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Abstract 

The response to viral infection generally includes an activation of the adaptive immune response to produce cyto-
toxic T cells and neutralizing antibodies. We propose that SARS-CoV-2 activates the innate immune system through 
the renin-angiotensin and kallikrein-bradykinin pathways, blocks interferon production and reduces an effective adap-
tive immune response. This model has therapeutic implications.
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Patients suffering from Covid-19, the disease caused by 
SARS-CoV-2, have uncontrolled inflammation (Tay et al. 
2020). Often in the context of infection, this is thought to 
represent cytokine storm with a major contribution from 
lymphoid cells. However, there is little evidence of exces-
sive lymphoid activation in the blood of infected individ-
uals; in fact, severe infection is characterized by lympho-
penia and patients with severe infection exhibit a high 
neutrophil to lymphocyte ratio (Guan et al. 2020). More-
over, while there is an antibody response that develops in 
infected individuals, a detectable antibody response can 
be achieved without massive lymphoid activation (Quinti 
et al. 2020). Here we propose that the systemic inflamma-
tion seen in Covid-19 patients results from the activation 
of two intersecting systems, the renin-angiotensin system 
(RAS) and the kallikrein-bradykinin system (Diamond 
2020). These two systems together can serve to promote 
inflammation without activating an adaptive immune 
response. Moreover, their activation diminishes produc-
tion of type 1 interferon leading, we propose, to a patho-
logic condition in Covid-19 patients characterized by sys-
temic inflammation and sustained viral replication.

Both the RAS and the kallikrein-bradykinin system 
have long been appreciated for their importance in vas-
cular biology (Gobel et  al. 2019). Both also contribute 
to immune modulation (Garvin et  al. 2020; Seliga et  al. 
2018). Angiotensin II, a major effector molecular in the 

RAS, is derived from angiotensin I through the action of 
angiotensin converting enzyme (ACE) (Donoghue et  al. 
2000). Angiotensin II has 2 receptors, AT1 and AT2, 
that are expressed on a broad range of cells (Clarke et al. 
2012). The binding of angiotensin II to AT1 promotes 
vasoconstriction but also promotes inflammation, with 
activation of NFκB dependent cytokines but not type 1 
interferon (Benigni et  al. 2010). Engagement of AT2 by 
angiotensin II, in contrast, induces vasodilatation and 
IL-10 production (Crowley and Rudemiller 2017). Under 
inflammatory conditions, AT1 expression is increased, 
thereby amplifying an inflammatory program (Crow-
ley and Rudemiller 2017; Koka et  al. 2008; Tikellis and 
Thomas 2012). Of importance to our understanding of 
Covid-19 pathology, angiotensin II can block monocyte 
to dendritic cell differentiation impairing the initiation 
of an adaptive immune response (Ingersoll et  al. 2011) 
and can also cause T cell apoptosis (Odaka and Mizuochi 
2000), thereby limiting the contribution of the adaptive 
immune response and contributing to the lymphopenia 
of Covid-19 patients.

ACE2 is a membrane-bound protease that cleaves angi-
otensin II to produce ang1-7, a peptide which can bind 
Mas, a G protein coupled receptor (Gheblawi et al. 2020). 
This receptor ligand interaction initiates vasodilatation 
and an anti-inflammatory program. Thus, angiotensin II 
can be either pro or anti-inflammatory depending on the 
relative expression of AT1, AT2 and ACE2 (Crowley and 
Rudemiller 2017; Koka et  al. 2008; Tikellis and Thomas 
2012). A major function of ACE2 is to reduce the amount 
of angiotensin II, in addition, angiotensin II and ACE2 

Open Access

Molecular Medicine

*Correspondence:  bvolpe1@northwell.edu
1 Center for Molecular Medicine, The Feinstein Institute for Medical 
Research, 350 Community Drive, Manhasset, NY 11030, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1098-1848
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10020-020-00231-w&domain=pdf


Page 2 of 6Diamond et al. Mol Med          (2020) 26:103 

often have contrasting effects. In particular, angiotensin 
II facilitates release of HMGB1 from numerous cell types 
and ACE2 inhibits its release (Zhou et al. 2018). HMGB1 
is a pro-inflammatory cytokine or a chemokine depend-
ing on its redox state (Andersson and Tracey 2011). It is 
important in myeloid cell activation, but it also affects 
hematopoiesis, aborting erythropoiesis and skewing to 
myelopoiesis and away from lymphopoiesis (Valdes-
Ferrer et  al. 2015). We suggest this molecular pathway, 
therefore, may also contribute to the lymphopenia seen 
in Covid-19 patients.

ACE is important not only because it converts angio-
tensin I to angiotensin II, but also because it degrades 
bradykinin. Bradykinin arises through the kallikrein 
bradykinin pathway (Seliga et  al. 2018). It has 2 recep-
tors (Bhoola et al. 1992). BR2 is constitutively expressed 
on many cells (Marceau and Regoli 2004). The brady-
kinin-BR2 interaction leads to vasodilatation and sup-
presses type 1 interferon production (Seliga et al. 2018). 
BR1, which is induced during inflammation, is involved 
in amplifying inflammatory pathways. Thus, high ACE 
favors vasoconstriction and inflammatory cytokines 
by increasing available angiotensin II and decreasing 
available bradykinin. Low ACE decreases inflamma-
tory cytokines and permits type 1 interferon production 
(Crowley and Rudemiller 2017; Koka et al. 2008; Tikellis 
and Thomas 2012; Hadjadj et al. 2020).

These pathways intersect with the SARS-CoV-2 virus, 
as ACE2 is the cellular receptor for the spike protein of 
the virus (Lan et al. 2020). When ACE2 is engaged by the 
virus, ADAM17 (also called TACE) is activated to cleave 
ACE2 from the membrane. Soluble ACE2 is less effec-
tive at converting pro-inflammatory angiotensin II into 
ang1-7 and biases the RAS toward inflammation (Simoes 
et  al. 2013). The engagement of these pathways helps 
explain how severe Covid-19 infection is characterized by 
massive inflammation in multiple target organs, a poor 
anti-viral response with little production of interferon, 
and little participation of the adaptive immune system. 
Indeed, it is the interferon pathway that may be most 
important in conferring protection against severe disease 
as agammaglobulinemic individuals do not appear to be 
at increased vulnerability to infection with SARS-CoV-2 
(Quinti et al. 2020).

There are three major cell types in this model that 
mediate acute severe Covid-19 symptomatology: myeloid 
cells, both neutrophils and macrophages, microglia, and 
endothelial cells. Macrophages and neutrophils in blood 
are clearly activated (Vabret et al. 2020). There was evi-
dence of microglial activation in patients succumbing to 
SARS (Xu et al. 2005); the data on microglial activation 
in SARS-CoV-2 patients is not yet available. There is evi-
dence for endothelial cell activation (Reichard et al. 2020) 

with reports of massive thrombosis in Covid-19 patients 
(Oxley et al. 2020). While the overall data on endothelial 
cell activation are indirect (Herman et al. 2020), the case 
reports are compelling (Mao et  al. 2020; Solomon et  al. 
2020; Jaunmuktane et al. 2020; Ellul et al. 2020).

There are three major organs to consider in individuals 
with severe Covid-19 infection.

Covid‑19 and the lungs
Respiratory transmission appears to be the primary route 
of infection in adults as both nasal and lung epithelial 
cells express ACE2 (Tay et al. 2020). The lower infection 
rate in children may relate, in part, to the lower expres-
sion of ACE2 on their nasal epithelium (Patel and Verma 
2020). Infection of alveolar epithelial cells by virus leads 
to their death through cytopathic effects of the virus, and 
consequently to hypoxia. Hypoxia upregulates HIF1α 
leading to impaired interferon production but intact 
production of proinflammatory cytokines (Wobben 
et al. 2013). In the lung, bradykinin causes fibroblasts to 
produce chemoattracts for neutrophils (Ehrenfeld et  al. 
2006). Both angiotensin II and bradykinin increase vas-
cular permeability, leading to extravasation of neutro-
phils into the lung. As serum from SARS-CoV-2 patients 
has been shown to induce netosis (Wang et al. 2020), it 
is highly likely that netosis occurs within alveolae further 
compromising lung function and leading to acute respir-
atory distress syndrome in some (Vabret et al. 2020).

Covid‑19 and the brain
The effect of Covid-19 on the central nervous system 
has received some attention, but perhaps not enough. 
The virus responsible for SARS was found in brain tissue 
and the CSF (Xu et  al. 2005; Hung et  al. 2003). In gen-
eral, virus may enter the brain by infecting leucocytes 
that penetrate a compromised blood brain barrier (BBB), 
by infecting brain-microvascular endothelium to enter 
the brain, or by direct penetration of nerves or microglia 
(Koyuncu et  al. 2013). In the case of a virus like SARS-
CoV-2 which is transmitted by inhalation, the virus most 
likely enters through olfactory bulb epithelial cells (Bilin-
ska et al. 2020), and then enters ACE2 expressing micro-
glia and neurons (Xu et al. 2005; Jaunmuktane et al. 2020; 
Ellul et  al. 2020), although other recent studies suggest 
that non-neuronal cell types play a role in the develop-
ment of anosmic symptoms (Bilinska et  al. 2020; Brann 
et  al. 2020). This direct entry of virus into brain paren-
chyma might account for the fact that anosmia is often 
a presenting symptom of Covid-19 infection. Once brain 
cells are infected and there is evidence for infection by 
glia by SAR-CoV-2, the RAS can be activated locally to 
initiate neuroinflammation. Microglia produce angio-
tensinogen, the precursor to angiotensin I and neurons 
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produce ACE; both cell types express AT1 (Lanz et  al. 
2010). That the RAS can be important in sustaining neu-
roinflammation has been seen in Alzheimer’s disease 
and in a model of neuropsychiatric SLE (Oliveira et  al. 
2014; Nestor et  al. 2018; Nocito et  al. 2020). Moreover, 
HMGB1, which is released by activated microglia, poten-
tiates the activation of the N-methyl d-aspartate receptor 
(NMDAR) on excitatory neurons (Balosso et  al. 2014), 
with excessive activation leading to excitotoxic neu-
ron death. The greater the activation of NMDARs, the 
greater release of proinflammatory HMGB1 by neurons, 
creating a positive feedback loop. Moreover, type 1 inter-
feron induces production of quinolinic acid by microglia 
through an indolamine 2,3-dioxygenase (lDO) dependent 
pathway (Kwidzinski and Bechmann 2007); quinolinic 
acid is an NMDAR agonist. Thus, the amount of inter-
feron that is induced by the SARS-CoV-2 virus may be 
inadequate for controlling viral replication but capable of 
enhancing an inflammatory environment that facilitates 
excitotoxic neuron death. In this model, viral infection in 
the brain can generate self-sustaining pathologic neuro-
inflammation. Indeed, as survivors of severe infection are 
followed through the recovery stage it is clear that many 
suffer from persistent cognitive impairment which may 
represent both neuronal loss and neuronal dysfunction 
(Helms et al. 2020).

Covid‑19 and the vasculature
Angiotensin II binds AT1 on endothelial cells and leads 
to release of HMGB1 (Zhou et al. 2018; Nair et al. 2015), 
chemokines and pro-inflammatory cytokines and to 
increased vascular permeability. Of critical impor-
tance, activation of AT1 on endothelial cells also leads to 
increased expression of tissue factor which is necessary 
for thrombosis (Kunieda et  al. 2003), a well appreciated 
and common morbidity in individuals with Covid-19. The 
combination of high expression of tissue factor on acti-
vated endothelial cells and activated monocytes favors a 
procoagulation state. Many Covid-19 patients also pro-
duce anti-phospholipid antibodies which also contribute 
to thrombosis (Zhang et al. 2020a).

This model applies to those with severe infection, 
many of whom have preexisting conditions, such as 
obesity or being elderly, that lead to increased angio-
tensin II and AT1, or reduced ACE2 (Feraco et al. 2013; 
Hajifathalian et  al. 2020; Chung et  al. 2020). There 
appears, in contrast, to be a subset of Covid-19 patients 
who have mild symptoms and develop high antibody 
titers. We hypothesize that these individuals produce 
high levels of type 1 interferon which control the virus 
and deviate the B cell response to extrafollicular differ-
entiation of plasma cells leading to high titers of anti-
body but no memory B cells. Indeed, survivors of SARS 

exhibited a lack of memory B cells (Wec et  al. 2020). 
We would suggest that these individuals have a RAS 
skewed to higher ACE2 and anti-inflammatory path-
ways, and to pathways that do not inhibit production of 
type 1 interferon.

Current and potential therapeutic interventions:
Interferon is likely the most important intervention at 

the beginning of the viral infection as it might block viral 
replication. It will be less effective in already severe infec-
tion characterized by inflammation (Sheahan et al. 2020; 
Mueller 2020). Here (Fig.  1), we emphasize the need to 
explore interventions that specifically target the RAS or 
kallikrein-bradykinin pathway which we hypothesize are 
the major contributors to severe inflammation.

Several candidate therapeutics focus on the virus, tar-
geting viral replication (remdesivir), viral entry (Arbidol, 
APN01, convalescent plasma, monoclonal antibod-
ies (REGN-COV2), camostat mesylate), or critical viral 
proteins (protease inhibitors). Therapies targeting other 
viral entry receptors including CD147 (Ulrich and Pil-
lat 2020) and GPR178 (Ulrich and Pillat 2020; Elfiky 
2020) are other avenues of investigation. Several promis-
ing therapeutics are designed to block viral entry path-
ways or prevent propagation and spread of the virus in 
susceptible organs. These may, like interferon, be useful 
early in disease. Other therapies focus on host inflam-
matory mediators (IFN-α, IFN-β, TZLS-501:IL-6 specific 
mAb (monoclonal antibodies), TJM2:GM-CSF-directed 
Ab). Some of these strategies and others are reviewed in 
(Tay et  al. 2020; Tu et  al. 2020; Lima et  al. 2020). Most 
recently, the FDA approved remdesivir for emergency 
use authorization (EUA) in COVID-19. At the same time, 
the World Health Organization (WHO) discontinued 
the hydroxychloroquine and lopinovir/ritonavir arms 
of its Solidarity trial (https​://www.who.int/news-room/
detai​l/04-07-2020-who-disco​ntinu​es-hydro​xychl​oroqu​
ine-and-lopin​avir-riton​avir-treat​ment-arms-for-COVID​
-19. The only successful therapy to date to dampen host 
inflammation is dexamethasone, which affects multi-
ple pathways and cell types. There has been controversy 
regarding targeting the RAS. Initially, there was concern 
that ACE inhibitors might exacerbate disease, but stud-
ies suggest they may, in fact, be of modest benefit (Patel 
and Verma 2020; Zhang et al. 2020b). Angiotensin recep-
tor antagonists (losartan and telmisartan; ClinTrials.gov: 
NCT04355936) also warrant consideration. Some thera-
pies in development are now also addressing the RAS. 
As ACE2 is the main viral entry receptor, ACE2 receptor 
antagonists based on peptides from the viral spike pro-
tein are being synthesized and tested, in addition to spike 
protein-targeted antagonists derived from critical bind-
ing regions in the ACE2 receptor (VanPatten et al. 2020). 
Therapeutics which target TACE and would inhibit 
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ACE2 shedding (Haga et  al. 2010) have also received 
consideration.

As we have hypothesized that some of the inflamma-
tion induced in severe, and perhaps even moderate, 
Covid-19 is the result of dysregulation of the RAS and 
kallikrein-bradykinin pathways, the associated players 
serve as potential therapeutic targets (Fig.  1) As men-
tioned above, ACE inhibitors and AT1 blockers (ARBs) 
are approved and safe drugs. These pathways could be 
also be targeted with AT2 receptor-directed agonists 
(such as Angiotensin(1–9), Mas R agonists-AV0991, 
Angiotensin(1–7) (Zemlin et al. 2020; Paz Ocaranza et al. 
2020). Bradykinin receptor antagonists are of potential 
interest, as bradykinin suppresses interferon production, 
enhances inflammation and causes vascular permeabil-
ity (van de Veerdonk et al. 2020; Roche and Roche 2020). 
Therapeutics aimed to address the imbalance in angio-
tensin and kallikrein products pathway as well as inflam-
matory mediators such as HMGB1 are promising areas 
of future research in Covid-19 (Andersson et  al. 2020). 
We propose that expedited development of therapeutics 
that target immune system modifiers focusing on those 
in the RAS and kallikrein/bradykinin pathway offer the 
most promising avenues for effective treatment of severe 
disease.

The rapid sharing of global research information and 
the publication of novel hypotheses regarding both 
pathogenesis and therapy have greatly enhanced our 
understanding of this virus, and the lessons learned 

from ongoing clinical trials will continue to guide future 
research and therapeutics development.
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