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Abstract 

Background: The alarming trend of paediatric obesity deserves our greatest awareness to hinder the early onset of 
metabolic complications impacting growth and functionality. Presently, insight into molecular mechanisms of child-
hood obesity and associated metabolic comorbidities is limited.

Main body of the abstract: This systematic review aimed at scrutinising what has been reported on putative metab-
olites distinctive for metabolic abnormalities manifesting at young age by searching three literature databases (Web 
of Science, Pubmed and EMBASE) during the last 6 years (January 2015–January 2021). Global metabolomic profiling 
of paediatric obesity was performed (multiple biological matrices: blood, urine, saliva and adipose tissue) to enable 
overarching pathway analysis and network mapping. Among 2792 screened Q1 articles, 40 met the eligibility criteria 
and were included to build a database on metabolite markers involved in the spectrum of childhood obesity. Differ-
ential alterations in multiple pathways linked to lipid, carbohydrate and amino acid metabolisms were observed. High 
levels of lactate, pyruvate, alanine and acetate marked a pronounced shift towards hypoxic conditions in children with 
obesity, and, together with distinct alterations in lipid metabolism, pointed towards dysbiosis and immunometabo-
lism occurring early in life. Additionally, aberrant levels of several amino acids, most notably belonging to tryptophan 
metabolism including the kynurenine pathway and its relation to histidine, phenylalanine and purine metabolism 
were displayed. Moreover, branched-chain amino acids were linked to lipid, carbohydrate, amino acid and microbial 
metabolism, inferring a key role in obesity-associated insulin resistance.

Conclusions: This systematic review revealed that the main metabolites at the crossroad of dysregulated metabolic 
pathways underlying childhood obesity could be tracked down to one central disturbance, i.e. impending insulin 
resistance for which reference values and standardised measures still are lacking. In essence, glycolytic metabolism 
was evinced as driving energy source, coupled to impaired Krebs cycle flux and ß-oxidation. Applying metabolomics 
enabled to retrieve distinct metabolite alterations in childhood obesity(-related insulin resistance) and associated 
pathways at early age and thus could provide a timely indication of risk by elucidating early-stage biomarkers as hall-
marks of future metabolically unhealthy phenotypes.
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Introduction
At present, millions of children, of whom even under the 
age of 5, are afflicted with overweight and obesity (WHO 
2020), rendering the globesity pandemic one of the 
utmost health concerns of the twenty-first century. As 
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there prevails a strong trend of childhood obesity track-
ing into adulthood in an estimated 80% of cases (Sim-
monds et al. 2016), the unabated rise of paediatric obesity 
might anticipate the onset of impaired fasting glucose 
(IFG) and impaired glucose tolerance (IGT) to teen age 
and full-blown diabetes type 2 to early adulthood (Hae-
mer et al. 2014; Candler et al. 2018). In addition, IFG, IGT 
and insulin resistance (IR) have been appointed high-risk 
states introducing the metabolically unhealthy sequelae 
of obesity including dyslipidemia, hypertension, meta-
bolic syndrome and atherosclerosis which frequently 
progress into diabetes type 2 but also cardiovascular 
disease and cancer (WHO 2018; Cobb et  al. 2016). It is 
however worth pointing out that metabolic processes ini-
tiating the micro- and macrovascular events are likely to 
occur already in childhood, predisposing children to the 
development and accelerated onset of several long-term 
complications (Wideman et  al. 2013; Tuomi et  al. 2014; 
Weiss et  al. 2005). Therefore, focus should shift from 
treatment of disease towards risk-stratification at a cru-
cial stage in life, i.e. childhood, during which metabolic 
impairments are still reversible.

IR is a forerunner state in metabolic disease onset 
since it already rises years before pubertal onset (Weiss 
et  al. 2005; Tsay et  al. 2010). Consequently, IR is more 
strongly associated with a metabolically unhealthy sta-
tus than is obesity, leading to the use of insulin sensitiv-
ity indices (Valeria et  al. 2015). The gold standard ‘the 
hyperinsulinemic clamps’ for directly assessing IR is time 
consuming, labor intensive, and overall expensive (Tam 
et  al. 2012). Therefore, several alternate measures have 
been developed amongst which the homeostatic model 
assessment of IR (HOMA-IR), the quantitative insulin 
sensitivity index (QUICKI) and the Matsuda index. The 
HOMA-IR and QUICKI serve as a primary reflection of 
hepatic insulin sensitivity, whereas the Matsuda index 
includes both skeletal muscle and hepatic IR, yet infer-
ring the need of an oral glucose tolerance test (OGTT) 
which is unpopular with primary care physicians and 
patients (Cobb et  al. 2016). Recently, simpler and more 
cost-effective clinical surrogate markers for IR have been 
introduced, e.g. the triglyceride glucose index (Hong 
et al. 2020). In clinical practice however, these measures 
are not yet executed as a standard methodology since no 
consensus on internationally agreed reference value(s) 
for (ab)normal insulin sensitivity in children exist (Hae-
mer et al. 2014). Thus, apart from an adjusted body mass 
index (BMI) in diagnosing obesity in children 2 years and 
older (Cuda and Censani 2019), it still remains unclear 
when to screen for metabolic complications and assessing 
(ab)normal insulin sensitivity  during childhood (Ameri-
can Diabetes Association 2018). Hence, an urging quest 
for diagnosis of IR and for prognosis and/or prediction 

regarding the early onset of associated metabolic disease 
in children is markedly present. Hereto, metabolite pat-
terns offer a valid tool to profile and stratify high risk 
obese and/or IR states (Cobb et al. 2016).

Today, two pandemics meet, in which it has been 
evinced that obesity and its highly associated metabolic 
traits are strongly related to high risk of morbidity and 
mortality (Zhao et al. 2016) and, at present, are indepen-
dently associated with greater susceptibility and adverse 
outcomes of COVID-19 (Lockhart and O’Rahilly 2020). 
It is worth pointing out that metabolomics has stepped 
forward as a valid alternate analysis technology in diverse 
diseases including obesity as well as COVID-19, i.e. the 
detection of characteristic molecular changes in the bio-
fluids of patients (Shen et al. 2020).

The close relatedness of metabolites to one’s phenotype 
and the analytical advances of metabolomics in rapid and 
high-throughput technologies are key-drivers to gain 
insights into the pathophysiology of a diverse spectrum of 
diseases (Spiegeleer et al. 2020). Diet and lifestyle, genetic 
predisposition and diverse environmental contributors 
shape the obesogenic landscape from early age on and 
as such, inevitably correlate to the current emergence 
of paediatric obesity. Moreover, the complex synergistic 
intertwining of such influencing variables is vital (Sni-
jders et al. 2016). In this context, metabolomics reveals a 
far more comprehensive metabolic signature than clini-
cal blood analyses reluctantly performed in young chil-
dren. Also, blood metabolites are dependent on systemic 
appearance rendering it rather difficult to trace metabolic 
aberrations to the respective organ’s physiology and its 
specific cause (Adams 2011). Therefore, implementing 
a multi-matrix approach for disease-related biomarker 
detection or pathway elucidation offers the potential to 
expose pathophysiological dynamicity, e.g. unravelling 
the interplay between the host, diet and microbiome 
(Spiegeleer et al. 2020; Paepe et al. 2018).

The present global eminence of childhood obesity and 
associated early onset of asymptomatic complications, 
has not escaped the awareness of metabolomics research. 
In 2016, Zhao et al. (2016) reviewed IR in childhood obe-
sity on the basis of blood metabolomics studies. Metab-
olisms of amino acids and lipids were most affected. In 
specific, branched-chain (BCAAs) and aromatic amino 
acids (AAAs) as well as acylcarnitines were appointed as 
closely related to IR and future metabolic risk. The aims 
of this systematic review were to further highlight and 
consolidate the importance of recent metabolomics stud-
ies applied on various types of biofluids and to include 
pathway mapping. Thereby, subsequent to an exten-
sive literature search and database construction, path-
way analysis was performed by MetaboAnalyst 5.0 and 
MetScape 3 in providing an overarching metabolomics 
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signature of childhood obesity. The significant metabo-
lites that were extracted from included studies were 
reviewed in light of their potential value as early-stage 
hallmarks of future metabolically unhealthy phenotypes 
together with in-depth interpretation of disturbances 
observed in their associated metabolic pathways.

Materials/subjects and methods
Literature search strategy and quality scoring
Published literature in English (from January 2015 up to 
January 2021) was searched to identify case–control or 
cohort studies in three electronic databases, i.e. Web of 
Science, Pubmed and EMBASE. The pragmatic search 
methodology and terminology was effectuated accord-
ing to the PICO framework and PRISMA statement (Lib-
erati et al. 2009) (Additional file 1: Table S1). Selection of 
retrieved studies and respective quality assessment was 
effectuated independently (author MDS) and in duplicate 
(author LVM) based on the Newcastle–Ottawa Quality 
Assessment scale (Bae 2016), and adjusted specifically 
for case reports and case series where necessary (Murad 
et  al. 2018) (Additional file  1: Tables S2 and S3). The 
study protocol was registered in the PROSPERO registry 
(ID 181149).

Study selection: in‑ and exclusion criteria
Articles were selected based on pre-defined in- and 
exclusion criteria (Table  1). Additional articles were 
included by reference tracking as secondary source. The 
unique titles and abstracts resulting from the search 
strategy which focused on Q1 papers and concurrent 
duplicate removal were reviewed independently by two 
authors (MDS and LVM). The full text paper was assessed 

correspondingly, by the same two authors (MDS and 
LVM) and a third independent reviewer (LV) resolved 
discrepancies regarding eligibility.

Both cross-sectional and longitudinal study designs 
were considered eligible if those were human studies 
and not exclusively focused on interventions including 
therapeutics, diet and surgery to mainstream the study 
population and abolish confounding factors regarding 
metabolome perturbations. Furthermore, as a quality 
requirement, the classification of obesity had to be clearly 
addressed and based on any local or international refer-
ence values in order to enable the comparison of child-
hood obesity across various ages. Both articles using 
metabolic profiling and fingerprinting through state-of-
the-art high-throughput metabolomics techniques in a 
wide range of biological matrices were included (Table 1). 
To limit the extensive coverage to metabolomics studies, 
other omics investigations that merely targeted genom-
ics, transcriptomics, proteomics or microbiomics were 
excluded as was the case for prevalence studies.

Data extraction and variable listing: the construction 
of a childhood obesity metabolomics database
From each included study, targeted metabolites (identi-
fication tier 1 and 2) that were significantly altered in the 
group of children with overweight or obesity, i.e. com-
pared to a healthy weight control group and in correla-
tion with specific descriptors, were selected from tables, 
figures and supplemental data. Extracted items included 
qualitative data: metabolite characteristics, i.e. name and 
class (according to the Human Metabolome Database 
(Wishart et  al. 2018) or LIPID MAPS (Fahy et  al. 2008) 
classification, ChEBI and KEGG identification, chemical 

Table 1 Characteristics of the included studies

A detailed description of the in- and exclusion criteria on the basis of which articles were retrieved and selected articles were withheld for final assessment
a Based on WHO definition

Study attributes/characteristics of groups studied

Inclusion criteria

 Study design Population-based observational studies and (experiment) trials: case–control, cohort and case-series

 Population/
age

Children and/or adolescents (0–19  yearsa)

 Outcome Obesity and/or related metabolic abnormalities (impaired glucose tolerance, insulin resistance, prediabetes, diabetes mellitus type 2, 
metabolic syndrome) in metabolomics research

 Biofluid Blood (serum and plasma), urine, excretion, faeces, saliva, tissue, hair, nails

 Diagnostics Clinician-based: BMI diagnostic criteria, oral glucose tolerance test, parameters/criteria for metabolic syndrome, cardiovascular 
disease risk, non-alcoholic fatty liver disease, etc

Exclusion criteria

 Language Language other than English

 Document 
type

Other than article (e.g. review, letters, conference abstracts)

 Age/disease Study population of adults only and in utero/maternal studies (e.g. gestational diabetes), participant population with any thyroid or 
metabolic disorder under treatment (e.g. diabetes, cardiovascular disease)

 Type of study Exposure study, genomics, transcriptomics, proteomics, microbiomics and intervention studies
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formula, identification tier, the biological matrix stud-
ied and the analytical measurement technique applied. 
Also, the study design addressed and population char-
acteristics, e.g. age, BMI z-score, percentage of female 
participants, etc., and if available quantitative informa-
tion regarding outcome measures, e.g. concentrations of 
metabolites and odds ratio, was added. Given the sparsity 
of the latter, no meta-analysis was performed.

Pathway analysis
Subsequent to an extensive literature search and data-
base construction (Additional file  2: Table  S1), the 
most important metabolites retrieved, based on occur-
rence and significance, as so for the metabolic networks 
involved in childhood obesity were respectively ana-
lysed through MetaboAnalyst 5.0 (Xia et  al. 2011) and 
MetScape 3 (Karnovsky et  al. 2012) by uploading the 
metabolite’s KEGG identifications if such were avail-
able (Additional file 1: Table S4). Given the possibility of 
absence in the KEGG registry, also manual exploration 
was executed, i.e. for lipids and microbial metabolites. 
After the initiation of pathway exploration, an in-depth 
examination of suggested pathways was performed. 
Chemical classes were positioned within the pathophysi-
ology of obesity and were compared to what has been 

reported on metabolic signatures associated with (paedi-
atric) obesity and related diseases.

Results and discussion
Literature screening and quality assessment
The systematic literature search resulted in the identifica-
tion of 43 full-text articles that met the inclusion crite-
ria. The study selection was effectuated according to the 
PRISMA statement (Liberati et  al. 2009) and resultant 
literature selection can be consulted in Fig. 1 and Addi-
tional file  1: Table  S1. The quality was assessed accord-
ing to the Newcastle–Ottawa Quality Assessment scale. 
Three studies were noted of low quality (Additional file 1: 
Tables S2 and S3) and therefore additionally excluded 
since obesity classification was not based on any local or 
international reference values nor BMI diagnostic crite-
ria. Finally, 40 unique articles were included after critical 
selection.

Study characteristics and data extraction
The selected studies (n = 40) and referred metabolites 
(n = 202) were assembled in Additional file  2: Table  S1. 
Case–control studies (n = 22) slightly dominated over 
cohort studies (n = 18). The included study groups were 
children with (severe) obesity, (cardio)metabolically 

Fig. 1 PRISMA flow diagram. PRISMA flow diagram of literature search and study selection. There were 2557, 2749 and 1875 records identified by 
database searching of Web of Science, Pubmed and EMBASE, respectively. After duplicate removal and Q1 filtering, 2792 articles were screened on 
the basis of title and abstract
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abnormal obesity (i.e. having 2 or more cardiometabolic 
abnormalities or meeting 1 or more criteria of cardiovas-
cular disease risk factors), obesity with and without IR 
and metabolically healthy and/or normal-weight (con-
trol) subjects. In 33 studies sex-equality (48.31% ± 5.77% 
female %) was manifested, thereby accounting for sex 
differences. The number of participants ranged from 26 
(Suzuki et  al. 2019) to 1192 (Lau et  al. 2018). Children 
were the study subject and ranged from 4, 5  years of 
age (Aristizabal et  al. 2018) up to and including adoles-
cents. If the Tanner Stage (TS) was mentioned, this was 
added in Table  2 and Additional file  2: Table  S1. Blood 
predominated as matrix of choice (n = 34) with serum 
as most prevalent biofluid (n = 21), followed by urine 
(n = 3), saliva (n = 2) and adipose tissue (n = 1). Of note 
is that metabolomics studies on paediatric obesity using 
faeces, hair and nails as biological matrix were missing. 
By not excluding a biological matrix in particular, the 
blood metabolome, that already reflects a wide range 
of biochemical processes, was further complemented 
and combined with other biofluids to strive at holis-
tic metabolome coverage and incorporate the intricate 
metabolic pathways at systems level. The major regional 
groups were America, Asia, Australia and Europe com-
prising 19, 6, 1 and 14 studies, respectively (Table 2 and 
Additional file 2). Thereby, it was possible to account for 
a set of plausible covariates including lifestyle (e.g. diet) 
and environment (e.g. air pollution) a.o. impacting the 
metabolism of children towards unambiguous identifica-
tion of the relationship between metabolic phenotypes 
(metabotypes) in disease and circulating, infiltrated and 
excreted metabolites.

Pathway analysis
All included compounds (n = 202), either assigned a 
KEGG identifier (n = 129) or, if not available, a Human 
Metabolome Database identifier, were listed in Addi-
tional file 1: Table S4. In the pathway analysis module of 
MetaboAnalyst, small p-values and large pathway impact 
generally indicate the most influenced pathways. As so, 
this influence results from the relative contribution of the 
occurrence of imported differential metabolites to the 
total of metabolites present in the pathway. However, for 
a number of lipids, including (lyso)phospholipids, glyc-
erophospholipids and acylcarnitines, a KEGG identifier 
was not available. Therefore, important pathways (Addi-
tional file  1: Fig. S1), i.e. indicated by significant cor-
rected p-values, high impact score or the number of hits 
were complemented with additional search on prevailing 
chemical classes. Thereby it was envisaged to take into 
account all plausibly relevant metabolites (Additional 
file  1: Table  S4) and related pathways (Additional file  1: 
Fig. S2 and Table S5).

Recurrent metabolites were classified into overarch-
ing classes, i.e. lipids, carbohydrates and amino acids. 
Accordingly, every comprehensive class was further 
subdivided into presumably disrupted metabolic path-
ways and connecting those, i.e. low-grade inflammation, 
cell membrane fluidity, the ß-oxidation as an alternate 
fuel source, impaired tricarboxylic acid cycle (TCA) 
flux, immunometabolism and BCAAs and AAAs at the 
metabolic crossroads. Given few articles (n = 3) included 
addressed changes of hormones (including steroids 
and bile acids) (Mauras et al. 2015; Son et al. 2015; Kim 
et al. 2016) and the children studied were between 4 and 
19  years of age including pre-, peri- and postpubertal 
stages (TS 1 up to and including 5, Table  2), hormone 
metabolism was not addressed.

Lipid metabolism
Particularly, the fatty acids, glycero- and sphingolipids 
appeared the most prominent metabolite classes that 
showcased discrepancies and were involved in low-grade 
inflammation and cellular disruption (Figs.  2 and 3), 
which have been comprehended as fundamental biologi-
cal mechanisms in the pathophysiology of obesity (Abu 
Bakar et al. 2015).

Low‑grade inflammation
Aristizabal et  al. (2018), Bermudez-Cardona and 
Velasquez-Rodriguez (2016), Butte et  al. (2015), and 
Troisi et  al. (2019) reported increased levels of palmitic 
acid in children with obesity but also of palmitoylglycerol 
and palmitoleic acid which often are incorporated into 
corresponding glycerolipids, i.e. triacylglycerols, boosting 
lipogenesis (Fig. 3, 5. Lipogenesis).

Long-chain polyunsaturated fatty acids (PUFAs) haven 
been associated with lower risk of diabetes and pos-
sibly prediabetes, as a new type of paediatric diabetes 
(Fig.  2, 3. Linoleic acid metabolism). Docosahexanoic 
acid (n − 3), eicosapentanoic acid (n − 3) and the eicosa-
noid arachidonic acid (n − 6) were observed to be lower 
in children with obesity (Aristizabal et  al. 2018; Butte 
et al. 2015; Flannagan et al. 2018), which could relate to 
anti-inflammatory properties ascribed to the n − 3 series 
and to competition of cyclooxygenase enzyme activity 
due to the high stress environment that is characteris-
tic of obesity. Moreover, the enzymatic activity of delta-
5-desaturase (D5D), responsible for the conversion of 
a.o. dihomo-gamma linoleic acid into arachidonic acid 
(Fig. 2, 3. Linoleic acid metabolism), has previously been 
observed reduced in diverse metabolic disorders, e.g. 
non-alcoholic fatty liver disease, and has been associated 
with underlying IR and oxidative stress (Tosi et al. 2014). 
Dihomo-gamma-linoleic acid and arachidonic acid pro-
duce different series of thromboxane, i.e. respectively 
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anti-inflammatory and pro-inflammatory. The increased 
levels of dihomo-gamma-linoleic acid observed in four 
studies (Aristizabal et  al. 2018; Bermudez-Cardona and 
Velasquez-Rodriguez 2016; Butte et  al. 2015; Flannagan 
et  al. 2018), paralleling reduced conversion into anti-
inflammatory products and the inverse for arachidonic 
acid, suited the acknowledged oxidative stress environ-
ment in childhood obesity (Tosi et al. 2014). In line with 
the upregulated enzyme activity, linoleic acid (n  −  6) 
was decreased in five studies on blood (Anjos et al. 2019; 
Perng et  al. 2020a; Aristizabal et  al. 2019; Bertoli et  al. 
2015; Trico et al. 2017) (Fig. 2, 3. Linoleic acid metabo-
lism). Yet, contrasting observations were mentioned by 
Trico et  al. (2019) who reported on increased levels of 
linoleic acid and its oxidised derivates 9- and 13-oxo-
ODE in the plasma of children with obesity, reflecting 
advanced oxidative state in parallel to lipotoxicity in the 
development of insulin resistance (Zhao et  al. 2016). 
These oxidised metabolites have been associated with 

lower linoleic acid-conjugating gut bacteria, which was 
referred to as a detoxification mechanism to reduce sys-
temic low-grade inflammation (Trico et al. 2019) (Fig. 2, 
1. Biosis).

An increment of lysophospholipids, e.g. lysophospho-
choline which is characterised with pro-inflammatory 
effects, was observed by Mastrangelo et  al. (2016) and 
related to their negative interaction with G protein-cou-
pled receptors in inflammation processes and insulin 
production and sensitivity (Bas et al. 2016). This parallels 
a reduction in the inhibiting effect of PUFAs like doco-
sahexanoic acid on the hydrolytic action of phospho-
lipase A2 in individuals suffering from overweight (Lau 
et  al. 2018; Butte et  al. 2015; Anjos et  al. 2019; Farook 
et al. 2015; Cho et al. 2017; Lee et al. 2018; Reinehr et al. 
2015), which also is in consistency with adult findings 
(Bas et  al. 2016). Alternatively, changes in the enzyme 
activity of lecithin-cholesterol acyltransferase, an enzyme 
that converts free cholesterol to its ester substitutes 

Fig. 2 Visualisation of alterations in lipid metabolism. Overview of altered lipid metabolism and visualisation of its complex interplay resulting 
in a sustained oxidative environment and low-grade inflammation. Also, physiological consequences are depicted including increased 
intestinal permeability (linked to dysbiosis), fat mass expansion (enlarged adipocytes with rigid cell membranes) and accelerated atherosclerotic 
processes implied in comorbidities of obesity. Black arrows indicate reactions and movement directions, whilst red and blue arrows respectively 
indicate a down- and upregulation of metabolites and enzymes. Created with www. BioRe nder. com. CLA, conjugated linoleic acid; SCFAs, 
short-chain fatty acids; TMAO, trimethylamine-N-oxide; LA, linoleic acid; 9/13-oxo-ODE, 9/13-oxooctadecadienoic acid; D6D, delta-6-desaturase; 
D5D, delta-5-desaturase; DGLA, dihomo-gamma-linoleic acid; COX, cyclooxygenase; EPA, eicosapentanoic acid; AAc, arachidonic acid; DHA, 
docosahexanoic acid; PGs, prostaglandins; TXAs, thromboxane; LTs, leukotriene; NEFAs, non-esterified fatty acids; ROS, reactive oxygen species; 
OXPHOS, oxidative phosphorylation; PI3K, phosphatidylinositol 3-kinase; IR, insulin receptor substrate; IR, insulin receptor; Chol, cholesterol; SL, 
sphingolipid; GPL, glycerophospholipid; BCAA, branched-chain amino acid; PC, phosphatidylcholine; CE, cholesterol ester; HDL, high-density 
lipoprotein; LCAT, lecithin-cholesterol acyltransferase; LDL, low-density lipoprotein; oxLDL, oxidised low-density lipoprotein

http://www.BioRender.com


Page 12 of 20De Spiegeleer et al. Mol Med          (2021) 27:145 

(Fig.  2, 9. Cholesterol & lipoprotein metabolism), and 
promotes the formation of high-density lipoprotein (Ng 
2012; Rousset et al. 2009) could be implicated.

Cell membrane fluidity
Oxidative processes go hand in hand with alterations in 
dynamic cell structures and functions of insulin-sensitive 
tissues (Perona 2017), e.g. cellular membrane fluidity of 
pancreatic cells and adipocytes. For example lipid peroxi-
dation renders cellular membranes more rigid (Fig. 2, 6. 
Lipid peroxidation), whereas PUFAs could be addressed 
in restoring membrane responsiveness as shown in 
skeletal muscle membranes (Perona 2017). When cell 
membranes are characterised by a high abundance of 
cholesterol, sphingolipids and glycerophospholipids (all 
bearing predominantly saturated fatty acids), these are 
referred to as microdomains or lipid rafts and contrib-
ute to tight packaging (Perona 2017) (Fig. 2, 7. Lipid raft). 
Cho et al. (2017), Lau et al. (2018) and Lee et al. (2018) 
reported on alterations in sphingolipid metabolism 
in children with obesity (Additional file  1: Fig. S1), i.e. 

both increments and reductions of sphingomyelins were 
observed. Sphingomyelins are ubiquitous membrane 
constituents and have been ascribed previously as inde-
pendent predictors of IR (Perona 2017). The observed 
reductions mainly imparted saturated sphingomyelins, 
e.g. sphingomyelin 16:0 (Lau et al. 2018; Cho et al. 2017; 
Lee et al. 2018), and could result of more incorporation 
of the latter into microdomains. Increased levels however 
especially concerned the unsaturated share, e.g. sphingo-
myelin 16:1 and 18:1 (Lau et al. 2018). In this context, also 
elevations of palmitoleic and oleic acid were reported by 
Bermudez-Cardona and Velasquez-Rodriguez (2016) and 
Troisi et al. (2017) that could be related to ceramide syn-
thesis and its association with membrane rigidity (Zheng 
et al. 2006). In particular, C16:0 ceramide, matching the 
increased presence of palmitic acid (Aristizabal et  al. 
2018; Bermudez-Cardona and Velasquez-Rodriguez 
2016; Troisi et al. 2019; Anjos et al. 2019) and decreased 
sphingomyelin 16:0, have been observed as negative reg-
ulators of insulin signaling and inhibitor of mitochondrial 
fatty acid ß-oxidation and as such, identified as important 

Fig. 3 Visualisation of alterations in carbohydrate metabolism. Overview of altered carbohydrate metabolism and points of intersection with lipid 
and amino acid metabolism in childhood obesity. Black arrows indicate reactions, whilst red and blue arrows, respectively, indicate down- and 
upregulation of metabolites. Created with www. BioRe nder. com. G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate; BCAA, branched-chain 
amino acid; ROS reactive oxygen species; TG, triglyceride; LCFA, long-chain fatty acid; UA, uric acid; mTOR, mammalian target of rapamycin

http://www.BioRender.com
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mediators of obesity-derived IR and impaired ß-oxida-
tion (Fucho et al. 2016).

Anjos et  al. (2019) noted a decrease of all meas-
ured phosphatidylinositol species in the serum of chil-
dren with obesity. Among the glycerophospholipids 
in microdomains, phosphatidylinositol constitutes the 
major building block in lipid rafts that has been demon-
strated in target tissues of IR (Boini et al. 2017). Besides, 
phosphatidylinositol anchors a plurality of membrane 
receptors. The corollary to this and alterations in phys-
icochemical properties of the cell membrane structure is 
that the functional integrity of receptors and thus signal-
ing pathways could be influenced (Perona 2017). In the 
case of obesity, the impairment in uptake of glucose and 
insulin action could be a reflection of such functional 
dependence of both glucose transporters (GLUT) and 
the insulin receptor, respectively (Fig. 2, 8. Dysfunctional 
receptors in insulin signaling). Taken together, several 
metabolites related to lipid metabolism are in favor of the 
cell membrane hypothesis of IR and may infer, even at 
early age, the existence of a vicious continuum.

ß‑oxidation as an alternate dysfunctional fuel source
When hyperglycemia is present, the amount of non-
esterified fatty acids in plasma should be reduced follow-
ing insulin-mediated suppression of both endogenous 
gluconeogenesis, lipolysis and ß-oxidation. Despite, all 
included studies that reported on non-esterified fatty 
acids noted increased circulating values. This could result 
from their release by saturated adipocytes into the blood 
stream, leading to lipotoxicity, and in turn, interfering in 
a vicious way with insulin-responsive metabolic path-
ways (Chavira-Suárez et  al. 2020). This is, higher levels 
of non-esterified fatty acids have been reported to acti-
vate immune and oxidative stress pathways (Fig.  2, 4. 
Activated immunometabolism) and as such, could affect 
insulin signalling and glucose transport triggering IR in 
skeletal muscle and liver (Fucho et  al. 2016; Boini et  al. 
2017). Furthermore, when fats are addressed as an alter-
native energy source, degradation of triglycerides to glyc-
erol and FFA needs to occur before ß-oxidation can take 
place. However, lowered glycerol concentrations were 
observed in children with obesity by Troisi et al. (2019), 
which could point towards decreased lipolysis and sub-
sequent ß-oxidation, and/or increased glycerol utilisa-
tion during upregulated lipogenesis (Fig. 3, 4. Incomplete 
ß-oxidation and 5. Lipogenesis).

Complete ß-oxidation renders acetyl-coenzyme A 
(CoA) that is further used during the biosynthesis of 
acylcarnitines, the so-called regulators of ß-oxidation 
(Martos-Moreno et  al. 2017). Of note is that the serum 
acylcarnitine profile is reflected by its reservoir in skeletal 
muscle. Given skeletal muscle IR is the primary feature in 

obesity, acylcarnitines are considered relevant biomark-
ers of early occurring obesity-related IR. In congruency 
with observations made in adult reports (Rangel-Huerta 
et  al. 2019), diverse acylcarnitines, e.g. malonyl-, propi-
onyl-, valeryl-, octanoyl-, nonaoyl- oleoyl- and palmitoyl-
carnitine, were found consistently higher in studies on 
children with obesity (Lau et al. 2018; Butte et  al. 2015; 
Farook et al. 2015; Cho et al. 2017; Lee et al. 2018; Mar-
tos-Moreno et al. 2017; Perng et al. 2018, 2020b; Moran-
Ramos et al. 2017) (Fig. 3, 4. Incomplete ß-oxidation).

Carbohydrate metabolism
A variety of metabolites that belong to the central carbon 
metabolism, i.e. glycolysis, the Krebs cycle and acylcar-
nitine metabolism, showed prominent alterations in chil-
dren with obesity.

Impaired Krebs cycle flux
Next to ß-oxidation, glucose oxidation or “glycolysis” is 
a physiologically important process for yielding energy. 
There exists a reciprocal regulation, which is known 
as “the glucose-fatty acid cycle”, to maintain adequate 
acetyl-CoA levels and Krebs cycle activity, reflecting 
their interrelatedness. Acetyl-CoA can result from com-
plete ß-oxidation, which is impaired in obesity, as from 
ketone body catabolism, carbohydrate and amino acid 
metabolism (Fig. 3). The perturbations of ß-oxidation are 
presumed to be counteracted by switching to carbohy-
drate substrates. In congruency, the excess energy intake 
characteristic of obesity was reflected by elevations in 
simple sugars (mono- and disaccharides) in blood (Fig. 3, 
2. Glycolysis) as well as saliva and urine of children with 
obesity in diverse studies (Butte et al. 2015; Troisi et  al. 
2017, 2019; Hosking et  al. 2019) and was indicative of 
pronounced stimuli towards a glycolytic metabolism. In 
addition, some simple sugars, such as d-mannose, serve 
as essential building blocks of glycoproteins like the insu-
lin receptor (Lee et  al. 2016). Elevations in d-mannose 
could therefore be related to a declined incorporation 
into and/or downregulation of insulin receptors (Fig.  2, 
8. Dysfunctional receptors in insulin signaling) and has 
been suggested as contributor to the development of IR 
and diabetes type 2 in adults (Lee et al. 2016).

TCA cycle intermediates were altered in childhood 
obesity, i.e. decreased blood values of citric acid and 
α-ketobutyrate were observed by Butte et  al. (2015), 
Hosking et  al. (2019) and Troisi et  al. (2017). Citrate 
might be escaping the mitochondria to enable its con-
version into malonyl-CoA (Fig. 3, 4. Incomplete ß-oxi-
dation and 5. Lipogenesis). This could be reflective of 
increased rates of lipogenesis and concordant overpro-
duction of ROS, pro-inflammatory prostaglandins and 
adipokines and altered nitric oxide (Chavira-Suárez 
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et  al. 2020), thereby inflecting immune response 
(Fig.  3, 5. Lipogenesis). Studies by Hosking et  al. 
(2019), Martos-Moreno et  al. (2017), Mastrangelo 
et al. (2016) and Saner et al. (2019) showcased reduced 
ketone body production, i.e. ß-hydroxybutyrate and 
acetoacetate (Fig.  3, 6. Ketogenesis), supporting 
impaired TCA cycle flux. It is worth mentioning that 
insulin is known to exert antiketotic effects. Therefore, 
reduced ketone body anabolism (Mastrangelo et  al. 
2016; Martos-Moreno et al. 2017; Hosking et al. 2019; 
Saner et al. 2019) might be an early indicator of hyper-
insulinemia as so for metabolic health going forward 
since reduced capacity to generate ketones might have 
significant long-term implications for body weight 
regulation.

Increased measures of pyruvate but also of lac-
tate were repeatedly reported in children with obesity 
(Mastrangelo et  al. 2016; Martos-Moreno et  al. 2017; 
Hosking et al. 2019). Pyruvate is a key intermediate of 
glycolysis and serves as precursor for gluconeogenesis 
and the biosynthesis of glycerol, fatty acids and non-
essential amino acids (Fig.  3, 1. Gluconeogenesis, 2. 
Glycolysis and 5. Lipogenesis). Elevated levels of pyru-
vate suggest a deficiency in the pyruvate dehydrogenase 
enzyme (complex), which is necessary in producing 
acetyl-CoA going forward. Increments of lactate were 
also noted (Fig. 3, 2. Glycolysis), which may reflect dys-
regulations in central carbon metabolism and tend to 
direct metabolism towards fermenting conditions in 
children with obesity, termed the “aerobic glycolysis” or 
“Warburg effect” (Wu et al. 2016). Accordingly, from a 
physiological point of view, obesity goes hand in hand 
with adipocyte hypertrophy which is associated with 
local hypoxia boosting lactate production (Longo et al. 
2019).

The breakdown of glucogenic amino acids can deliver 
acetyl-CoA as a compensatory increase of glycoylis, 
whereby further providing linkage of carbohydrate and 
amino acid metabolism. In particular, alanine may act 
through the “glucose-alanine” or Cahill cycle as a con-
tributor to the observed increase of pyruvate and lac-
tate levels (Suzuki et al. 2019; Mastrangelo et al. 2016; 
Martos-Moreno et  al. 2017; Moran-Ramos et  al. 2017; 
Hosking et al. 2019; Zhang et al. 2019; Short et al. 2019; 
Perng et al. 2019), supported by increased levels of urea 
(Troisi et  al. 2019). Increased flux through the Cahill 
and Cori cycles in liver and skeletal muscle parallels 
inefficient inhibition of hepatic gluconeogenesis (Fig. 3, 
1. Gluconeogenesis and 3. Cahill & Cori cycle) as well 
as enhanced pyruvate oxidation secondary to reduced 
ß-oxidation and impaired glucose utilisation. As such, 
high lactate, pyruvate and alanine may form a charac-
teristic signature in children with obesity and IR.

Energy demanding processes in immunometabolism
Both Perng et al. (2017) and Troisi et al. (2019) detected 
higher myo-inositol, the most prominent form of 
inositol’s stereoisomers. Myo-inositol serves as a 
precursor molecule to membrane-associated phos-
phatidylinositols (Additional file  1: Fig. S2, phosphati-
dylinositol phosphate metabolism) and secondary 
(immunological) messengers like inositol triphosphate. 
Besides, the downstream metabolisation processes, e.g. 
epimerisation of myo-inositol, are insulin-dependent, 
hinting towards the early existence of IR. Alternatively, 
since myo-inositol can be formed from glucose (Fig. 3, 
2. Glycolysis), enhanced immunometabolism in child-
hood obesity and thus increased demand of myo-ino-
sitol could also be serving as a stimulant to upstream 
gluconeogenesis as well as boosting glycolytic machin-
ery during inflammation.

Obesity has been acknowledged with dysbiosis impact-
ing low-grade inflammation, energy metabolism and 
expanding fat mass. Higher levels of short-chain fatty 
acids have been reported before in faeces (Schwiertz et al. 
2010) and were noted as well for acetate in urine by Lau 
et al. (2018), which is in line with a more anaerobic envi-
ronment including microbial colonic fermentation pro-
cesses in obesity (Fig. 2, 2. Dysbiosis). Despite, Hosking 
et al. (2019) and Saner et al. (2019) observed significantly 
negative associations of serum acetate with IR, for which 
a premise could be sought in the peripheral metabolisa-
tion of acetate. This is, either a consequence of impaired 
Krebs cycle flux (Fig. 3, 7. Krebs cycle) and/or an altered 
bifidobacterial production and metabolisation of acetate 
and thus, inferring suppression of butyrogenic members 
of the gut microbiota by reducing acetate consumption in 
children with obesity (Fig. 2, 2. Dysbiosis) and/or favor-
ing the role of acetate as a substrate for cholesterol syn-
thesis. Furthermore, urinary correlations of acetate with 
succinate and formate have been reported (Lau et  al. 
2018), thereby underpinning the impaired Krebs cycle 
flux hypothesis and providing linkage with bacterial 
metabolism (Rombouts et al. 2021).

Moreover, the microbial metabolite trimethylamine-
N-oxide has been previously seen augmented in diabetes 
type 2 patients and referred to as proatherogenic sub-
stance due to its modulation of cholesterol metabolism 
and subsequent contribution to increased formation 
of foam cells (Fig. 2, 2. Dysbiosis). Hosking et al. (2019) 
and Lau et  al. (2018) reported discrepant findings, i.e. 
decreased serum and increased urinary levels, respec-
tively, which could be resulting from biological variations 
of dietary compositions. This metabolite could promote 
reduction in CYP7A1 activity, which is a vital enzyme 
in the synthesis of bile acids, forms a rate limiting step 
in the catabolism of cholesterol and of which its variant 
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with reduced activity has been ascribed to enhance ath-
erosclerosis (Canyelles et al. 2018).

It is thus reasonable that the composition of gut micro-
biota during early life influences the development of 
overweight and obesity in children and further progres-
sion into related diseases (Gilbert et al. 2016). Indeed, its 
composition and function are shaped by host genetics, 
early life environment and dietary reciprocal interactions 
with significant involvement of metabolome composi-
tions and thus conceivable contribution of the latter in 
disease susceptibility (Snijders et al. 2016).

Amino acid metabolism
Besides carbohydrates, also amino acids are of necessi-
tate importance to immune cells. An overall upsurge of 
amino acids was noted and their potential role in obesity 
and its sequelae were elaborated in the following section. 
In particular, the increase of BCAAs were inferred to dif-
ferentiate prepubertal children with obesity and IR from 
those without IR.

Amino acids and immune function
Histidine metabolism (Additional file  1: Fig. S1) is 
ascribed an essential role in immunometabolism as 
decreased values hint towards an activated immune 
response. Histidine, the precursor of the biogenic hista-
mine, was globally found to be lowered in a consequent 
manner starting at young age by Cho et al. (2017), Saner 
et  al. (2019), Short et  al. (2019) and Zhang et  al. (2019) 
in Asia, Australia, America and Europa, respectively. A 
decrease in carnosine was observed by Cho et al. (2017) 
and ß-alanine was observed higher in children with obe-
sity by Short et al. (2019) (Fig. 3, 10. Scavenging systems). 
In line with decreased values of histidine, elevated levels 
of the gut microbially produced histidine metabolite, i.e. 
imidazole propionate, were found in adults with diabetes 
type 2 and involved directly in IGT and insulin signaling.

Arginine is associated through the urea cycle with the 
occurrence of ornithine and citrulline. Overall, increased 
aspartate and ornithine and decreased arginine and 
citrulline values (Fig.  3, 8. Urea cycle) were observed 
(Suzuki et al. 2019; Butte et al. 2015; Cho et al. 2017; Lee 
et  al. 2018; Chavira-Suárez et  al. 2020; Martos-Moreno 
et  al. 2017; Moran-Ramos et  al. 2017; Short et  al. 2019; 
Perng et al. 2019; Tepper et al. 2016; Mangge et al. 2016). 
A disrupted metabolism of arginine and proline (Addi-
tional file 1: Fig. S1) has been associated with increased 
oxidative stress and generation of triglycerides (Lay et al. 
2014). Arginine has been ascribed positive modulating 
functions in the expression of enzymes involved in ß-oxi-
dation and would stimulate lipolysis as well as inhibit 
gluconeogenesis (McKnight et al. 2010), whilst obesity is 
characterised by opposite directions of those pathways. 

In this regard, a reduced level of arginine, which forms 
a substrate for nitric oxide synthase, has been related to 
increased production of ROS and nitric oxide, especially 
in the mitochondria of the liver (Fig.  3, 5. Lipogenesis). 
The catabolism of arginine thus either results in ornithine 
and urea by arginase activity or in nitric oxide (Zhao et al. 
2020) which both stimulate immune response.

Several authors observed increased glutamate (Suzuki 
et  al. 2019; Lau et  al. 2018; Butte et  al. 2015; Lee et  al. 
2018; Short et  al. 2019) and decreased glutamine levels 
(Cho et  al. 2017; Reinehr et  al. 2015; Zhang et  al. 2019; 
Short et al. 2019) in children with obesity but also in chil-
dren suffering from metabolic syndrome and non-alco-
holic fatty liver disease (Short et al. 2019; Goffredo et al. 
2017). Conventionally, glutamine is used by aerobic pro-
liferating cells for biomass production through the TCA 
cycle. Consequently, a diverted metabolism in hypoxic 
cells as seen by an upregulated production of lactate from 
glucose might parallel rewiring of glutamine metabolism. 
This could then further contribute to increased lipogene-
sis, i.e. reductive carboxylation of α-ketoglutarate (Fig. 3, 
10. Scavenging systems). Depletion of hepatic enzymes 
that catalyse the conversion of glutamate into the scav-
enger molecule glutathione has been acknowledged in 
paediatric obesity (Pastore 2012). In line herewith, a 
decreasing trend of glycine and its acetylated form was 
observed (Suzuki et al. 2019; Butte et al. 2015; Cho et al. 
2017; Zhang et al. 2019; Short et al. 2019).

In the context of immunometabolism, purine and 
pyrimidine metabolism (Additional file  1: Fig. S1) are 
worth mentioning as both glycine and glutamine are 
consumed during biosynthesis of purines like guanine 
(Fig.  3, 9. Purine metabolism), substantiating observed 
lower values of the latter two (Butte et al. 2015; Cho et al. 
2017; Reinehr et al. 2015; Zhang et al. 2019; Short et al. 
2019). In conjunction herewith, Butte et al. (2015), Perng 
et al. (2017), Rocha et al. (2016), Suzuki et al. (2019) and 
Valle et  al. (2015) observed hyperuricemia to be associ-
ated with alterations for a diverse array of metabolic 
features. For instance, uric acid contributes to an oxida-
tive stress environment promoting endothelial dysfunc-
tion and inflammation. In specific, serum uric acid has 
significantly been correlated to C-reactive protein and 
interleukin-6 levels (Perng et al. 2017; Valle et al. 2015). 
Uric acid is even referred to as alarmin, indicative for tis-
sue damage including liver, which may hint towards its 
involvement in systemic low-grade inflammation and 
non-alcoholic fatty liver disease. Remarkably, as Suzuki 
et al. (2019) and Valle et al. (2015) studied 6 to 9-year and 
9 to 10-year old children, a deranged profile of amino 
acids and hyperuricemia might entail the development 
of risk factors that accompany metabolic syndrome 
and cardiovascular disease, even before pubertal onset. 
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Furthermore, Butte et al. (2015) noted increased values of 
the purine xanthine, whilst Perng et al. (2017) observed 
decreased levels of the pyrimidine thymine, which 
respectively serve as direct and indirect precursor mol-
ecules of the final metabolite of purine metabolism, i.e. 
uric acid, thereby pointing towards an accelerated purine 
catabolism in childhood obesity.

Branched‑chain and aromatic amino acids at the metabolic 
crossroads
Decreased muscle utilisation, i.e. BCAA catabolism, 
could explain characteristic plasma elevations of BCAAs 
as they may compete with glutamate for uptake into tis-
sue via the neutral amino acid transporters. Of note is 
that these increments have been widely observed in pedi-
atric obesity, especially when IR was present (Lau et  al. 
2018; Butte et al. 2015; Troisi et al. 2019; Trico et al. 2017; 
Lee et  al. 2018; Martos-Moreno et  al. 2017; Perng et  al. 
2017, 2018, 2019; Moran-Ramos et  al. 2017; Hosking 
et al. 2019; Zhang et al. 2019; Rupérez et al. 2020). Even 
more, the positive association between elevated BCAAs 
and IR was reported as consistent with adult studies 
before by Zhao et al. (2016), underpinning their alarming 
rise in early life.

The BCAAs leucine and isoleucine have been related 
to the PI3K–AKT–mTOR pivotal nutrient-sensitive sign-
aling pathway that is implied in ß-cell growth and pro-
liferation as well as its downstream effector functions 
including glucose uptake by GLUT4 in insulin sensitive 
tissues, i.e. liver, muscle and adipose tissue (Mastrangelo 
et al. 2016; Mangge et al. 2016) (Fig. 2, 8. Dysfunctional 
receptors in insulin signaling).

Kynurenine and kynurenic acid, resulting from one 
of the three major biochemical conversions tryptophan 
undergoes (Additional file 1: Fig. S2, tryptophan metabo-
lism), were reported consistently higher in children with 
obesity according to Butte et  al. (2015) and Perng et  al. 
(2020b). Those metabolites have been associated to 
immune cell activation and low-grade systemic inflam-
mation. Besides, a decrease in indole-3-propionic acid 
was noted by Farook et al. (2015), inferring reduced gut 
microbial transformation of tryptophan. As the latter 
metabolite was ascribed free-radical scavenging and oxi-
dative stress reducing properties (Abildgaard et al. 2017), 
its decrease further underpins the presumed association 
with oxidative immunometabolism and relates to the 
observed dysbiosis in obesity (Pedersen et al. 2016).

The AAA tyrosine was reported as biomarker for 
future insulin resistance and metabolic risk before 
by Zhao et  al. (2016). In this regard, elevated levels of 
phenylalanine and its hydroxylation product, tyrosine, 
provided strong relevance as predisease metabolites 
predictive of the development of cardiovascular disease 

and diabetes type 2 (Suzuki et  al. 2019; Mangge et  al. 
2016) susceptibility from early age on (Suzuki et  al. 
2019; Lee et al. 2018; Martos-Moreno et al. 2017; Perng 
et al. 2018, 2019; Short et al. 2019; Mangge et al. 2016). 
As in the case of glutamate, AAAs could also compete 
for neutral amino acid transporters with BCAAs, lead-
ing to the accumulation of both. Notably, the consistent 
tendency of AAAs and BCAAs and, in particular their 
combination rendered the best performing principal 
component in the study of Butte et  al. (2015) regard-
ing the classification of obesity with IR. Additionally, 
increased values of methionine, cystathionine and 
cysteine in blood were observed (Reinehr et  al. 2015; 
Moran-Ramos et  al. 2017; Frohnert and Rewers 2016; 
Suzuki et  al. 2019), but not by Troisi et  al. (2017) and 
Cho et  al. (2017) in urine. The characteristic oxidative 
environment in obesity is assumed to trigger catabo-
lism of methionine, namely cysteine and methionine 
metabolism (Additional file 1: Fig. S1), yet not up to the 
point of glutathione production given the decreased 
levels of glycine. In parallel, the generation of cysteine/
cystine was increased, which could act as an inhibitor 
for tyrosine aminotransferase and thus lead to the accu-
mulation of tyrosine and its precursor phenylalanine. 
The rationale for this event to occur in the obese state 
is further underpinned by the postulation that inhibi-
tion of tyrosine aminotransferase goes together with 
the attenuation of α-ketoacid dehydrogenase enzyme 
activities, corresponding with its reduced activity in a 
variety of insulin-sensitive tissues (Adams 2011).

BCAAs could serve as substrates for gastrointestinal 
microbial fermentation into products like short-chain 
fatty acids which protect intestinal barrier integrity 
(Quan et  al. 2020), inferring an obesity-induced dys-
biotic drift and increased gastrointestinal membrane 
permeability (Fig.  2, 2. Dysbiosis). In line herewith, 
short-chain fatty acids have been appointed a role in 
microbial production of myristoleic acid, an unsatu-
rated long-chain fatty acid that has been attributed 
anti-obesity effects through brown tissue activation 
(Quan et  al. 2020). Thus, a bidirectional interaction 
of an obesogenic environment and the microbiome is 
very likely to occur already in childhood, i.e. metabolic 
interactions shaping the host’s microbiome and gut 
microbes modulating host metabolism. Furthermore, 
increments of BCAAs in insulin-resistant individu-
als with obesity have been correlated to a specific gut 
microbiome (Lee et al. 2019). This is, an enriched bio-
synthetic potential for BCAAs on the one hand and, on 
the other hand, the deprivation of genes that encode 
bacterial inward transporters for BCAAs to systemic 
circulation by an increased gut permeability (Pedersen 
et al. 2016).
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Conclusion
Metabolomics studies on childhood obesity have so far 
enabled to shed light on the existence of differentiating 
metabolic profiles. Both systemic low-grade inflamma-
tion and hyperglycemia, which instigate disease develop-
ment, were reflected in aberrations of several metabolites 
related to lipid, carbohydrate and amino acid. Remarka-
bly, the main metabolites at the crossroad of dysregulated 
metabolic pathways could be tracked down to one central 
disturbance, i.e. impending IR. However, as internation-
ally agreed reference measures for (ab)normal insulin 
sensitivity during childhood are still lacking, this sys-
tematic review assembled metabolite patterns of obesity 
and -related IR towards prompt signalisation of high-risk 
phenotypes.

In essence, a pronounced higher, yet inefficient utilisa-
tion of carbohydrates and fatty acids was evinced which 
may be attributed to the cell membrane hypothesis of 
IR and mitochondrial toxicity. In congruency, impaired 
TCA cycle flux and ß-oxidation rise already from early 
on. In general, the central carbon metabolism was shifted 
towards hypoxic conditions in children with obesity 
as high pyruvate, lactate and alanine served as markers 
of disrupted metabolism occurring early in life. Moreo-
ver, the ubiquitous elevation of BCAAs in obesity was 
involved in dysregulated ß-oxidation, stimulated gluco-
neogenesis, reduced ketogenesis and increased gastroin-
testinal membrane permeability and could therefore be 
a characteristic differentiating feature for children with 
obesity and resistance to insulin versus the non-resistant 
ones.

Among the heterogeneities observed between the stud-
ies reviewed, the most important influencing factors with 
regard to the metabolome and lipidome were considered 
ethnicity, diet and physical activity. By globally assessing 
the childhood obesity epidemic, i.e. the inclusion of stud-
ies performed in America, Asia, Australia and Europe, 
it was attempted to account for such covariates impact-
ing the metabolism of children. Also, a high number of 
studies that were included in this systematic review had 
a rather small sample size which might burden the false 
discovery rate of the appointed metabolites as poten-
tial candidate biomarkers in childhood obesity and its 
associated comorbidities. However, as most metabolites 
were retrieved in multiple included papers, their repro-
ducibility was considered acceptable. Thus, despite such 
limitations, several metabolites and in particular those 
belonging to lipid and amino acid metabolism could be 
ascribed a role in future risk of metabolic disease onset 
given their recurrence in diverse metabolic pathways. 
Therefore, prolonged longitudinal research, which is 
to date very scarce, is warranted to confirm their value 
as predictive biomarkers in early risk-stratification as 

well as target intervention studies to validate rewiring 
of dysfunctional pathways, reverting metabolic disease 
onset and thus confirming their potential in tailored 
interventions.
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