experiments, usually with a
10-fold dose of vaccine in field trials (133). The
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effect of spreading capacity in cattle population,
infection of non-target animals, and reversion to
virulence are also tested (186).

The precise mechanisms underlying induc-
tion and maintenance of protective immunity
after vaccination are far from being clearly un-
derstood. Protective immunity consists of immu-
nity against fever, development of nasal lesions,
other signs of disease, viral replication, viral
shedding, or against infection. These criteria of
immunity are based on different immunological
processes. The elucidation of immunological
mechanisms underlying the protective immunity
should lead to the development of more effective
BHV-1 vaccines. A better understanding of the
pathogenesis of BHV-1 will also certainly con-
tribute to a more rapid development of novel
vaccines. Since only the first generation of
marker vaccines has been developed recently,
there is room for improving the efficacy of vac-
cines.

Although no completely efficacious vaccines
are available against BHV-1 and other herpesvi-
ruses, more insight into the mechanisms of im-
munity should be stimulated. Advances in iden-
tification of different lymphocyte subsets in
cattle, more insight into the complex interaction
between the different immune cells with each
other and the target, beginning elucidation of the
roles of cytokines, and increasing emphasis on
the development of more efficient adjuvants and
delivery systems promise a better understanding
of how to stimulate a protective immune re-
sponse in vaccinated animals (187).
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