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CXCL10 levels at hospital admission predict 
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Abstract 

Background:  Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threat-
ening disease. Tools are needed for early risk assessment.

Methods:  We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three 
potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and 
neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, 
degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and 
creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. 
Classification and regression tree (CART) models were used to identify prognostic biomarkers.

Results:  Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital 
admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 
[0.6233–0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547–0.9201]). CXCL10 con-
centration abated in COVID-19 survivors after healing and discharge from the hospital.

Conclusions:  CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the 
most robust predictive biomarker of patient outcome in COVID-19.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infection threatens healthcare systems 
around the world and has killed more than two and a half 
millions of people worldwide. Clinical manifestations are 
heterogeneous, the spectrum of severity ranging from 
self-limiting to life-threatening disease. The fragmented 
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data collected during the initial emergency limited the 
possibility to investigate the effect of highly correlated 
covariates and to model the interplay between risk fac-
tors biomarkers and outcomes by means of standard 
statistical approaches. However, it is mandatory to find 
statistical approaches to COVID 19 case series data that 
allow for an early identification of patients at increased 
risk of adverse outcome, such as death or transfer to 
intensive care unit (ICU). Patient stratification would 
allow for an appropriate allocation of available resources 
and selection of the intensity of care.

The heterogeneity in clinical outcome is influenced by 
the individual host response to SARS-CoV-2 infection. 
Better outcomes might reflect an effective early innate 
immune response to the primary infection, that limits the 
collateral damage to peripheral tissues caused by unre-
strained inflammation (Li, et  al. 2020; Kuri-Cervantes, 
et  al. 2020; Valle et  al. 2020; Arunachalam et  al. 2020; 
Laing et  al. 2020). A poor outcome in contrast might 
depend on a failure of the early immune response to clear 
the virus, leading to cell and tissue damage, self-ampli-
fying the release of endogenous adjuvants and alarm-
ins that further trigger the unrestrained production of 
inflammatory cytokines and chemokines in non-surviv-
ing patients. In either case, SARS-CoV-2 infection elicits 
an acute phase response. Median times from symptom 
onset to viral clearance in surviving or deceased patients 
are 20 and 19 days, respectively (Zhou et al. 2020). This 
kinetics strongly implies a role for acquired immune 
responses. Indeed, the coordinated activation of SARS-
CoV-2–specific memory T and B cells together with the 
generation of SARS-CoV-2-specific high-affinity anti-
bodies appears to be protective, while non-synchronized 
immune responses fail to limit the infection with mala-
daptive paroxysmal activation of the inflammatory and 
coagulative cascades (Dan et al. 2021; Rydyznski Moder-
bacher 2020).

Several candidate markers, routinely used in clini-
cal practice or selected based on their biological action, 
have been associated with disease severity and in some 
cases with worse clinical outcomes (Chi et al. 2020; Hue 
et  al. 2020; Chen et  al. 2020; Bulow Anderberg 2021; 
Yang 2020; Danwang et al. 2020; Tian et al. 2020; Lucas 
et al. 2020). Standard statistical models to support clini-
cal decision-making combine the results of demographic 
characteristics, clinical information, imaging techniques 
and selected biomarkers. Not surprisingly, given the 
redundancy in the inflammatory factors generated dur-
ing the acute phase response, it is difficult to impartially 
identify which signals could provide a specific advantage 
over those already commonly used in the clinical routine.

Decision trees are classification algorithms used to 
identify models predicting binary outcomes (Westreich 

et al. 2010; Pauker and Kassirer 1987; Detsky et al. 1997) 
and may be used either in an exploratory fashion or in a 
predictive way (Siciliano 1998; Siciliano et al. 2008). We 
have used the classification and regression tree (CART) 
in both ways, in order to identify those variables among 
patient characteristics and fifty-three innovative molec-
ular biomarkers evaluated at hospital admission (and 
corresponding cut-offs) that could allow to better dis-
criminate patients with respect to their survival outcome 
and ICU entry.

Methods
Patients and study design
This retrospective and prospective investigation is 
included in the more extensive COVID-BioB study, a 
large observational study conducted at the San Raf-
faele University Hospital, a tertiary health-care center in 
Milan, Italy. All adult patients (age ≥ 18  years) admitted 
to San Raffaele University Hospital for COVID-19 from 
25 February 2020 were enrolled in the COVID-BioB 
study (Ciceri 2020). COVID-19 diagnosis was confirmed 
by a positive SARS-CoV-2 real-time reverse-transcriptase 
polymerase chain reaction (RT-PCR) from a nasopharyn-
geal swab in the presence of clinical and/or radiologic 
findings suggestive of COVID-19 pneumonia. Clinical 
findings suggestive of COVID-19 were new-onset fever 
and/or respiratory tract symptoms (eg, cough, dyspnea). 
Radiologic findings were investigated through chest 
X-rays and/or chest CT scan. Signs of interstitial pneu-
monia, ground glass opacities or crazy-paving pattern 
with or without parenchymal consolidations were con-
sidered suggestive of COVID-19 pneumonia according 
to previous reports (Guneyli et al. 2020). As part of the 
COVID-BioB protocol, blood samples from all enrolled 
patients were collected and stored in the COVID-19 
biobank of our Institution according to appropriate 
quality control systems (Rovere-Querini 2020). Biologic 
specimens were complemented by detailed demographic, 
laboratory and clinical data recorded in a dedicated elec-
tronic case record form (eCRF). One hundred eleven 
patients evaluated at our Institution at our Institution 
during the first wave of the pandemic between March 
18th and May 5th, 2020 were included in the present 
analysis. Median (IQR) time that elapsed between hos-
pital admission and venepuncture was 1 (0–2) days. For 
survivors, samples were obtained both at admission and 
after viral clearance and hospital discharge during rou-
tinely scheduled evaluations in a dedicated outpatient 
Clinics (Farina 2020; Lorenzo 2020; Rovere Querini et al. 
2020). The COVID-BioB study protocol, compliant with 
the declaration of Helsinki, was approved by the Hos-
pital Ethics Committee (protocol no. 34/int/2020) and 
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registered on ClinicalTrials.gov (NCT04318366). All 
patients signed informed consent.

Biomarkers
Plasma-EDTA was obtained by centrifugation of venous 
blood, immediately frozen and maintained at -80 °C until 
subsequent analyses. Plasma was inactivated using tri-(n-
butyl) phosphate and Triton X-100 (Sigma) (0.3% and 1%, 
respectively) for 2  h (Darnell and Taylor 2006). A panel 
of 53 putative biomarkers was analyzed (Additional file 1: 
Table S1). Validated biomarkers routinely used in patients 
care that are associated to COVID-19 severity and might 
predict outcome were assessed, including concentration 
of C-reactive protein, creatinine and LDH (Danwang 
et al. 2020; Tian et al. 2020; Ji 2020) and assessment of the 
NLR (Simadibrata et al. 2021). The PaO2/FiO2 ratio was 
used as a surrogate marker of hypoxia (< 300  mm Hg). 
The concentration in the plasma of HMGB1, H3 histones 
and neutrophil gelatinase-associated lipocalin (NGAL), 
ficolin-3, C1q, C4d, C3a, C5a, mannose-binding lectin, 
MBL; MBL-associated serine proteases (MASP-) 1 and 
2; protein 1 similar to chitinase-3, YKL-40, T-cell immu-
noglobulin and mucin domain 1,  TIM-1, anti-spike S1 
SARS-CoV-2 IgGs, IL-18, adiponectin, leptin, hepcidin 
were measured by commercial ELISA. was assessed using 
commercial ELISAs (HMGB1 ELISA, ST51011 TECAN; 
GDMBS937951 Human Histone Cluster 1 HIST1H3A, 
Valter Occhiena; NGAL, DY1757 R&D DuoSet ELISA 
Development System; S1 SARS-CoV-2 IgGs, Euroim-
mun, PerkinElmer company; Ficolin 3, ab213779 Abcam; 
Hum C1q BMS2099, Invitrogen; Human Complement 
Fragment 4d, EKX-UF2R8I-96, Nordic BioSite AB; C3a, 
BMS2089 Invitrogen; C5a BMS2088 Invitrogen; MBL 
ELH-MBL-1, Raybiotech; MASP-1 EKX-B932SF-96, Nor-
dic BioSite AB; MASP-2 EKX-JYF1T7-96; Nordic BioSite 
AB; HumanYLL-40 (CHI9L1) BMS2322,Invitrogen; TIM-
1, DY1750B R&D DuoSet ELISA Development System; 
IL-18, DY318 R&D DuoSet ELISA Development System; 
adiponectin and leptin ab99968 Abcam and ab179884 
Abcam, Intrinsic  Hepcidin IDx™ ELISA Kit (Intrinsic 
Lifesciences); the concentration of neurofilament light 
chain, NfL; total tau protein; ubiquitin carboxyl-termi-
nal hydrolase L1, UCH-L1; glial fibrillary acidic protein, 
GFAP was assessed using the Simoa Human Neurology 
4-Plex A assay (N4PA, Quanterix). To assess the activa-
tion of the neuroendocrine system the concentration of 
full-length chromogranin A CgA (CgA439), CgA frag-
ments lacking the C-terminal region (CgA-439, 436/39) 
and the N-terminal fragment, CgA1-76 (vasostatin-1, 
VS-1) were assessed by sandwich ELISAs, performed 
and calibrated as described (Tombetti et al. 2016). Mul-
tiplex immunoassays (Bio-Rad) based on Luminex tech-
nology were used for the quantification of 27 biomarkers 

among cytokines, chemokines and growth factors in 
human samples, according to the manufacturer’s instruc-
tions (Bio-Plex Pro™ Human Cytokine 27-plex). Data 
were measured on a Bio-Plex 200 System and calculated 
using Bio-Plex Manager 6.0 and 6.1 software. Plasma 
iron concentration was assessed by the “Fe” kit (Randox 
Laboratories ltd, Crumlin, UK). CRP was assessed by a 
latex-enhanced immuno-turbidimetric assay (ADVIA 
Chemistry System, Bayer AG, Leverkusen Germany), 
serum LDH and creatinine using a COBAS C 8000 mod-
ular technology (Roche).

Statistical analysis
In case of numerical variables, comparisons between 
independent groups were performed by means of the 
Mann–Whitney test, while in case of categorical vari-
ables with Fisher’s exact test. Comparisons of numeri-
cal variables between paired data were performed with 
paired Wilcoxon test. Spearman’s correlation coefficient 
was employed to assess the pairwise correlation between 
numerical variables. To identify clusters of co-expressed 
biomarkers, hierarchical cluster analysis was applied on 
the corresponding correlation matrix. In all analyses with 
multiple testing, false discovery rate (FDR) correction 
was applied.

For identifying early biomarkers at hospital presenta-
tion predicting adverse outcomes (transfer to ICU and 
death), classification tree models were estimated through 
the classification and regression tree (CART) method. 
CART models allow to classify subjects into various risk 
categories. The method is based on recursive partition-
ing, a non-parametric statistical approach that uses a 
series of dichotomous splits, e.g. presence or absence of 
symptoms and other clinical and demographic variables, 
to create a decision tree, with the goal of correctly clas-
sifying members subjects.

Due to the high number of biomarkers considered 
(fifty-three), before estimating the tree model, a variable 
selection procedure based on Random Forest was applied 
to obtain a first reduction of the number of variables. 
This strategy allows to achieve more robust results with 
the CART even in presence of a high number of variables 
and possible intervariable correlations. While the CART 
method handles the presence of missing data, the Ran-
dom Forest algorithm cannot and needs the imputation 
of missing data for using the entire dataset. Therefore, 
variable selection procedure consisted in: (1) imputing 50 
times the missing data; (2) estimating a Random Forest 
and applying the Boruta algorithm for variable selection 
(Kursa 2010) on each complete dataset; (3) considering 
for successive analysis only biomarkers selected in at least 
50% of the times.
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After the variable selection step, all selected biomarkers 
together with patient’s characteristics were considered 
for the estimation of the classification tree. Specifically, 
we included in both models: sex, comorbidities (hyper-
tension, coronary artery disease and diabetes mellitus), 
time from symptom onset (TfSO) and NLR. In the model 
for the prediction of death, we included also: age, degree 
of hypoxemia (PaO2/FiO2), concentration of CRP, LDH, 
and creatinine. The CART algorithm was applied to the 
entire dataset through the use of surrogate splits for the 
estimation of the model. Goodness of model prediction 
was measured through the area under the curve (AUC) of 
the receiving operator characteristic (ROC) curve of the 
predicted probabilities.

Kaplan–Meier estimator was used to estimate overall 
survival curves and logrank test was employed for com-
paring survival curves between the two groups defined in 
the classification tree estimated for predicting death.

The significant level was set to 0.05 for all analysis. All 
analyses were performed with R 4.0.2 (https://​www.r-​
proje​ct.​org/).

Results
Demographics, comorbidities, disease characteristics 
at hospital admission and clinical outcomes of the one 
hundred eleven patients with COVID-19 included in 
the present analysis are reported in Table  1. Blood was 
obtained upon written informed consent after a median 
(IQR) time from hospital admission of 1 (0–2) days. At 
sampling, 81 (73%) patients had not received any treat-
ment. Seven (6%) patients had started hydroxychloro-
quine, 2 (2%) steroids, 1 (1%) lopinavir/ritonavir, 4 (4%) 
low molecular weight heparin and 16 (14%) a combina-
tion of the latter agents for a median time of 1 (0–2) days.

The majority of patients were males (63.1%) and 
median (IQR) age was 57.63 (48.46, 66.30) years. Hyper-
tension was the most frequent comorbidity, being pre-
sent in more than one third of patients (n = 38, 34.2%), 
followed by diabetes mellitus (n = 22, 19.8%) and coro-
nary artery disease (n = 9, 8.1%). Table 1 also reports the 
ratio of arterial oxygen partial pressure (PaO2) in mmHg 
to fractional inspired oxygen (FiO2) expressed as a frac-
tion (PaO2/FiO2) which reflects the degree of hypoxemia, 
and markers such as the NLR and levels of CRP, LDH 
and creatinine, which are commonly used in the clinics 
to stratify patients based on disease severity and overall 
risk.

Thirty-six (32.4%) patients required transfer to the 
Intensive Care Unit (ICU). 22 (19.8%) patients died of 
COVID-19 or related complications. Median (IQR) time 
from Hospital admission to transfer to ICU or to death 
was 5.5 (1–8) and 15.5 (9.75–29) days, respectively. As 
expected, patients with worse outcomes were older and 

more hypoxemic (Table  1). Conventional parameters 
routinely used to define COVID-19 severity, including 
NLR, CRP and LDH, and creatinine were also different 
between survivors and non-survivors or patients trans-
ferred or not to ICU (Table  1). The groups did not dif-
fer significantly in terms of time elapsed from the onset 
of symptoms (TfSO) (Mann–Whitney test p = 0.8324 for 
ICU/non-ICU and p = 0.0651 for dead/alive). Median 
[IQR] time elapsed from the onset of symptoms were: 
8  days (4.5; 11) for patients transferred to ICU, 8  days 
[6; 10.25] for patients not transferred to ICU, 9  day (6; 
11) for survivors and 7  days (2.25; 9) for non-survivors 
patients (Table 1).

Many of the fifty-three putative biomarkers, which 
include signals of cell and tissue injury, markers of 
innate humoral immune response activation, cytokines, 
chemokines and adipocytokines, the iron metabolism 
regulator hepcidin and neuroendocrine molecules, sig-
nificantly correlated with the degree of hypoxia, NLR, 
concentration of CRP and LDH, and creatinine (Fig. 1).

Decision models for the identification of predictors 
for adverse outcomes based on biomarkers can increase 
the quality of care and fast the search for a more tailored 
therapy. Thus, we aimed at estimating an operable deci-
sion model to identify predictors of adverse outcomes 
through a classification tree analysis. In addition to rou-
tinely accessible patient information such as demograph-
ics, comorbidities, TfSO and NLR at hospital admission, 
we included in the model 53 putative biomarkers listed 
in Additional file 1: Table S1, selected based on whether 
they had been previously reported as being associated 
with COVID-19 severity or on their biological action. In 
addition, we considered in the model for predicting the 
death also the following clinical variables: age, degree of 
hypoxemia, concentration of CRP, LDH, and creatinine. 
These variables were not included in the model predict-
ing the transfer to ICU, since they were the major deter-
minants of clinical decision-making for ICU admission,

The concentration of CXCL10 emerged as the main 
predictor of both transfer to ICU and death, with overall 
higher values identifying patients with the higher prob-
ability of unfavourable outcome (Figs. 2 and 3). A value 
of 4782  pg/mL was the optimal cut-point for patient 
stratification based on the risk of transfer to ICU, and 
a 16,633  pg/mL threshold maximized separation into 
patients with low and high risk of death.

Regarding transfer to ICU, NLR at admission and 
TfSO followed in the hierarchy of prognostic factors 
identified by the classification tree model (Fig.  2). In 
contrast, CXCL10 concentration was the only relevant 
predictor of death (Fig. 3). Survival analysis confirmed 
that patients with levels of CXCL10 above the identified 
threshold of 16,633  pg/mL had a significantly higher 

https://www.r-project.org/
https://www.r-project.org/


Page 5 of 10Lorè et al. Mol Med          (2021) 27:129 	

Table 1  Sample characteristics

† Mann–Whitney test with false discovery rate (FDR) correction (Patients without ICU vs Patients with ICU; Alive vs Dead)
§ Fisher’s test with false discovery rate (FDR) correction (Patients without ICU vs Patients with ICU; Alive vs Dead)

IQR interquartile range

NLR neutrophils to lymphocytes ratio

LDH lactate dehydrogenase

CRP C-reactive protein

Total Patients without 
ICU (n = 75)

Patients with ICU 
(n = 36)

p-value Alive (n = 89) Dead (n = 22) p-value

Age, median 
[IQR]—yr

57.6 [48.5, 66.3] 53.8 [46.4, 63.8] 61.8 [55.3, 69.1] 0.0336† 55.5 [48.3, 63.3] 64.4 [59.3, 74.9] 0.0059†

Male sex – no. (%) 70 (63.1%) 40 (53.3%) 30 (83.3%) 0.0071§ 56 (62.9%) 14 (63.6%) 1§

Hypertension 
(HTN)—no. (%)

38 (34.2%) 25 (33.3%) 13 (36.1%) 0.8324§ 28 (31.5%) 10 (45.5%) 0.2664§

Coronary artery 
disease (CAD)—no. 
(%)

9 (8.1%) 3 (4%) 6 (16.7%) 0.0671§ 4 (4.5%) 5 (22.7%) 0.0249§

Diabetes mellitus 
(DM) – no. (%)

22 (19.8%) 10 (13.3%) 12 (33.3%) 0.0336§ 13 (14.6%) 9 (40.9%) 0.0249§

Chronic obstructive 
pulmonary disease 
(COPD)—no. (%)

0 0 0 / 0 0 /

Chronic kidney 
disease (CKD)—no. 
(%)

4 (3.6%) 1 3 / 3 1 /

Neoplasia—no. (%) 2 (1.8%) 2 0 / 2 0 /

PaO2/FiO2, median 
[IQR]

288.57, [201.67 
367.6]

319.0 [271.4, 393.3] 195.2 [82.5, 271.3]  < 0.0001† 309.5 [228.6, 374.3] 201.7 [131.7, 276.8] 0.0059†

NLR, median [IQR] 5.33, [3.3, 8] 4.4444 [2.9, 6.8] 7.7083 [5.4, 10.6] 0.0003† 4.8231 [3.2, 7.5] 6.5 [5.4, 13.4] 0.0253†

LDH, median [IQR] 374, [273.5, 522.25] 321 [241, 455] 503 [369, 675] 0.0001† 334 [252, 483.5] 503 [369, 562] 0.0059†

CRP, median [IQR] 85, [24.2, 152.8] 60.1 [9.1, 127.4] 132.5 [69.5, 235.7] 0.0001† 76 [16.7, 142.7] 127.1 [57.6, 207.2] 0.0249†

Creatinine, median 
[IQR]

0.89, [0.73, 1.12] 0.8 [0.72, 1] 0.985 [0.85, 1.3] 0.0105† 0.82 [0.72, 1.01] 1.2 [0.92, 1.42] 0.0059†

Time (Days) from 
symptom onset to 
blood draw, median 
[IQR]

8 [5; 11] 8 [4.5; 11] 8 [6; 10.25] 0.8324† 9 [6; 11] 7 [2.25; 9] 0.0651†

Time (Days) from 
hospital admission 
to blood draw, 
median [IQR]

1 [0; 2] 1 [0; 1] 1 [1; 2] 0.065† 1 [0; 2] 1 [0; 2] 1†

Transfer to ICU—no. 
(%)

36 [32.4%]

Death—no. (%) 22 [19.8%]

Time (Days) from 
hospital discharge 
to the follow-up 
sampling, median 
[IQR]

23 [20–40]

Total number of 
Leukocytes median 
[IQR]

7,2 [5.4–
10.3]  × 10^9 /L

Total number of 
platelets median 
[IQR]

235 [165–329]
 × 10^9 /L
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risk of mortality (p = 0.0002, Fig.  4). Figure  5 depicts 
the plasma concentration of CXCL10 in COVID-19 
survivors and non-survivors and in patients transferred 
or not to the ICU. CXCL10 concentration was indeed 
significantly higher in patients with a poor outcome 
and abated in survivors at follow-up sampling (median 

[IQR] 23 (20, 40)) after discharge from the hospital 
(Fig. 5).

We performed a cluster analysis to investigate whether 
a specific molecular signature involving CXCL10 exists 
and plays a role in COVID-19. As shown in the heatmap 
in Fig.  6, CXCL10 clustered with other inflammatory 

Fig. 1  Spearman’s correlations between clinical characteristics and biomarker levels. The magnitude of each correlation is denoted with a 
color, whereby the red color indicates a positive correlation and blue color represents a negative correlation, such that the deeper the color, the 
stronger is the correlation. Levels of statistical significance with false discovery rate (FDR) correction are denoted as: p < 0.05, *p < 0.01, ***p < 0.001. 
IgG = anti-SARS-CoV2 spike 1 IgGs

Fig. 2  Decision tree for the prediction of the ICU admission (AUC [95% CI] = 0.8374 [0.6233–0.8435]). NLR = neutrophils to lymphocytes ratio
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cytokines, such as CCL2, IFN-ϒ, IL-1Ra, CCL5, CCL11, 
IL-6, MAPS2, MBL and C1q. None of these signals was 
identified as a predictor of the COVID-19 outcome in the 
classification tree analysis.

In addition, we correlated the fifty-three putative bio-
markers and classical markers in COVID-19 survivors 
not transferred to the ICU (Additional file 1: Fig. S1) and 
patients with adverse outcome (ICU or dead) (Additional 
file 1: Fig. S2). Of note, the levels of CXCL10 were signifi-
cantly correlated with classical markers only in COVID-
19 survivors not transferred to the ICU (Additional file 1: 
Fig S1). In contrast, this finding was not confirmed in the 
group of patients with a poor outcome (Additional file 1: 
Table S2).

Discussion
Demographic characteristics, comorbidities, clinical 
manifestations such as hypoxia and laboratory abnor-
malities including changes in blood cell counts, increased 
levels of acute phase proteins (i.e. CRP) and cell dam-
age markers (i.e. LDH) are associated with severity and 
outcome in COVID-19. All these features are well repre-
sented in our patient cohort (Table 1). In addition, sev-
eral putative biomarkers have been identified as suitable 
to profile patients based on the risk of poor outcomes. 
These include signals evaluated also in our patients, such 
as inflammatory cytokines (Laing et  al. 2020; Rydyzn-
ski Moderbacher 2020; Chi et  al. 2020; Hue et  al. 2020; 
Chen et  al. 2020; Bulow Anderberg 2021; Yang 2020; 
Mann et  al. 2020), complement (Risitano et  al. 2020), 
hepcidin (Nai et al. 2021), neurofilament light chain (Sut-
ter 2020). However, the relative impact of each signal 
on disease outcome is difficult to pinpoint. To face the 
challenge of the COVID-19 pandemic we have accumu-
lated an impressive amount of knowledge in a limited 
time, relying on data collected in emergency conditions, 
requiring substantially more caution in the analysis than 
those obtained in high-quality observational studies. 
Moreover, patients greatly vary in terms of age, comor-
bidities, base-line treatments, metabolic status etc. All 

Fig. 3  Decision tree for the prediction of death (AUC [95% 
CI] = 0.7334 [0.7547–0.9201])

Fig. 4  Kaplan–Meier curves of overall survival and logrank test 
for comparing the two groups obtained from the decision tree 
analysis predicting the death for CXCL10 levels higher or lower than 
16,633 pg/mL

Fig. 5  CXCL10 levels (pg/mL) in logarithmic scale of patients: A without and with ICU care (n = 75 and 36, respectively), B alive and dead (n = 89 
and 22, respectively), and C alive with a follow-up (n = 57)
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these features impact on the individual inflammatory 
and immune response and represent a dramatic bias, that 
must be taken into due account to extract the results that 
can allow to identify priorities in clinical decision. Con-
sequently, standard statistical approaches are often not 
sufficient to control for the highly correlated structure 
between covariates and to account for the many potential 
confounding factors (Esposito 2020; Cippa, et al. 2021).

These limitations are evident when evaluating the state 
of the art on potential biomarkers. An ever-increasing 
number of signals expressed in patients with severe 
COVID-19 are being identified, but it is extremely dif-
ficult to determine which of them can represent a valid 

addition for the physician and provide information on 
pathogenetically relevant events in the early stages of the 
response to SARS-CoV- 2.

We relied on a data-driven approach to tackle these 
challenges. Specifically, we relied on decision tree mod-
els that, within a machine learning perspective, allow for 
partitioning data into homogeneous subsets determined 
by hierarchical splits in the covariates (Westreich et  al. 
2010). Relatively simple decision trees emerged, with a 
single inflammatory signal, CXCL10, representing the 
main independent predictor of both adverse outcomes. 
The association of CXCL10 with clinical severity and out-
come is consistent with results of recent studies (Laing 

Fig. 6  Spearman’s correlations between biomarker levels and hierarchical cluster analysis. The magnitude of each correlation is denoted with a 
color, whereby the red color indicates a positive correlation and blue color represents a negative correlation, such that the deeper the color, the 
stronger is the correlation. IgG = anti-SARS-CoV2 spike 1 IgGs. Levels of statistical significance with false discovery rate (FDR) correction are denoted 
as: p < 0.05, *p < 0.01, ***p < 0.001
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et al. 2020; Rydyznski Moderbacher 2020; Chi et al. 2020; 
Hue et al. 2020; Chen et al. 2020; Bulow Anderberg 2021; 
Yang 2020; Mann et  al. 2020; Huntington et  al. 2021). 
In those studies, a combination of CXCL10 and various 
other cytokines/chemokines was associated with clinical 
progression, in line with our observation that CXCL10 is 
part of an inflammatory signature that comprises several 
other cytokines and chemokines (Fig. 6). The tree mod-
els however consistently reveal that CXCL10 levels per se 
are sufficient to robustly predict adverse outcomes. The 
model predicting ICU transfer had an accuracy of 83.7% 
in our cohort, suggesting that it may be useful to iden-
tify patients at increased risk of developing critical illness 
necessitating ICU admission. These patients would need 
to be monitored more frequently and intensively and 
treated promptly and aggressively if clinical conditions 
change. Of course, the model cannot replace conven-
tional biomarkers for clinical decision making for ICU 
admission, while being possibly useful in conjunction 
with these markers.

The robustness of CXCL10 as a biomarker may out-
weigh its role as a surrogate marker of the COVID-19 
cytokine storm width and amplitude. Recent studies have 
highlighted that the concentration of CXCL10 negatively 
correlates with the width of the CD4 + and CD8 + T cell 
repertoire in patients with acute COVID-19 (Rydyznski 
Moderbacher 2020). It’s worth noting that the authors 
found out no correlation between levels of CXCL10 and 
titres of anti-SARS-COV-2 antibodies, confirming our 
findings (Fig.  6). Balanced activation of acquired SARS-
CoV-2 specific immune responses, which include CD4+ 
and CD8+ T cells with a memory phenotype and neu-
tralizing antibody responses, is required for host protec-
tion in acute COVID-19 (Rydyznski Moderbacher 2020; 
Mudd and Remy 2021; Sette and Crotty 2021). Notably, 
CXCL10 plays a non-redundant role in the redistribu-
tion of pre-immune memory T cells, i.e. T lymphocytes 
that circulate with a memory phenotype despite lack of 
engagement with cognate antigens (Alanio et  al. 2018). 
Our study has limitations. During the first wave of the 
pandemic blood sampling for research purposes were 
delayed due to limited resources available for non-clini-
cal activities. For the same reasons, some patients were 
started on therapy soon after arrival at the ED. Moreo-
ver, a relatively small number of patients (n = 111) could 
be analysed and the findings were obtained in one cohort 
only, and not internally or externally validated. Fur-
ther ad hoc multicentre studies involving a substantially 
greater number of patients are necessary to validate our 
results and to verify whether the robustness of CXL10 as 
a marker of COVID-19 outcomes might reflect a direct 
role of the chemokine in disrupting T cell homeostasis 

and justify the analysis of this biomarker in conjunction 
with standard clinical assays.

Conclusion
Our analysis has been based on data mining and 
machine-learning techniques such as CART, Random 
Forest and cluster analysis. The CART in combination 
with a Random Forest variable pre-selection represents 
a promising alternative to conventional logistic multiple 
regression, whose direct application is often precluded 
in a high-dimensional setting and which shows strong 
limitations whenever incomplete data are collected. This 
approach allows a first rigorous assessment of biomark-
ers of severe COVID-19 outcomes even from databases 
collected with no design, as it happens in emergency situ-
ations, and in presence of several confounding effects. 
Further ad hoc studies are necessary to verify whether 
the robustness of CXL10 as a marker of COVID-19 out-
comes might reflect a direct role of the chemokine in 
disrupting T cell homeostasis. CXCL10 value as a bio-
marker might reflect its action of T cell homeostasis. In 
this study, we focused on soluble molecules that could 
be assessed with relative ease in patient plasma, as this 
could be more realistically transferred into the clinical 
setting. Given the growing awareness of the role of circu-
lating memory T and B cells in clinical outcomes (Mudd 
and Remy 2021; Sette and Crotty 2021), information on 
the acquired immune response would be a valuable addi-
tion in further prospective studies.
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