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Abstract 

Background:  Cardiotoxicity is a common complication following anthracycline chemotherapy and represents one of 
the serious adverse reactions affecting life, which severely limits the effective use of anthracyclines in cancer therapy. 
Although some genes have been investigated by individual studies, the comprehensive analysis of key genes and 
molecular regulatory network in anthracyclines-induced cardiotoxicity (AIC) is lacking but urgently needed.

Methods:  The present study integrating several transcription profiling datasets aimed to identify key genes associ-
ated with AIC by weighted correlation network analysis (WGCNA) and differentially expressed analysis (DEA) and also 
constructed miRNA-transcription factor-gene regulatory network. A total of three transcription profiling datasets 
involving 47 samples comprising 41 rat heart tissues and 6 human induced pluripotent stem cell-derived cardiomyo-
cytes (hiPSCMs) samples were enrolled.

Results:  The WGCNA and DEA with E-MTAB-1168 identified 14 common genes affected by doxorubicin admin-
istrated by 4 weeks or 6 weeks. Functional and signal enrichment analyses revealed that these genes were mainly 
enriched in the regulation of heart contraction, muscle contraction, heart process, and oxytocin signaling pathway. 
Ten (Ryr2, Casq1, Fcgr2b, Postn, Tceal5, Ccn2, Tnfrsf12a, Mybpc2, Ankrd23, Scn3b) of the 14 genes were verified 
by another gene expression profile GSE154603. Importantly, three key genes (Ryr2, Tnfrsf12a, Scn3b) were further 
validated in a hiPSCMs-based in-vitro model. Additionally, the miRNA-transcription factor-gene regulatory revealed 
several top-ranked transcription factors including Tcf12, Ctcf, Spdef, Ebf1, Sp1, Rcor1 and miRNAs including miR-
124-3p, miR-195-5p, miR-146a-5p, miR-17-5p, miR-15b-5p, miR-424-5p which may be involved in the regulation of 
genes associated with AIC.
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Background
Anthracycline chemotherapy maintains a prominent role 
in the treatment of various types of cancer, such as breast 
cancer, sarcoma, lymphoma and leukemia. However, car-
diotoxicity, a well-known and major side effect following 
treatment with anthracyclines, represents a serious limi-
tation to deliver optimal chemotherapy to cancer patients 
(Vejpongsa and Yeh 2014). As documented, anthracy-
clines-induced cardiotoxicity (AIC) is cumulative and 
dose-dependent, and irreversible. A devastating cardio-
toxic effect of doxorubicin, an typical anthracycline com-
pound, is principally heart failure with incidence rates 
of 3%, 7%, and 18% subjected to an accumulative dose 
of 400, 550 and 700 mg/m2, respectively (Shabalala et al. 
2017). Since the cardiotoxicity is usually manifested tar-
dily and undetectable for many years, it remains a lifelong 
threat. Even after decades of investigation and exten-
sive efforts on identifying strategies to prevent or treat 
AIC, little broad consensus regarding the best approach 
was reached due to the incomprehension of pathogen-
esis. Therefore, the identification of the molecular basis 
of AIC is desperately needed for the discovery of novel 
pharmacological target and potential mechanism.

Although accumulative evidence has revealed that 
multifactorial mechanism may account for AIC includ-
ing excessive oxidative stress, inhibition of topoisomer-
ase 2β, accumulation of toxic metabolites, inflammation, 
alterations in iron (Fe2+) and calcium (Ca2+) homeosta-
sis, mitochondriopathy, ErbB2/ERbB4 and Neuregulin-1 
signaling, the exact mechanism remains unclear (Corre-
mans et al. 2019). With the application of high-through-
put microarray technology, a growing of studies were 
conducted in attempt to investigate potential genes and 
mechanisms involved in AIC. However, most studies just 
concentrated on the screening of differentially expressed 
genes and did not describe functionality of a gene within 
a whole system or network of interacting pathways. To 
describe the interconnection between genes with similar 
expression patterns potentially associated with a feature, 
these genes who may be functionally related were ana-
lyzed by using the algorithm, weighted gene co-expres-
sion network analysis (WGCNA) at the whole system 
level and further to delineate the relationships between 
different functional elements (Langfelder and Horvath 
2008). WGCNA is able to construct free-scale gene co-
expression networks to explore the relationships between 

different gene sets or between gene sets and phenotypes 
or traits. WGCNA has been widely applied to screen for 
biological processes and treatment targets as well as diag-
nostic biomarkers related to diseases.

In the present study, we employed for the first time 
the WGCNA analysis with a microarray data involving 
a large sample size to identify key genes associated with 
AIC, and we further verified the finding by another tran-
scription profiling data. The key genes cooperating the 
impact of doxorubicin (DOX) on cardiomyocytes were 
further validated in human induced pluripotent stem 
cell-derived cardiomyocytes (hiPSCMs) and a miRNA-
transcription factor-genes regulatory network was also 
constructed. The finding of the study may provide new 
insights into the mechanism and therapeutic targets of 
AIC.

Methods
Data collection and gene expression analysis 
of transcription profiling
Gene expression profile dataset E-MTAB-1168 and rel-
evant treatment data were obtained from ArrayExpress 
(https://​www.​ebi.​ac.​uk/​array​expre​ss/). E-MTAB-1168 
was performed on Affymetrix GeneChip Rat Genome 
230 2.0, resulting in 89 transcription profiling data of rat 
heart tissues treated with saline or doxorubicin 1, 2 or 
3 mg/kg by intravenous injection once per week for 2, 4 
or 6 weeks (66 samples for doxorubicin and 23 samples 
for saline). Of dataset E-MTAB-1168, samples with a 
cumulative dose of 12 mg/kg were selected to construct 
co-expression networks and identify core genes associ-
ated with AIC. Expression profile datasets GSE154603 
and GSE157282 were downloaded from Gene Expres-
sion Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​
gov/​geo/). GSE154603 was performed on Illumina HiSeq 
4000 (Rattus norvegicus) and comprised of 16 transcrip-
tion profiling data of heart tissue of rats treated with 
saline (10 samples) or doxorubicin (6 samples) 3  mg/
kg by intravenous injection once per week for 5  weeks. 
GSE157282 was performed on Illumina NovaSeq 6000 
(Homo sapiens) and 6 samples of hiPSCMs treated 1 μM 
doxorubicin (DOX) or control were selected. Dataset 
GSE154603 and GSE157282 were used to verify the core 
genes extracted from WGCNA analysis and confirmed 
the key genes in the present study.

Conclusions:  Collectively, the current study suggested the important role of the key genes, oxytocin signaling path-
way, and the miRNA-transcription factor-gene regulatory network in elucidating the molecular mechanism of AIC.

Keywords:  Anthracyclines-induced cardiotoxicity, Weighted correlation network analysis, Differentially expressed 
analysis, Regulatory network
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Data preprocessing and differentially expressed genes 
(DEGs) analysis
Raw expression profiles data (.CEL format) were read 
with affy package and normalized by Robust Multiarray 
Average method followed by populating missing value 
with k-Nearest Neighbor method in R software if neces-
sary (Irizarry et  al. 2003; Troyanskaya et  al. 2001). The 
normalized expression matrix was then annotated by 
the annotation file attached with the raw expression pro-
file. The differentially expressed analysis (DEA) was per-
formed for E-MTAB-1168 with limma R package and the 
differentially expressed genes (DEGs) were screened out 
with the criterion “FDR (false discovery rate) < 0.05 and 
|log2 fold change (FC)|> 1”. Moreover, the samples from 
the GSE154603 were divided into two groups accord-
ing to the treatment (doxorubicin or control), and then 
the DEGs were identified using DESeq2 R package after 
annotating with the Rattus_norvegicus.Rnor_6.0.103.gtf. 
For the GSE157282 (3 doxorubicin and 3 control sam-
ples), the process was performed with the online pipe-
line OneStopRNAseq (Li et  al. 2020) with P < 0.05 and 
|log2FC|> 0.96 as significant. The clustering analysis and 
principal component analysis (PCA) based on normal-
ized expression matrix were performed to detect outlier 
samples and all differentially expressed analyses were 
performed following removal of the outlier samples.

Co‑expression network construction
First, the normalized expression profile data of 
E-MTAB-1168 was examined to evaluate whether 
the samples and genes were of sufficient quality. Sub-
sequently, the genes in the top 25% of variance were 
selected to construct the scale-free co-expression net-
work using the WGCNA package in R after excluding the 
outlier samples if any. Initially in the WCGNA, the pear-
son’s correlation matrices and average linkage method 
were both performed for all pair-wise genes. Then, the 
correlation matrix was transformed into a weighted 
adjacency matrix through a power function. A gradient 
test was performed to analyze the scale independence 
and average connectivity of modules at the condition 
of different power values. After establishing the most 
appropriate power value (also called soft-thresholding 
parameter, β), the adjacency matrix was transformed into 
a topological overlap matrix (TOM), which could meas-
ure the network connectivity of a gene defined as the sum 
of its adjacency with all other genes for network genera-
tion, and the corresponding dissimilarity (1-TOM) was 
calculated. Average linkage hierarchical clustering was 
established in line with the TOM-based anisotropy meas-
urement with a minimum size of 30 for the gene dendro-
gram to classify similar genes into one module.

Identification of core modules correlated with treatment 
traits
Two approaches were utilized to identify core mod-
ule correlated with DOX treatment. Gene significance 
(GS) was defined as the log10 transformation of the 
P value (GS = logP) on the basis of the linear regres-
sion between traits and gene expression. Addition-
ally, module significance (MS) was calculated by the 
average GS of all genes in one module. Generally, the 
module with the absolute MS ranked first or second 
was considered to be the module most closely cor-
related with a phenotype trait. Furthermore, module 
eigengenes (MEs) were defined as the first principal 
component of a given module, which was considered a 
representative of the gene expression profiling. Addi-
tionally, the correlation between MEs and clinical 
traits (DOX treatment) were calculated to identify the 
relevant module. The module with the maximal cor-
relation coefficient among all the selected modules 
was usually considered as the one related with DOX 
treatment. Combining the two methods, the module 
highly correlated with DOX treatment was selected 
ultimately for further analysis.

Functional enrichment and protein–protein interaction 
(PPI) analysis of core genes and identification of hub genes
First, the common upregulated or downregulated 
DEGs in E-MTAB-1168 were determined by intersec-
tion of DEGs induced by 4-week and 6-week DOX 
treatment. Similarly, the common module genes gen-
erated by WGCNA were determined by intersection 
of genes in the module representative of 4-weeks and 
6-weeks DOX treatment. Then, the core genes were 
defined as the common module genes in the common 
DEGs cluster. The Gene ontology (GO) including bio-
logical process (BP), molecular function (MF), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis for the core genes were performed 
with the clusterProfiler (Yu et al. 2012), and the enrich-
ment terms with a P-value < 0.05 were considered 
significant. The top ten terms with the least P-value 
were illustrated. The PPI for the core genes was also 
performed by using the STRING database. Addition-
ally, the core genes were verified with the GSE154603 
dataset. The shared genes between the core genes and 
DEGs in GSE154603 were defined as the key genes 
associated with the AIC and the correlation analysis 
between key genes were carried out with the GGally 
package (Barret Schloerke et al. 2021). Ultimately, the 
key genes cooperating the impact of DOX on cardio-
myocyte were further validated by GSE157282 based 
on hiPSCMs.
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miRNA‑transcription factor‑genes regulatory network 
construction
The miRNAs which may target the key genes were pre-
dicted with multiMiR R package and only experimen-
tally validated miRNAs-genes regulatory network were 
selected (Ru et  al. 2014). The transcription factors 
(TF) which may regulate the key genes were predicted 
with ChIPBase v2.0 based on ChIP-seq data (http://​
rna.​sysu.​edu.​cn/​chipb​ase/) to construct the TF-gene 
network (Zhou et  al. 2017). Finally, the miRNA-TF-
genes regulatory network was established and visual-
ized with Cytoscape software.

Results
Weighted co‑expression network construction 
and significant modules identification
According to the established scheme, samples with a 
doxorubicin cumulative dose of 12 mg/kg administrated 

by 3  mg/kg per week for 4  weeks or 2  mg/kg per week 
for 6  weeks along with the corresponding controls in 
E-MTAB-1168 were selected, resulting in 15 samples (10 
DOX and 5 control) for 4 weeks and 10 samples (5 DOX 
and 5 control) for 6  weeks after removing the outlier 
samples. After the quality control, the clustering analysis 
indicated well similarities within groups. The flow dia-
gram of the study is shown in Fig.  1. For 4-week treat-
ment, 3739 in the top 25% of variance out of total 14,956 
genes from 15 samples were kept for the WGCNA analy-
sis in the study. As clustered in Fig. 2A, the selected 3739 
genes with similar expression patterns were grouped into 
modules via the average linkage hierarchical clustering 
and Pearson’s correlation method. An unsigned scale-
free network was constructed with the most appropriate 
power of the soft-thresholding automatically selected by 
the WGCNA software, and 8 modules were excavated 
when satisfied the minimal 30 genes in the module. As 

Fig. 1  Flow diagram of the analysis procedure

http://rna.sysu.edu.cn/chipbase/
http://rna.sysu.edu.cn/chipbase/
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shown in Fig. 2A, the results showed that the blue mod-
ule exhibited a higher correlation with doxorubicin 
treatment than other modules (P = 9 × 10–6, R2 = 0.89). 
Therefore, the blue module involving 446 genes was iden-
tified as the clinical significant module associated with 
AIC for 4-week treatment. Similarly, as shown in Fig. 2B, 
for 6-week treatment, the WGCNA process suggested 12 
modules for consideration. The blue module involving 
853 genes was identified as the clinical significant module 
with a higher correlation with AIC (P = 0.001, R2 = 0.86). 
To assess the robustness of the genes suggested by 
WGCNA, only the common genes between 4-week and 
6-week treatment were considered to be potentially asso-
ciated with AIC, which resulted in 179 genes for further 
analysis (Fig. 3).

Identification of differentially expressed genes (DEGs) 
and core genes
The approach of differentially expresses analysis was 
also applied to excavate genes associated with AIC. 
The expression matrices of 4-week and 6-week treat-
ment in E-MTAB-1168 were obtained after data pre-
processing abovementioned. For the 4-week treatment, 
132 DEGs including 85 upregulated and 47 downregu-
lated genes were identified with the criterion FDR < 0.05 
and |log2FC|> 1. Similarly, for the 6-week treatment, 87 
DEGs including 67 upregulated and 20 downregulated 
genes were identified. As a result, 58 common DEGs 
among 4-week and 6-week treatment were revealed by 
using the Venn diagram (Fig.  3). Furthermore, as previ-
ously defined, 14 core genes were identified according 
to the intersection analysis of 179 genes suggested by 

WGCNA and 58 common DEGs suggested by differen-
tially expresses analysis (Fig. 3). The 14 core genes were 
considered significant for AIC.

Functional enrichment analysis, protein–protein 
interaction (PPI) construction and verification of core 
genes
GO and KEGG enrichment analysis were performed 
using clusterProfiler to explore the function and path-
ways of the 14 core genes. As shown in Fig. 4A–C, the 

Fig. 2  WGCNA for genes associated with AIC using E-MTAB-1168. A1–5 for 4-week doxorubicin treatment, B1–5 for 6-week doxorubicin treatment. 
A1–5 1–5 in order: Clustering dendrogram of rat heart tissue samples; analysis of the scale-free fit index for various soft-thresholding powers; 
analysis of the mean connectivity for various soft-thresholding powers; dendrogram of all differentially expressed genes clustered based on a 
dissimilarity measure (1-TOM); heatmap of the correlation between module eigengenes and doxorubicin treatment

674 267179
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74 2958
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WGCNA DEGs

Fig. 3  Intersection analysis WGCNA and DEA for genes modulated by 
4-week and 6-week doxorubicin treatment. Figure below represents 
the intersection analysis WGCNA and DEA results
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results for GO enrichment analysis showed that the 
core genes were mainly enriched in BP terms includ-
ing positive regulation of heart contraction, muscle 
contraction, striated muscle contraction, regulation of 
heart contraction, muscle system process, heart con-
traction, heart process, regulation of striated muscle 
contraction, positive regulation of blood circulation, 
blood circulation; in MF terms including neuropeptide 
receptor binding, alpha-actinin binding, actinin binding 
and sulfur compound binding. KEGG enrichment anal-
ysis showed that the core genes were mainly enriched 
in oxytocin signaling pathway. Furthermore, the PPI for 
the core genes was also constructed and illustrated as 
Fig.  4D using the STRING database. To further verify 
the core genes, another transcription profiling data 
GSE154603 with 16 samples treated with doxorubicin 
or saline was employed. Following data preprocessing 
and quality assessment, 9 DOX samples and 5 control 

samples were enrolled for analysis after removing one 
DOX and one control outlier samples. Five hundred 
and ninty-eight DEGs including 214 downregulated 
and 384 upregulated genes were identified. The heat-
map and volcano plots for the DEGs analysis is shown 
in Fig. 5. Following an intersection analysis between the 
14 core genes and 598 DEGs from GSE154603, 10 core 
genes were verified. The gene expression changes in 
different datasets were listed in Table 1. In light of the 
interaction suggested by PPI, the correlations among 
the 10 verified core genes were analyzed and presented 
as Fig. 6.

miRNA‑TF‑gene regulatory network construction and key 
genes identification
Then, we explored the potential TF and miRNAs which 
may target the 10 core genes by using the multiMiR soft-
ware and ChIPBase v2.0 online tool. The miRNAs-genes 

Fig. 4  Enrichment analysis and PPI analysis. A Biological process in the functional enrichment analysis for the 14core genes. B Molecular function 
in the functional enrichment analysis for the 14 core genes. C Oxytocin signaling pathway revealed by KEGG enrichment analysis for the 14 core 
genes. The star represents the core genes in oxytocin signaling pathway. D PPI analysis using STRING database
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and TF-genes relationships were both experimentally 
validated. The regulatory network of miRNA-TF-gene 
was established, as shown in Fig. 7, involving 111 TFs, 36 
miRNAs and 10 core genes. In this network, there were 

60 miRNA-gene interaction pairs and 184 TF-gene inter-
action pairs. In addition, the topological properties of the 
regulatory network were analyzed with NetworkAnalyzer 
plug‑in in the Cytoscape. The top six core genes, miRNAs 

Fig. 5  DEA to verify the 14 core genes. A Heatmap of the DEGs from GSE154603 dataset. B Volcano plot of the DEGs from GSE154603 dataset. C 
Intersection analysis between DEGs and the 14 core genes for a verification

Table 1  Validated DEGs in doxorubicin-induced cardiotoxicity

hiPSCM human induced pluripotent stem cell (hiPS)-derived cardiomyocyte

Gene symbol Gene ID E-MTAB-1168 (12 mg/
kg)

GSE154603 
(15 mg/kg)

Change Gene symbol GSE157282 (1 μM) Change

4 week 6 week 5 week HiPSCM (24 h)

Casq1 686019 1.209 1.180 1.572 Up CASQ1 – –

Fcgr2b 289211 1.436 1.052 1.356 Up FCGR2B – –

Postn 361945 1.446 1.735 1.422 Up POSTN – –

Tceal5 680282 2.452 1.611 1.449 Up TCEAL5 – –

Ryr2 689560 − 1.382 − 1.355 − 1.463 Down RYR2 − 0.962 Down

Ccn2 64032 1.250 1.067 2.135 Up CCN2 – –

Tnfrsf12a 302965 1.202 1.047 2.577 Up TNFRSF12A − 2.350 Down

Mybpc2 292879 1.460 1.648 1.475 Up MYBPC2 – –

Ankrd23 316330 2.128 1.459 2.133 Up ANKRD23 – –

Scn3b 245956 1.793 1.435 2.975 Up SCN3B 1.938 Up
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and TFs with high degree were listed in Table 2. To ensure 
the rationality of the finding applied to people, the core 
genes were further confirmed by the data of GSE157282 
based on hiPSCMs. Six samples in GSE157282 including 
three treated with 1  μM doxorubicin and three treated 
with control were applied to perform differentially 
expresses analysis, resulting in 7173 DEGs. Three core 
genes Ryr2, Tnfrsf12a and Scn3b shared with 7173 DEGs 
were confirmed as key genes associated with AIC. The 
heatmap, volcano plots for the DEGs analysis and inter-
section analysis are shown in Additional file 1: Fig. S1.

Discussion
Cardiotoxicity is a very common side effect in cancer 
patients receiving anthracyclines chemotherapy, how-
ever, its exact mechanism remains unclear. In the pre-
sent study, we, for the first time employed a systematic 
biology approach to explore the molecular mechanism 
of AIC at a systems level by integrating several genome-
wide gene expression datasets and further validated the 
results in hiPSCMs in attempt to verify the applicability 
in human disease. Our study cooperating the largest sam-
ple size to date was also the first study to investigate the 
mechanism of AIC with multi-validation method. In the 
study, we constructed co-expression modules associated 
with AIC by the WGCNA and DEA methods, resulting 
in ten core genes which were verified by several different 
transcription profiling datasets. Of them, three key genes 
Ryr2, Tnfrsf12a and Scn3b were further validated in hiP-
SCMs. Signal pathway enrichment analysis suggested 
that oxytocin signaling pathway might be of importance 
for AIC. Moreover, a miRNA-TF-gene regulatory net-
work was constructed for the better understanding of 

AIC mechanism. Most of them are rarely reported in 
AIC.

Dose-related cumulative and irreversible cardiotox-
icity is a common and serious complication associated 
with the clinical use of anthracyclines. In the present 
study, a cumulative dose of 12–15  mg/kg was deemed 
appropriate to mimic the doxorubicin cardiotoxicity in 
the animal model (Desai et  al. 2013, 2014; Gava et  al. 
2013; Kharin et  al. 2013). Initially, microarray-based 
gene expressions of rats receiving a cumulative dose 
of 12  mg/kg doxorubicin administrated with 3  mg/kg 
once per week for 4  weeks or 2  mg/kg once per week 
for 6  weeks along with corresponding controls in the 
E-MTAB-1168 study were selected to identify genes 
associated with AIC. To minish the possible effect of 
different administration schemes, we applied two meth-
ods: WGCNA and DEA. We initially identified 179 
genes by WGCNA between 4 and 6 weeks. Similarly, 58 
DEGs were obtained by DEA. The same DEGs between 
4 and 6 weeks revealed that there were some similarities 
in biological foundation of AIC with same cumulative 
dose of doxorubicin regardless of different administra-
tion schemes. However, the WGCNA method seemed 
to be capable of discovering more potential important 
genes. To enhance the reliability of genes associated 
with AIC, the intersection analysis between WGCNA 
and DEA was performed, resulting in 14 genes which 
were identified as the core genes. GO enrichment 
analysis revealed that the 14 core genes were likely to 
be mainly involved in the regulation of heart contrac-
tion, muscle contraction and heart process, which fitted 
well with concept of a myocardial injury phenotype in 
AIC as described previously. KEGG enrichment analysis 
revealed that oxytocin signaling pathway may be signifi-
cant for AIC. Although few study has investigated the 
role of oxytocin signaling pathway in AIC, a previous 
study demonstrated that oxytocin may have a thera-
peutic effect in doxorubicin-induced cardiomyopathy 
in a rat in-vivo model (Taskiran et al. 2019). Moreover, 
oxytocin signaling pathway was found to be inhibited at 
various degrees in ischemia/reperfusion-induced injury 
and atherosclerotic cardiovascular disease, and pre-
clinical studies have also demonstrated its cardiopro-
tective effects (Jankowski et al. 2020; Wang et al. 2019; 
Xiong et al. 2020). These findings suggest that oxytocin 
signaling pathway may be inhibited by doxorubicin 
in cardiomyocyte, which is needed to be validated by 
further experiments. In addition, the PPI analysis was 
performed to analyze the correlations among the core 
genes. The results suggested an underlying relationship 
among several genes (Fig. 4D), which was supported by 
the correlation analysis (Fig.  6). However, the underly-
ing mechanism remains to be elucidated.
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Fig. 6  Correlation analysis for the 10 core genes with the verification 
dataset GSE154603
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To validate the core genes, we applied a mRNA-seq 
gene expression profile to perform DEA. Ten shared 
with the 14 core genes including nine upregulated 
genes (Casq1, Fcgr2b, Postn, Tceal5, Ccn2, Tnfrsf12a, 
Mybpc2, Ankrd23, Scn3b) and one downregulated gene 
(Ryr2) were identified, which were deemed significant. 
Some of them have been reported to be implicated in 
the development of AIC. For example, the expression 
of pro-fibrotic cytokine connective tissue growth fac-
tor Ccn2, also known as Ctgf, was increased by doxoru-
bicin treatment, but found reduced following lovastatin 
protection against AIC. Consistent with our finding, 
previous studies have demonstrated the important 
role of Ryr2 in AIC(Pessah, 1992; Takaseya et al. 2004). 
Doxorubicin could induce calcium release of sarcoplas-
mic reticulum to induce AIC by directly binding to the 

cardiac-type ryanodine receptor to inhibit the activ-
ity of Ryr2 (Hanna et al. 2017; Saeki et al. 2002). These 
findings along with our results suggest that the regula-
tion of Ryr2 expression or activity may be a potential 
strategy for the treatment of AIC. Although the rest 
novel genes including Casq1, Fcgr2b, Postn, Tnfrsf12a, 
Ankrd23 and Scn3b have never been reported in AIC, 
several of them have been demonstrated associated 
with cardiomyopathy, myocardial ischemia–reperfu-
sion injury, viral myocarditis, fibrosis, cardiac remod-
eling, arrhythmia and cardiac hypertrophy disease, 
respectively (Hasdemir et  al. 2010; Li et  al. 2009; Ma 
et al. 2016; Yao et al. 2020; Zhao et al. 2018).

Furthermore, a mRNA-seq gene expression profile 
based on hiPSCMs was used to verify our finding for gen-
eralization in human disease. As a result, three key genes 
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(Ryr2, Tnfrsf12a and Scn3b) were identified. As expected, 
the changes of Ryr2 and Scn3b expression in hiPSCMs 
were consistent with that in animal models. The role of 
Ryr2 in AIC has been discussed above. Although the 
role of Scn3b in AIC has not been reported ever, the 
increased expression of Scn3b modulated by interleu-
kin 2 was found to be associated with arrhythmia (Zhao 
et al. 2016). On the contrary, Scn3b knockout exhibited 
abnormal sino-atrial and cardiac conduction properties 
in mice (Hakim et  al. 2010). These findings implied the 
importance of stabilizing Scn3b in maintaining normal 
rhythm. Considering the commonplace of arrhythmia 
events in patients treated with doxorubicin, it is biologi-
cally plausible to attach importance to the crucial role of 
Scn3b in AIC. However, the changes of Tnfrsf12a expres-
sion induced by doxorubicin in hiPSCMs was contradic-
tory to that in the heart tissues in animal models. Given 
the knowledge that the pathomechanism of AIC is com-
plicated including inflammatory response, fibrosis, oxi-
dative damage, et  al. and doxorubicin usually induces 
proliferation of cardiac fibroblasts but apoptosis in heart, 
inflammatory and fibrotic factors is momentous in medi-
ating AIC (Cappetta et al. 2017). Tnfrsf12a also known as 
Fn14 (fibroblast growth factor-inducible 14) or Tweakr is 
a member of TNF receptor superfamily which play a vital 
role in mediating fibrosis and ubiquitously expressed in 
various cells especially cardiac fibroblasts in the heart 
(Das et al. 2018; Lyu et al. 2018; Novoyatleva et al. 2013). 

Hence, there is a possibility to explain the conflict that 
the different expression pattern of Tnfrsf12a in heart tis-
sues and cardiomyocytes induced by doxorubicin may be 
associated with different effects of doxorubicin on car-
diac fibroblasts and cardiomyocytes.

Additionally, a regulatory network, containing the 
genes, TFs and miRNAs, was constructed for a better 
understanding of the core genes in the development of 
AIC. According to topological property analysis, several 
top-ranked TFs and miRNAs were identified as potential 
factors affecting the core genes (Table 2). In fact, some of 
them have been reported to play a role in AIC in previous 
studies. For example, previous study found that interfer-
ing with the stability of the Sp1/Stat3 transcription com-
plex by atorvastatin protected effectively cardiomyocyte 
from doxorubicin toxicity by modulating survivin expres-
sion (Oh et al. 2020). Specific silencing of the top-ranked 
miR-146a-5p was found to increase doxorubicin-induced 
cardiomyocytes death by suppressing its targets (Milano 
et al. 2020). Whereas, upregulation of miR-17-5p induced 
by dexrazoxane exhibited a cardioprotective role against 
doxorubicin-induced apoptosis of cardiomyocyte (Yu 
et  al. 2020). Our previous study found that miR-15b-5p 
was involved in doxorubicin-induced cardiotoxicity via 
inhibiting Bmpr1a Signal in H9c2 cardiomyocyte (Wan 
et  al. 2019). Although the exact mechanism remains 
largely unknown, the regulatory network we developed 
may provide important clues for further experimental 

Table 2  Topological parameters of key nodes

TF transcription factor

Gene symbol Attribution Average shortest 
pathLength

Betweenness centrality Closeness centrality Degree

Ccn2 Core gene 2.12179487 0.50864445 0.47129909 64

Ankrd23 Core gene 2.31410256 0.38657305 0.43213296 55

Tnfrsf12a Core gene 2.55769231 0.17317216 0.39097744 30

Scn3b Core gene 2.62179487 0.1790707 0.38141809 29

Mybpc2 Core gene 2.73717949 0.10746715 0.36533958 23

Ryr2 Core gene 2.81410256 0.06456454 0.35535308 14

Tcf12 TF 2.28205128 0.05201617 0.43820225 5

Ctcf TF 2.58974359 0.03352043 0.38613861 5

Spdef TF 2.21794872 0.04987317 0.45086705 5

Ebf1 TF 2.82051282 0.018577 0.35454545 4

Sp1 TF 2.32051282 0.02773417 0.43093923 4

Rcor1 TF 2.33333333 0.02424099 0.42857143 4

miR-124-3p miRNA 2.75641026 0.01849095 0.3627907 4

miR-195-5p miRNA 2.42307692 0.01558517 0.41269841 3

miR-146a-5p miRNA 2.67948718 0.01365674 0.37320574 3

miR-17-5p miRNA 2.92307692 0.01346221 0.34210526 3

miR-15b-5p miRNA 2.98717949 0.00362107 0.33476395 2

miR-424-5p miRNA 2.98717949 0.00362107 0.33476395 2
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validation and investigation regarding combinational 
regulation of miRNAs and TFs on the core genes in AIC.

Several limitations should be acknowledged in the 
present study. First, although we can propose some tar-
get genes involved in AIC by external validation using 
transcriptome data of rats and human, the sample size 
in the discovery (E-MTAB-1168) and validation datasets 
(GSE154603 and GSE157282) are small and our find-
ings warrant further validation by molecular biology 
experiments. Second, the animals used in the current 
study do not have cancers and some confounding fac-
tors such as co-morbidities and concomitant medications 
are not considered. However, some modifications inher-
ent to cancer pathophysiology as well as the confound-
ing factors potentially impact the degree of AIC. Thus, 
future experimental design should take these conditions 
into account as much as possible. Third, variability in 
response to doxorubicin among different species due to 
the discrepancy in metabolism, genome, physiology con-
ditions widely exist, therefor the data obtained using rats 
should be generalized cautiously. Fourth, changes in gene 
expression may not necessarily be reflective of changes 
in protein levels, the causal role of identified genes in the 
pathogenesis of AIC should be further verified at protein 
level.

Conclusions
In conclusion, our study identified several key genes 
particularly Ryr2, Tnfrsf12a and Scn3b and the oxy-
tocin signaling pathway in association with AIC. We 
also constructed a regulatory network to better under-
stand the potential mechanism of these key genes in 
the development of AIC. These findings provide novel 
insights into the pathogenesis of AIC and may aid the 
exploration of therapeutic strategy for AIC. However, 
these findings require validation from further advanced 
experiments.
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