
Carrillo‑Sepulveda et al. Molecular Medicine           (2022) 28:30  
https://doi.org/10.1186/s10020-022-00441-4

RESEARCH ARTICLE

Vascular hyperacetylation is associated 
with vascular smooth muscle dysfunction 
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Abstract 

Background:  Advanced type 2 diabetes mellitus (T2DM) accelerates vascular smooth muscle cell (VSMC) dysfunc‑
tion which contributes to the development of vasculopathy, associated with the highest degree of morbidity of 
T2DM. Lysine acetylation, a post-translational modification (PTM), has been associated with metabolic diseases and 
its complications. Whether levels of global lysine acetylation are altered in vasculature from advanced T2DM remains 
undetermined. We hypothesized that VSMC undergoes dysregulation in advanced T2DM which is associated with 
vascular hyperacetylation.

Methods:  Aged male Goto Kakizaki (GK) rats, a non-obese murine model of T2DM, and age-matched male Wistar 
rats (control group) were used in this study. Thoracic aortas were isolated and examined for measurement of global 
levels of lysine acetylation, and vascular reactivity studies were conducted using a wire myograph. Direct arterial 
blood pressure was assessed by carotid catheterization. Cultured human VSMCs were used to investigate whether 
lysine acetylation participates in high glucose-induced reactive oxygen species (ROS), a crucial factor triggering dia‑
betic vascular dysfunction.

Results:  The GK rats exhibited marked glucose intolerance as well as insulin resistance. Cardiovascular complications 
in GK rats were confirmed by elevated arterial blood pressure and reduced VSMC-dependent vasorelaxation. These 
complications were correlated with high levels of vascular global lysine acetylation. Human VSMC cultures incubated 
under high glucose conditions displayed elevated ROS levels and increased global lysine acetylation. Inhibition of 
hyperacetylation by garcinol, a lysine acetyltransferase and p300/CBP association factor (PCAF) inhibitor, reduced high 
glucose-induced ROS production in VSMC.

Conclusion:  This study provides evidence that vascular hyperacetylation is associated with VSMC dysfunction in 
advanced T2DM. Understanding lysine acetylation regulation in blood vessels from diabetics may provide insight 
into the mechanisms of diabetic vascular dysfunction, and opportunities for novel therapeutic approaches to treat 
diabetic vascular complications.
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Background
With about 1.5 million individuals diagnosed each year, 
type 2 diabetes mellitus (T2DM) is becoming one of the 
most prevalent metabolic diseases affecting Americans 
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(Prevention 2020). T2DM is a chronic metabolic disor-
der chiefly characterized by insulin resistance and high 
levels of blood glucose that ultimately lead to debilitating 
disorders of the vascular system (Fowler 2011; Sposito 
et al. 2018; Verges 2015). Vascular complications are the 
leading cause of death among diabetic patients, including 
coronary artery disease and stroke, at a rate two to four 
times higher than non-diabetics (Emerging Risk Factors 
et al. 2010).

While current advances in glucose-lowering medica-
tions have provided optimal blood glucose control in 
diabetic patients, these therapeutics do not abolish the 
progression of diabetic vascular complications (Holman 
et al. 2008; Action to Control Cardiovascular Risk in Dia-
betes Study et al. 2008). Clinical trials have revealed that 
tight glycemic control is not effective in resolving cardio-
vascular complications in both pre-T2DM, as defined by 
an HbA1C between 5.7% and 6.4% (Roberts et  al. 2017; 
Tabak et  al. 2012), and T2DM patients (Cai et  al. 2020; 
Moodahadu et  al. 2014; Despres et  al. 1996; Caballero 
et  al. 1999). Thus, the positive vascular effects of anti-
hyperglycemic therapies during T2DM remains insuffi-
cient. Studies examining therapeutic strategies that can 
simultaneously lower glucose levels and promote vascu-
lar protection are urgently needed. To date, there is no 
treatment specifically targeting vascular complications in 
diabetes.

The prevalence of T2DM and vascular complications 
increases with age. Clinical and experimental studies 
have shown that endothelial dysfunction, character-
ized by impaired endothelium-dependent vasodilation, 
is detected in pre-T2DM and early stages of T2DM 
(Kazuyama et  al. 2009; Su et  al. 2008; Caballero et  al. 
1999). While endothelial dysfunction has been well-char-
acterized in T2DM, VSMC dysfunction, which arises in 
advanced T2DM, remains less studied.

Recent evidence has increasingly shown that glu-
cose triggers post-translational modifications (PTM) 
in diabetes which may play an important role in the 
pathogenesis of diabetic cardiovascular complications 
(Mellor et  al. 2015; Di Tomo et  al. 2021; Zhang et  al. 
2015). Among the PTMs, lysine acetylation, a reversible 
PTM that impacts protein activity, stability, and bind-
ing proteins, has recently been linked to cardiometa-
bolic disorders such as obesity, metabolic syndrome, 
and cardiovascular diseases (Iyer et  al. 2012; Hu et  al. 
2020). Advancements in high resolution mass spec-
trometry revealed that histones are not the sole target 
of lysine acetylation and that several non-histone pro-
teins can also be acetylated and deacetylated, resulting 
in changes to their activity and expression (Choudhary 
et  al. 2009; Sun et  al. 2009; Chen et  al. 2001; Glozak 
et  al. 2005). Lysine N-ε-acetyltransferases, also known 

as KATs, catalyze these reactions by transferring an 
acetyl group from acetyl Co-A to lysine residues found 
on histones and non-histone proteins (Menzies et  al. 
2016). p300/CBP associated factor (PCAF) is a tran-
scriptional co-activator with intrinsic acetyltransferase 
activity that promotes lysine acetylation (de Jong et al. 
2017). Under proinflammatory conditions which affect 
the vasculature, PCAF is upregulated leading to an 
increase in inflammatory proteins and VSMC prolifera-
tion and migration (Qiu et al. 2019).

In the context of diabetes, high levels of global lysine 
acetylation were found in kidneys and correlated with 
diabetic nephropathy (Kosanam et  al. 2014). Moreo-
ver, increased lysine acetylation of p66Shc, a regulator 
of ROS production, was reported to be associated with 
vascular oxidative stress and endothelial dysfunction in 
diabetic mice (Kumar et  al. 2017). However, whether 
lysine acetylation-related mechanisms correlate with 
VSMC dysfunction in advanced T2DM has not yet 
been elucidated.

Our hypothesis, therefore, is that VSMC dysfunction in 
the advanced stage of diabetes is associated with vascular 
lysine acetylation. The aim of this study was to investigate 
whether advanced T2DM increases lysine acetylation in 
the vasculature, specifically in the VSMC, which in turn 
contributes to ROS production, a key component of dia-
betic vascular dysfunction.

Methods
Experimental model of T2DM
Goto Kakizaki (GK) rats, a polygenic non-obese and 
spontaneous model of T2DM, were utilized in this study. 
GK rats were obtained by repetition of selective breed-
ing of glucose intolerant Wistar rats in order to develop a 
non-obese diabetic rodent model which develops T2DM 
without the compounding implications of obesity (Goto 
et  al. 1976). Aged male 48-week-old GK rats (Diabetic 
Group) were obtained from Taconic Biosciences (Albany, 
NY, USA). The age of these rats was selected to reflect 
advanced T2DM (Hjortbak et  al. 2018). Age-matched 
male Wistar rats (Control Group) were obtained from 
Charles River (New York, NY, USA). The rats were main-
tained on a 12-h light–dark cycle, receiving regular ani-
mal chow (Zeigler, Gardners, PA, USA) consisting of 
5.0% fat, 48.7% carbohydrates (3.2% sucrose), and 24.1% 
protein (% total energy) and drinking water ad  libitum. 
All experiments and protocols were conducted in accord-
ance with the National Institutes of Health (NIH) Guide-
lines for the Care and Use of Laboratory Animals and 
approved by the New York Institute of Technology Col-
lege of Osteopathic Medicine (NYIT-COM) Animal Care 
and Use Committee (Animals 2011).
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Metabolic parameters
Blood samples were collected at the experimental 
endpoint. After fasting for 8  h, blood samples were 
obtained from the tails of both diabetic and control 
groups to determine glucose levels by using an Aim-
Strip Plus glucometer (Germaine Laboratories, San 
Antonio, TX, USA), triglycerides (TG) serum levels 
by using enzymatic commercial kits from Pointe Sci-
entific (Canton, MI, USA), and non-esterified free 
fatty acid (NEFA) serum levels by using a colorimetric 
assay (NEFA C) from Wako Pure Chemical Industries 
(Richmond, VA, USA), according to the manufacturer’s 
instructions. Levels of glycated hemoglobin (HbA1C) 
were measured using a PTS Diagnostics A1C Now 
Multi-Test A1C System (Indianapolis, IN, USA).

Oral glucose tolerance test (OGTT)
After 8  h of fasting, rats received 2  g/kg body weight 
of 20% glucose solution (Sigma, St. Louis, MO, USA) 
via oral gavage (Polce et al. 2018). Blood samples were 
obtained from tail veins of the rats immediately before 
(0 min) and 15, 30, 60 and 120 min after glucose solu-
tion administration. Blood glucose levels were obtained 
using an AimStrip Plus glucometer (Germaine Labora-
tories, San Antonio, TX, USA).

Insulin resistance analysis
Insulin resistance was assessed by calculation of Tri-
glyceride-glucose (TyG) index = Ln [fasting triglycer-
ides (mg/dL) versus fasting blood glucose (mg/dL)/2)], 
a screening method for insulin resistance utilized in 
humans and rats (Ren et al. 2020; Gonzalez-Torres et al. 
2015).

Arterial blood pressure measurements
At the terminal experiments, direct arterial blood pres-
sure was obtained, as previously described (Kramer et al. 
2018). Rats were anesthetized with inhalation of 2.5% 
isoflurane in 100% oxygen flow, placed on a warming 
pad maintained at 37  °C and instrumented with a 1.9F 
SciSense pressure–volume catheter (Transonic SciScense 
Inc., London, ON, Canada) in the right carotid artery 
for direct blood pressure recording verified by pressure 
curves presented in the data acquisition system (Power-
lab 4, ADInstruments; Bridge Amp, ML 110, Colorado 
Springs, CO, USA). Once the placement of the catheter 
was confirmed, isoflurane was reduced to 1.5% in 100% 
oxygen flow. After stabilization, blood pressure was con-
tinuously recorded for 30  min. The systolic and dias-
tolic blood pressure were processed in a data acquisition 

system with Chart 7 software (ADInstruments, Colorado 
Springs, CO, USA).

Vascular relaxation studies
VSMC-dependent relaxation in response to sodium 
nitroprusside (SNP) was evaluated.

At the time of experimental endpoint, thoracic aortas 
were quickly removed and carefully cleared of perivas-
cular adipose tissue and adventitia in oxygenated Krebs 
buffer (130 mM NaCl, 14.9 mM NaHCO3, 4.7 mM KCl, 
1.18  mM KH2PO4, 1.17  mM MgSO4-7H2O), 1.56  mM 
CaCl2-2H2O, 0.026 mM EDTA, 5.5 mM glucose, pH 7.4). 
Thoracic aortas were cut into rings (2  mm in length) 
and mounted on a Multi-Wire Myograph System 620 M 
(Danish Myo Technology, Aarhus, Denmark) for iso-
metric tension recordings by a PowerLab 8/SP data 
acquisition system (ADInstruments Pty Ltd., Castle Hill, 
Australia). Aortic rings were then equilibrated in Krebs 
buffer for 30  min and gassed with 5% CO2 in 95% O2 
at 37  °C (Carrillo-Sepulveda et  al. 2015). Aortic rings 
were pre-contracted with phenylephrine (1  μM). After 
the phenylephrine-induced contraction reached a pla-
teau, concentration–response curves for SNP (1 ηM to 
0.01 mM) were performed.

Quantification of vascular remodeling
At the time of the experimental endpoint, thoracic aortas 
were harvested, placed in Tissue-Tek O.C.T Compound 
(VWR catalog no. 25608–930; Sakura Finetek, CA, USA) 
and slowly snap frozen in an isopentenyl and dry ice 
emulsion bath, and stored at −  80  °C. Frozen sections 
were cut into 8 μM on cryostat at − 17 °C. Hematoxylin 
and eosin staining (Sigma Aldrich, St. Louis, MO, USA) 
was performed on aortic cross sections. Samples were 
then analyzed for vascular remodeling using Image J soft-
ware according to established protocols (Gomez-Roso 
et  al. 2009; Maia et  al. 2014). Image J analysis included 
measures of aortic wall thickness, cross sectional area 
(CSA), wall thickness per lumen ratio (Wm/L), and 
lumen diameter, as previously described (Carrillo-Sepul-
veda et al. 2019). Slides were digitized using an Olympus 
BX53 fluorescent microscope (Olympus America, Inc., 
Center Valley, MA, USA), high-resolution regular light 
digital images were captured under high-power magnifi-
cations (× 4) using an Olympus DP72 (Olympus Amer-
ica, Inc., Center Valley, MA, USA).

Western blot analysis
Protein content was determined in the supernatant of 
aortic extracts using a commercial BCA kit (ThermoSci-
entific, Rockford, IL, USA), according to the instructions. 
Equivalent amounts of protein (20  μg per lane) from 
aortas from each experimental group were loaded and 
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separated by 10% sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis (SDS-PAGE) and transferred 
to PVDF membranes (Thermo Fisher Scientific Inc., 
Rockford, IL, USA), as previously described (Carrillo-
Sepulveda et al. 2015). Membranes were blocked with 5% 
non-fat milk solution in Tris-buffered saline with 0.1% 
tween (TBST) for 1  h at room temperature, and incu-
bated overnight at 4  °C with the following specific pri-
mary antibodies: Acetylated Lysine (1:500, cat.n.9441, 
Cell Signaling Technology, Danvers, MA, USA) and 
PCAF (1:500, sc-13124, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA). As loading controls, β tubulin (1:20.000, 
cat.n.86298, Cell Signaling Technology, Danvers, MA, 
USA) and β actin (1:20.000, cat.n.4967, Cell Signaling 
Technology, Danvers, MA, USA) were utilized. Follow-
ing incubation with secondary antibodies, bands were 
detected with the enhanced chemiluminescence system 
(Amersham Biosciences, Waltham, MA, USA). Immuno-
blots were quantified using Image J software, distributed 
by the NIH, and presented as a percent (%) of control.

Aortic VSMCs cultures
Primary aortic VSMC cultures were obtained by enzy-
matic digestion of the thoracic aortas of male Wistar 
and GK rats, as previously described (Carrillo-Sepulveda 
et al. 2015). Isolated aortic VSMCs were placed in a cul-
ture dish and maintained in Dulbecco Modified Eagle’s 
Medium (DMEM) containing 10% fetal bovine serum 
(FBS) and antibiotics in a humidified incubator at 37℃, 
5% CO2 and atmospheric O2. After confluence, VSMCs 
exhibited the typical “hill and valley” growth morphology 
and were confirmed positive (> 95%) for smooth muscle 
α-actin. Cells at early passage (Passage 1) were used for 
phenotypic characterization. Male human aortic VSMC 
(hVSMC) were obtained from the American Type Culture 
Collection (Manassas, VA, USA). hVSMC were grown in 
DMEM supplemented with antibiotics and maintained at 
37 °C in a 5% CO2 incubator. After reaching confluence, 
hVSMC were incubated in serum-free medium over-
night to reach a quiescence state (Kramer et  al. 2018). 
After this period, cells were incubated with high glucose 
(HG, 25 mM) for 12 h (Carrillo-Sepulveda et al. 2015). In 
some experiments, cells were pre-incubated with 15 μM 
of garcinol, a PCAF inhibitor (cat.n. BML-GR343-0050, 
Enzo Life Sciences, Farmingdale, NY, USA), or vehicle 
control for 30 min. The concentration of garcinol used in 
this study was chosen based on previously published data 
(Bastiaansen et  al. 2013; de Jong et  al. 2017). The effect 
of garcinol on cell viability was assessed by using MTT 
assay (Zhou et  al. 2016) (See Additional file  1: Material 
and Methods). Control hVSMC were maintained in nor-
mal glucose (NG, 5 mM). To rule out possible influence 

of osmotic stress, cells were also incubated in 25  mM 
mannitol (Rozentsvit et al. 2017).

Measurement of reactive oxygen species (ROS).
ROS levels were detected in hVSMC from either the 
NG or HG group and in primary aortic VSMC from GK 
rats with 25 μM dihydroethidium (DHE; Sigma-Aldrich, 
St. Louis, MO, USA), as previously described (Kramer 
et al. 2018). hVSMC and primary aortic VSMC from GK 
rats stimulated with HG in the presence and absence of 
15 μM garcinol were incubated with DHE in the medium 
for 20 min, and ROS levels were then detected. Fluores-
cence from DHE was detected using an Olympus DP73 
fluorescence microscope with a Nikon digital camera. 
Quantitative analysis was performed to detect changes in 
fluorescence in hVSMC using Image J software (NIH).

Statistical analysis
Results are expressed as means ± SEM and analyzed with 
a student’s two-tailed t-test or ANOVA, comparing the 
controls and GK groups, and the NG, HG, Garcinol and 
HG + Garcinol groups. Vascular reactivity contractions 
were recorded as changes in the displacement (mN) from 
baseline. Concentration–response curves were log-trans-
formed, normalized to percent maximal response, and 
fitted using a nonlinear interactive fit (Graph Pad Prism 
4.0; GraphPad Software Inc., San Diego, CA, USA). Emax 
(maximum relaxation response). pD2 (-log of the half-
maximal effective concentration [EC50]). P-values less 
than 0.05 were considered significant.

Results
Altered metabolic profile in GK rats
Body weight was lower in GK rats (382.83  g ± 18.77  g, 
p < 0.05) in comparison with age-matched Wistar rats 
(545.16  g ± 39.33  g). Altered glucose metabolism has 
been well-documented in young and adult GK rats 
(Palygin et al. 2019). Here we determined glucose metab-
olism in aged 48-week-old GK rats. High fasting blood 
glucose (Fig.  1a) and HbA1C above 6.5% (Fig.  1b) were 
identified in aged GK rats, confirming advanced T2DM 
stage. Significant glucose intolerance (Fig.  1c, d) in the 
GK group was accompanied by insulin resistance, as con-
firmed by increased TyG index (Fig. 1e). Lipid profile was 
altered in the aged GK rats as evidenced by elevated fast-
ing triglycerides (Fig. 1f ) and NEFA levels (Fig. 1g).

Elevated blood pressure and aortic VSMC dysfunction 
in GK rats
GK rats have been shown to exhibit elevated arterial 
blood pressure from a young age (Ma et  al. 2017; Cui 
et  al. 2014). Likewise, aged GK rats continue to show 
significant high systolic and diastolic blood pressure 
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(Fig.  2a–c). To determine whether high blood pressure 
is accompanied by VSMC dysfunction, VSMC-depend-
ent relaxation was assessed by using wire myograph. As 
shown in the Fig.  2d, VSMC-dependent relaxation was 
significantly reduced in the GK group. While maximum 
relaxation response (Emax) to SNP was reduced in the 
GK group (Fig.  2e), no differences in the sensitivity to 
SNP were observed between the experimental groups 
(Fig. 2f ).

Aortic remodeling in GK rats
Aortic remodeling has been documented in young GK 
rats (Chettimada et  al. 2014). However, less is known 
about aortic remodeling in aged GK rats. We found that 
aged GK rats exhibited vascular remodeling (Fig. 3a), as 
confirmed by reduced wall thickness (Fig. 3b), decreased 
CSA (Fig.  3c) and decreased lumen diameter (Fig.  3d). 
There was no changes in the Wm/L ratio (Fig.  3e) 
between the control and GK groups.

Hyperacetylation in aortas from GK rats
To address whether advanced T2DM causes vascular 
hyperacetylation, global lysine acetylation and PCAF lev-
els were assessed in thoracic aortas from aged GK rats by 
western blot analysis. As shown in Fig.  4a, aortas from 
aged GK rats exhibited increased global lysine acetylation 
levels in comparison to the control Wistar rats. PCAF 

expression was also significantly elevated in thoracic aor-
tas from aged GK rats (Fig. 4b).

Increased lysine acetylation in aortic VSMCs
To specifically assess aortic VSMC lysine acetylation sta-
tus, VSMCs were isolated from thoracic aortas from aged 
GK rats and maintained in primary cultures. While aortic 
VSMCs from age-matched Wistar exhibited organized 
spindle-shape arrangement in culture, aortic VSMC from 
aged GK rats exhibited a disorganized cellular arrange-
ment, losing its native spindle-shape (Fig.  5a). Aortic 
VSMC from aged GK rats also exhibited elevated lysine 
acetylation levels (Fig.  5b), PCAF (Fig.  5c) expression, 
and elevated ROS levels which was reduced in presence 
of 15 μM of garcinol (Fig. 5d).

High glucose increases lysine acetylation in human VSMCs
T2DM is characterized by hyperglycemia associated with 
insulin resistance (Rizza 2010). To determine whether 
high levels of glucose can directly alter lysine acetylation 
levels, male human aortic VSMCs were stimulated with 
HG. As shown in the Fig. 6a, HG marked increased lysine 
acetylation levels in human aortic VSMCs. Moreover, 
increased PCAF expression was detected in human aor-
tic VSMCs stimulated with HG (Fig. 6b).
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Inhibition of hyperacetylation reduces HG‑induced ROS 
production in hVSMCs
HG increases ROS levels in VSMC (Fiorentino et  al. 
2013). PCAF promotes acetylation of proteins involved 
in vascular dysfunction (de Jong et  al. 2017). Here we 
hypothesized that HG- induced ROS generation in 
VSMC occurs via hyperacetylation-related mechanisms. 
As shown in Fig. 7A, HG significantly increased ROS lev-
els in hVSMCs. This effect was attenuated in the presence 
of 15  μM garcinol, a concentration that inhibits lysine 
acetylation (Fig.  7B). This concentration of garcinol did 
not affect VSMC viability (See Additional file 2: Fig. S7A) 
nor inhibit other acetyltransferases, such as CREB-bind-
ing protein (CBP) (See Additional file 3: Fig. S7B).

Discussion
The main findings of the present study are that in 
advanced T2DM, there is (1) impaired VSMC-dependent 
relaxation and (2) increased vascular lysine acetylation 
and PCAF expression in association with, (3) augmented 
ROS production in VSMC. Together, these results show 

that advanced T2DM negatively impacts VSMC function 
resulting in heightened impaired vasodilation, and imply 
vascular lysine acetylation as a potential factor involved 
in diabetic vascular dysfunction.

Patients with T2DM are two times more likely to 
develop cardiovascular complications. As many as 80% of 
diabetic patients manifest some macrovascular complica-
tion during the disease (Buse et al. 2007). Impaired vaso-
dilation is a common vascular outcome in patients with 
T2DM (Sena et  al. 2011; Kazuyama et  al. 2009), which 
ultimately leads to cardiovascular complications such as 
hypertension and coronary artery disease (Su et al. 2008). 
It is well-established that endothelial dysfunction is an 
initial factor causing impairment of vasodilation in early 
stages of T2DM (Shi and Vanhoutte 2017; Sena et  al. 
2011). However, less is known about the temporal contri-
bution of VSMC dysfunction in the reduced vasodilation 
mainly in the advanced stage of T2DM.

In this study, we found that GK rats in the advanced 
stage of T2DM display reduced vasodilation because 
of VSMC dysfunction. This data is in accordance with 
previous studies showing that GK rats exhibit VSMC 
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Page 7 of 14Carrillo‑Sepulveda et al. Molecular Medicine           (2022) 28:30 	

a b

c

KGlortnoC

70

80

90

100

110

120

W
al
lT

hi
ck

ne
ss

(u
m
)

*

Control GK Control GK Control GK

Control GK

0.4

0.5

0.6

0.7

0.8

0.9

C
SA

(m
m

2 )

*

0.00

0.02

0.04

0.06

0.08

0.10

W
m
/L

R
at
io

ns

d e

1400

1600

1800

2000

2200

Lu
m
en

D
ia
m
et
er

(u
m
) *

Fig. 3  Vascular remodeling in aortas from GK rats in advanced T2DM. a Representative photomicrographs of the aortic cross-sections from the 
control and GK groups stained with H&E. Scale bar: 500 μm. b Wall thickness (Wm) (μm), c Cross-Sectional Area (CSA) (mm2), d Lumen diameter 
(μm), and e Wall-to-lumen (Wm/L) ratio were obtained using Image J analysis software. *p < 0.05 vs. control, n = 6–10 per group. Values are 
means ± SEM

Fig. 4  Lysine acetylation and PCAF expression is increased in aortas from GK rats in advanced T2DM. a Global lysine acetylation was detected by 
using a specific antibody for acetylated lysine residue. β actin used as internal control. b Representative immunoblotting for PCAF (top panel). β 
actin used as internal control. Bar graphs are means ± SEM of four independent experiments as determined from densitometry relative to β actin. 
*p < 0.05 vs. control, n = 4–5 per group
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dysfunction at 36 and 70 weeks of age (Kazuyama et al. 
2009; Kobayashi et al. 2004).

Vascular dysfunction is one of the central factors con-
tributing to the development of hypertension in diabetics 

(Sowers et al. 2001; Petrie et al. 2018; King 1996). While 
endothelial dysfunction has been implicated in hyper-
tension in the early stages of T2DM (Regensteiner et al. 
2005), results from the current study suggest that VSMC 

Fig. 5  Lysine acetylation and PCAF expression is increased and ROS levels is elevated in aortic-VSMC from GK rats in advanced T2DM. Aortic 
VSMCs were isolated from Wistar and GK rats and maintained in primary cultures. a Morphology of aortic VSMCs cultures in passage 1. b Global 
lysine acetylation was detected by using a specific antibody for acetylated lysine residue. β actin used as internal control. c Representative 
immunoblotting for PCAF (top panel). β tubulin used as internal control. d ROS levels detected by DHE fluorescence in each experimental group. 
Quantification of DHE staining was determined through fluorescent intensity in each cell by pixel intensity of the cell. Bar graphs are means ± SEM 
of four independent experiments as determined from densitometry relative to internal control. *p < 0.05 vs. control
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dysfunction may additionally be contributing to sus-
tained high systolic and diastolic blood pressure present 
in advanced T2DM. Clinical studies have demonstrated 
that hypertension is two times more likely in diabetic 
patients and increases the risk of serious cardiovascular 
events (Simonson 1988; Gaede et  al. 2003; Paula et  al. 
2015). While our findings demonstrate an association 
between advanced T2DM and hypertension in male rats, 
further studies using resistance arteries are warranted to 
address mechanisms of hypertension in advanced T2DM. 
Moreover, including a female cohort is necessary to 
address sex differences in the prevalence of T2DM and 
its related hypertension (Regensteiner et al. 2015).

An important factor to take into consideration in dia-
betic vascular complications is dyslipidemia, a common 
finding in advanced T2DM, which negatively affects 
vascular integrity leading to premature atherosclerotic 
disease (Schofield et al. 2016). Our present results show 
that GK rats, a non-obese model of T2DM with normal 
lipid profile, develop dyslipidemia in advanced stage of 
T2DM, as evidenced by elevated levels of triglycerides 
and NEFA. Thus, together with VSMC dysfunction, dys-
lipidemia can further potentiate vascular dysfunction in 
advanced T2DM, supporting increased cardiovascular 
events in diabetics (Wannamethee et  al. 2011; Zoungas 
et al. 2014).

Clinical and experimental studies have reported arte-
rial remodeling in T2DM (Sachidanandam et  al. 2009; 
Elgebaly et al. 2010; Faries et al. 2001). In early stages of 
T2DM in young GK rats, wall thickness is increased or 
shows no changes, and displays a hypertrophic remode-
ling characterized by wall hypertrophy (Chettimada et al. 

2014; Sachidanandam et al. 2009; Elgebaly et al. 2010) and 
increase in the CSA by either cell hyperplasia or hyper-
trophy (Edwards et al. 2020; Chettimada et al. 2014). In 
contrast, our results show that aortas from GK rats in the 
advanced stage of T2DM exhibited reduced wall thick-
ness and CSA, which are indicative of hypotrophic vascu-
lar remodeling (Baleanu et al. 2009). The lumen diameter 
significantly decreased to a degree that is proportional to 
the wall thickness, as evidenced by the maintained Wm/L 
ratio. The decreased lumen diameter characterizes these 
findings as inward changes (Edwards et al. 2020). There-
fore, the vascular remodeling in this model of advanced 
T2DM is categorized as an inward hypotrophic remod-
eling (Edwards et al. 2020; Maia et al. 2014). This type of 
remodeling could be due to vessel wall atrophy from a 
decrease in cell numbers or a decrease in cell size (Bri-
ones et al. 2006). In fact, it has been shown that hyper-
acetylation of specific proteins, such as Forkhead Box 
O (FoxO), mediates atrophy process (Bertaggia et  al. 
2012). Acetylation and other PTMs have been implicated 
in the remodeling of VSMCs in previous studies (Sun 
et al. 2017; Soe et al. 2014). While studies have provided 
evidence that hyperacetylation contributes to muscle 
wasting and muscle atrophy, these results remain con-
tradictory, suggesting that more studies investigating the 
role of acetylation and deacetylation in muscle cells are 
needed (Alamdari et  al. 2013). Sun, et  al., reported that 
in a model of spontaneous hypertension, inhibition of 
histone acetyltransferases prevented VSMC proliferation 
and subsequent vascular remodeling (Sun et al. 2017). Of 
note, the rats used in that study were younger than those 
used in the current study and represented a model of 

Fig. 6  High glucose increases levels of lysine acetylation and PCAF expression in primary human VSMCs cultures. Human VSMCs (hVSMC) were 
stimulated with 25 mM high glucose (HG) for 12 h. a Global lysine acetylation was detected by using a specific antibody for acetylated lysine 
residue. β actin used as internal control. b Bar graphs are means ± SEM for PCAF expression as determined from densitometry relative to internal 
control. β tubulin used as internal control. *p < 0.05 vs. control, n = 5 per group. Molecular weight (MW)
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spontaneous hypertension that is uncomplicated by age 
and diabetes (Sun et al. 2017). Our results shed light on 
a potential change in vascular remodeling from hyper-
trophic to hypotrophic remodeling with advanced T2DM 
in association with lysine hyperacetylation. Thus, our 

results suggest that hyperacetylation is a potential candi-
date contributing to vascular remodeling in T2DM, indi-
cating that methods to modulate protein acetylation is an 
important field for continued research aimed to prevent-
ing and treating VSMC dysfunction.

Fig. 7  Garcinol reduces HG-induced ROS production in hVSMC. Quiescent hVSMC were pretreated with 15 µM garcinol, followed by stimulation 
with 25 mM HG or 5 mM NG for 60 min. a ROS production was detected using DHE staining. Representative photomicrographs depicting DHE 
fluorescence in each experimental group. Quantification of DHE staining was determined through fluorescent intensity in each cell by pixel 
intensity of the cell. b Global lysine acetylation was detected by western blot. β actin used as internal control. Results represent means ± SEM. n = 4 
per group, *p < 0.05 vs. controls, **p < 0.05 vs. HG group
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Lysine acetylation is an important PTM that affects 
protein activity, stability, and binding properties (Li et al. 
2020). Deacetylation and/or hyperacetylation of lysine 
has been linked with metabolic disorders including obe-
sity, diabetes, and metabolic syndrome (Iyer et al. 2012). 
Specifically, studies in the field of diabetes have demon-
strated that lysine acetylation levels are elevated in the 
heart, kidneys, and vasculature, suggesting its potential 
role in diabetic cardiovascular disease and nephropa-
thy (Kosanam et  al. 2014; Vazquez et  al. 2015; Kumar 
et  al. 2017). Our group has recently identified that dea-
cetylation of peroxisome proliferator-activated receptor 
γ (PPARγ), a target factor in diabetes treatment, pos-
sesses an endothelial-protective effect (Liu et  al. 2020). 
While previous reports have linked hyperacetylation to 
endothelial dysfunction in diabetes, our present study 
revealed that hyperacetylation is also associated with dys-
function of the VSMC layer, a component of the vascu-
lature that is also affected as diabetes progresses (Kumar 
et al. 2017; Kazuyama et al. 2009). Additionally, we found 
that PCAF is upregulated in aortas from GK rats. It has 
been previously reported that inhibition of PCAF leads to 
reduction of acetylation and a corresponding decrease in 
inflammatory molecules (Huang et al. 2015; Malek et al. 
2019). Our data show an association between increased 
global lysine acetylation and increased PCAF expression 
in aortas, specifically in VSMC, of aged GK rats. These 
results support the linkage between hyperacetylation 
and VSMC dysfunction in advanced T2DM that may be 
occurring via an imbalance between acetyltransferase 
and deacetylase activity, in which acetyltransferases, 
such as PCAF, is upregulated. While endothelial dysfunc-
tion arises in early stages of diabetes, VSMC dysfunc-
tion appears during advanced stages of T2DM. Increased 
lysine acetylation may play an integral role in both 
endothelial- and VSMC-dependent dysfunction.

Vascular ROS production and its associated oxidative 
stress has been recognized as a key contributor to vas-
cular dysfunction in diabetes (Di Fulvio et al. 2014; Pan-
dolfi et al. 2003). To date, even though anti-oxidants have 
shown promising results in experimental studies, those 
results have not translated to clinical studies in humans 
(Hu and Liu 2016). In fact, clinical studies have identi-
fied that antioxidants, such as resveratrol and vitamin C, 
can reduce ROS levels. However, these antioxidants have 
not proven to be an effective deterrent of damage to the 
vasculature (Bo et  al. 2016; Darko et  al. 2002). Thus, a 
therapeutic antioxidant approach is urgently needed to 
treat vascular complications in diabetes. Recently, hyper-
acetylation of key proteins has been linked with elevated 
ROS and oxidative stress to the vasculature. Specifically, a 
recent study demonstrated that in diabetes, there is lysine 
acetylation of p66Shc, a master regulator of ROS. This 

leads to increased ROS-related endothelial dysfunction 
that is prevented by deacetylation of p66Shc (Kumar et al. 
2017). Moreover, a recent study showed that diabetic 
conditions negatively regulates antioxidant properties in 
endothelial cells and this effect was associated with acet-
ylation of p53 and increased expression of p300 (Di Tomo 
et  al. 2021) These findings are in accordance with our 
results showing that elevated lysine acetylation is associ-
ated with dysfunctional VSMCs in diabetes. Given these 
findings, an approach that may effectively protect the 
vasculature from ROS insult is a treatment that prevents 
vascular hyperacetylation. Our data showed increased 
levels of the PCAF acetyltransferase in aortas from GK 
rats and in VSMC treated with HG in association with 
augmented lysine acetylation and ROS production. Treat-
ment of VSMC with garcinol, a PCAF inhibitor, signifi-
cantly reduced ROS formation, suggesting that inhibition 
of hyperacetylation-induced PCAF may be a potential 
treatment to protect the vasculature and prevent long 
term cardiovascular complications in diabetics. World-
wide increasing T2DM prevalence demands improve-
ments in drug design and targeting PTMs correlated 
with diabetic complications poses a promising approach 
for treating T2DM and its vascular complications (Frkic 
et al. 2021; Stelmaszyk et al. 2021). In summary, findings 
from this study suggest that in advanced T2DM, PCAF 
is upregulated leading to increased vascular lysine acety-
lation and subsequent ROS production in VSMC, result-
ing in VSMC-related impaired vasodilation in advanced 
T2DM (Fig. 8).

Study limitations
A limitation of this study is that we have not identified 
a specific protein(s) target that is hyperacetylated in 

Fig. 8  Schematic summary of the present study. Advanced T2DM 
leads to increased global lysine acetylation (AC) and PCAF expression 
in association with elevated ROS formation in VSMCs, which may be 
contributing to dysfunctional VSMC-induced impaired vasodilation. 
Created with BioRender.com
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advanced T2DM. Our results clearly show an increase 
in global lysine acetylation; however, future studies are 
required to determine the precise protein that is hyper-
acetylated. Our results suggest that postulated protein 
acetylation of interest is involved in the ROS production 
pathway as garcinol successfully inhibited lysine acetyla-
tion and decreased ROS production. Another limitation 
is the timeline of the development of VSMC-dependent 
dysfunction. There is controversial data reporting VSMC 
dysfunction in GK rats at early stages of T2DM (Kazuy-
ama et al. 2009; Kobayashi et al. 2004). Future studies are 
required to precisely determine the timeline of VSMC 
dysfunction development. Lastly, garcinol treatment was 
assessed in an in  vitro setting. Further exploration into 
the use of therapeutics, such as garcinol, in an in vivo set-
ting is required.

Conclusions
In summary, hyperacetylation of lysine residues in 
VSMCs is associated with impaired VSMC-dependent 
vasodilation in advanced T2DM. Additionally, reducing 
lysine acetylation by inhibiting acetyltransferases, such 
as PCAF, show a promising area for potential therapeutic 
treatments of vascular dysfunction in diabetic patients.
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