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The serum of COVID‑19 asymptomatic 
patients up‑regulates proteins related 
to endothelial dysfunction and viral response 
in circulating angiogenic cells ex‑vivo
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Abstract 

Background:  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already caused 6 million deaths 
worldwide. While asymptomatic individuals are responsible of many potential transmissions, the difficulty to identify 
and isolate them at the high peak of infection constitutes still a real challenge. Moreover, SARS-CoV-2 provokes severe 
vascular damage and thromboembolic events in critical COVID-19 patients, deriving in many related deaths and long-
hauler symptoms. Understanding how these processes are triggered as well as the potential long-term sequelae, even 
in asymptomatic individuals, becomes essential.

Methods:  We have evaluated, by application of a proteomics-based quantitative approach, the effect of serum from 
COVID-19 asymptomatic individuals over circulating angiogenic cells (CACs). Healthy CACs were incubated ex-vivo 
with the serum of either COVID-19 negative (PCR −/IgG −, n:8) or COVID-19 positive asymptomatic donors, at differ‑
ent infective stages: PCR +/IgG − (n:8) and PCR −/IgG + (n:8). Also, a label free quantitative approach was applied to 
identify and quantify protein differences between these serums. Finally, machine learning algorithms were applied to 
validate the differential protein patterns in CACs.

Results:  Our results confirmed that SARS-CoV-2 promotes changes at the protein level in the serum of infected 
asymptomatic individuals, mainly correlated with altered coagulation and inflammatory processes (Fibrinogen, Von 
Willebrand Factor, Thrombospondin-1). At the cellular level, proteins like ICAM-1, TLR2 or Ezrin/Radixin were only up-
regulated in CACs treated with the serum of asymptomatic patients at the highest peak of infection (PCR + /IgG −), 
but not with the serum of PCR −/IgG + individuals. Several proteins stood out as significantly discriminating markers 
in CACs in response to PCR or IgG + serums. Many of these proteins particiArticle title: Kindly check and confirm the 
edit made in the articletitle.pate in the initial endothelial response against the virus.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the pathogen responsible of the coronavirus 
disease 2019 (COVID-19), declared as a global pandemic 
on March 11, 2020, by the World Health Organization. 
SARS-CoV-2 was identified for the first time in hospi-
talized patients with pneumonia in Wuhan (China) in 
December 2019, as an RNA virus of coronaviruses family 
(Zhu et  al. 2020). Up to date (March 3, 2022), COVID-
19 has provoked 6 million deaths worldwide (www.​covid​
19.​who.​int), significantly affecting public health, the eco-
nomics and society (Shipton et  al. 2021; Bambra et  al. 
2020). Asymptomatic COVID-19 cases are responsible 
for many transmissions, which constitutes a real chal-
lenge to control the pandemic (Kronbichler et al. 2020). 
Approximately half of SARS-CoV-2 positive individuals 
are symptomatic at the time of testing, as determined 
by reverse transcriptase-polymerase chain reaction (RT-
PCR) (Alene et al. 2021; Ra et al. 2021). This makes their 
detection quite difficult, since most of these individuals 
don’t seek testing and/or medical assistance and continue 
with their daily routine, contributing to rapid spread of 
COVID-19 (Gao et al. 2021). The identification of alter-
native markers (apart from physical symptoms or qPCR 
analysis) could significantly contribute to detect all 
potential SARS-CoV-2 infected individuals. Besides, lit-
tle is known about the potential sequelae of SARS-Cov-2 
over asymptomatic patients, and also how these initially 
“mild” infected people might become long-haulers at the 
long term (Huang et al. 2021).

Manifestations of COVID-19 are mostly respiratory; 
however, COVID-19 can also negatively affect extra-
pulmonary systems (Snell 2021), including the heart 
and systemic vasculature (Klok et  al. 2020; Marone and 
Rinaldi 2020; Huang et  al. 2020). Indeed, SARS-CoV-2 
infection has been linked to cardiovascular alterations 
(arrhythmias, ischemic heart disease or cardiomyopa-
thies), mainly associated to coagulation abnormalities 
and endothelial damage, leading to thrombosis (Alva-
rado-Moreno et  al. 2021; Thachil et  al. 2020). COVID-
19 enhances endothelial dysfunction, which not only 
involves oxidative stress, dysregulation of vascular tone 
or inflammatory response from the vascular wall (Jin 

et  al. 2020), but also promotes the mobilization and 
recruitment of endothelial progenitor cells (EPCs) (Alva-
rado-Moreno et al. 2021; Mancuso et al. 2020), key cells 
involved in vascular repair (Zhang et al. 2014). Remark-
ably, the levels of circulating EPCs are significantly 
increased in the blood of COVID-19 patients compared 
with healthy controls (Mancuso et  al. 2020; Guervilly 
et al. 2020), even three months after SARS-CoV-2 infec-
tion (Poyatos et al. 2021).

EPCs were first isolated from peripheral blood by Asa-
hara et al., being defined as CD34 + cells that could dif-
ferentiate in  vitro to endothelial cells (ECs) (Asahara 
et  al. 1997). Currently, EPCs are classified in two main 
sub-populations: early EPCs, also known as circulating 
angiogenic cells (CACs) and late EPCs or endothelial 
colony-forming cells (ECFCs). CACs have a hematopoi-
etic like phenotype and they exert their regenerative 
activity through paracrine mechanisms while ECFCs 
have an endothelial phenotype and can differentiate into 
mature ECs, participating directly in blood vessels forma-
tion (Hur et  al. 2004; Medina et  al. 2017). SARS-CoV-2 
infection could negatively affect the repairing properties 
of EPCs, interfering with the normal functioning of the 
cardiovascular system. However, not many studies have 
been done on how EPCs behave in COVID-19 patients.

A better understanding of the initial stages in which 
SARS-CoV-2 affects the endothelium, even in asympto-
matic individuals, becomes crucial in order to predict or 
prevent unwanted secondary effects, and the risk of suf-
fering from severe complications. In the current study, 
we have evaluated, by application of a mass spectrom-
etry (MS)-based quantitative approach, the proteomic 
changes taking place in healthy CACs in response to the 
differential factors present in the serum of asymptomatic 
COVID-19 patients.

Methods
Study population
The study was conducted in asymptomatic donors 
recruited at the National Paraplegic Hospital (SESCAM), 
Toledo, Spain during April–May 2020. They were all 
workers of this hospital. A graphical representation of 

Conclusions:  The ex vivo incubation of CACs with the serum of asymptomatic COVID-19 donors at different stages 
of infection promoted protein changes representative of the endothelial dysfunction and inflammatory response 
after viral infection, together with activation of the coagulation process. The current approach constitutes an opti‑
mal model to study the response of vascular cells to SARS-CoV-2 infection, and an alternative platform to test poten‑
tial inhibitors targeting either the virus entry pathway or the immune responses following SARS-CoV-2 infection.
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some characteristics registered for the study population 
is shown in Fig. 1A–C.

Serum sample collection and tests performed for COVID‑19 
diagnostic
Briefly, peripheral blood samples were collected 
using serum separator tubes (SSTTM II advance, BD 
Vacutainer®), centrifuged (4000  g, 10  min, 4  °C) and 
stored at − 80 °C.

A SARS-CoV-2 qPCR analysis from nasopharyngeal 
samples was performed to determine the positive or 
negative status of the donors. Also, an ELISA assay test-
ing for specific IgG and IgM antibodies (IME00136 and 
IME00137; Erba Mannheim) was performed with the 
serum previously collected. With all this information, 
donors were classified into three different groups: healthy 
donors with negative qPCR and antibody’s analysis test 
(Neg, n:29), asymptomatic patients with positive qPCR 
test for SARS-CoV-2 at blood extraction time (PCR + , 
n:8) and asymptomatic patients with positive IgG anti-
bodies (IgG + , n:27) at the time of blood extraction 
(Fig. 1D).

CACs isolation and culture
CACs were isolated from buffy coats from two healthy 
donors provided by the Andalusian Biobank Network 
(Decree 1/2013). Briefly, CACs were isolated from 
peripheral blood mononuclear cells (PBMCs) and cul-
tured as previously described (Eslava-Alcon et  al. 2020; 
Vega et  al. 2017). PBMCs were isolated and plated in 
fibronectin coated plates (10  μg/ml) and incubated in 
EBM-2 media plus 10% fetal bovine serum (FBS) and 
Single Quots growth factors (Lonza). Non-adherent cells 
were discarded after four days and attached cells were 
allowed to grow in fresh media until day 7, when experi-
mental assays were performed. CACs were characterized 
by flow cytometry assay, as described (Eslava-Alcon et al. 
2020).

CACs incubation ex vivo with patients’ serum
CACs (aprox. 1 million cells per group) were washed 
several times with PBS 1X, to discard any remain-
ing traces of FBS from the initial conditioned media, 
and then incubated 24 h (37  °C, 10% CO2) with EBM-2 
medium containing 10% serum of the Neg (CACs + Neg), 
PCR + /IgG  − (CACs + PCR) or PCR  −/IgG + groups 
(CACs + IgG), n:8 per group (Fig.  1E). After that, cells 
were collected using Trypsin–EDTA 1X (X0930-100; 
Biowest), centrifuged and washed once with PBS 1X, and 
snap frozen in liquid nitrogen before their storage at -80 
ºC.

Proteomic analysis
A label free quantitative (LFQ) MS approach was 
applied in order to identify differential protein levels 
between serum samples of asymptomatic donors (Neg 
n:29; PCR + n:8; IgG + n:27). Also, the protein changes 
in CACs after the incubation with the different sets of 
serum samples (CACs + Neg, n:8; CACs + PCR, n:8; 
CACs + IgG, n:8) were analyzed following the same LFQ 
approach.

Serum samples (10  μl) were supplemented with pro-
tease inhibitors (04693132001; Roche) and precipitated 
with acetone, over-night, centrifuged at 14,000  rpm, 
25 min and the pellet resuspended in 8 M urea. Similarly, 
the cell pellets were resuspended in 50  μl of 8  M urea 
containing protease inhibitors (04693132001; Roche) for 
protein extraction and further proteomic analysis. For all 
samples, protein amount was quantified with the Qubit 
Fluorometric system (ThermoFisher Scientific) follow-
ing manufacturer´s guidelines, and 50  µg of proteins in 
8 M urea per sample were reduced (10 mM Dithiothrei-
tol) and alkylated (50 mM Iodoacetamide). Samples were 
diluted four times with 50  mM ammonium bicarbo-
nate and digested with Trypsin/LysC (V5073; Promega) 
(enzyme/substrate ratio 1:50) at 37 °C overnight. Finally, 
digestion was quenched with 0.1% TFA before pep-
tide purification with C18 micro-columns, as described 
(Palmisano et  al. 2010), and eluates were dried with a 
speed-vac system.

Liquid chromatography
A nanoElute high pressure nanoflow system (Bruker Dal-
tonics) was connected to the timsTOF Pro, an ion-mobil-
ity quadrupole time of flight mass spectrometer (Bruker 
Daltonics) that uses the parallel accumulation-serial 
fragmentation (PASEF) acquisition method. Peptides 
were reconstituted in 0.1% formic acid (FA) up to a final 
concentration of 100 ng/μl and 200 ng were delivered to 
a Thermo Trap Cartridge (5 mm) column, and a reverse 
phase analytical column (25  cm × 75 um id IonOptics 
25 cm, Thermo). Liquid chromatography was performed 
at 50ºC and peptides were separated on the analytical 
column using a 60 min gradient with buffers A (0.1% FA) 
and B (0.1% FA, Acetonitrile). For all samples, the TIMS-
TOF Pro instrument was operated in data dependent 
acquisition (DDA) mode.

Data processing
Raw files were processed with MaxQuant (v 1.6.0.1), 
searching against a human protein database (Human 
UniProt) supplemented with contaminants. Carbami-
domethylation of cysteines, oxidation of methionine 
and protein N-term acetylation were set as variable 
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Fig. 1  Study population characteristics and schematic representation of the experimental assay. A graphical representation of the donors’ 
characteristics is shown, including A Gender, B age and C Cardiovascular (CV) risks reported for each group. D Schematic representation of the 
infective stage of asymptomatic individuals at the time of serum extraction. Individuals were classified as COVID-19 negative (PCR −/IgG −, n:29), 
or COVID-19 positive, at the peak of infection (PCR + /IgG −, n:8) or after the infective peak (PCR −/IgG +, n:27). E CACs were incubated with the 
serum of COVID-19 negative donors, or with the serum of COVID-19 PCR + or COVID-19-IgG + asymptomatic patients



Page 5 of 16Beltrán‑Camacho et al. Molecular Medicine           (2022) 28:40 	

modifications. Minimal peptide length was set to 7 amino 
acids and a maximum of two tryptic missed-cleavages 
were allowed. Results were filtered at 1% FDR (peptide 
and protein level) and only proteins with at least two 
peptides identified were considered for further analysis. 
LFQ was done with match between runs (match win-
dow of 0.7 min and alignment window of 20 min). After-
wards, the “proteinGroup.txt” file was loaded in Perseus 
(v1.6.0.2) for further statistical analysis.

Proteins were considered as differentially expressed 
between groups when p-value < 0.05 and ratio > 1.5 (up-
regulated) or ratio < 0.6 (down-regulated). Data process-
ing was done using Venny v2.1 (Venn’s diagram), Perseus 
(hierarchical cluster), String (www.​string-​db.​org), Enri-
chr (https://​maaya​nlab.​cloud/​Enric​hr), Ingenuity Path-
way Analysis (IPA, Qiagen), Reactome (functional roles 
of proteins, www.​react​ome.​org) and PINA v3 platform 
(protein interaction network analysis, www.​omics.​bjcan​
cer.​org/​pina).

Statistical analysis and machine learning
Protein quantification and statistics were obtained using 
MaxQuant (Tyanova et  al. 2016a) and Perseus 1.6.15.0 
(Tyanova et  al. 2016b) software. Reverse database hits 
and contaminants were removed before performing a 
Student’s T-test analysis with a multiple hypothesis cor-
rection of p-values (1% FDR). Differences were consid-
ered statistically significant when p-value < 0.05. Protein 
changes were confirmed with GraphPad Prism 9 soft-
ware, and data were presented with box and plots graphs 
representing median, min and max value and showing 
all points. Also, receiver operating characteristic (ROC) 
curves were generated for differentially expressed pro-
teins by plotting sensitivity (%) against 100%—specificity 
(%), indicating the area under the curve (AUC) and 95% 
confidence intervals.

In addition, we investigated the feasibility to perform 
two types of classification schemes based on protein 
levels using machine learning techniques: (a) a binary 
classification to discriminate between CACs + PCR vs 
CACs + Neg samples; and (b) a ternary classification into 
CACs treated with the serum from PCR + , IgG + asymp-
tomatic and negative donors. Several supervised learning 
methods were applied in combination with a supervised 
attribute filter used to select features evaluating the 
worth of an attribute with a specified classifier (Deeb 
et al. 2015; Shi et al. 2021). Proteins were ranked accord-
ing to their individual evaluations and the best 20 ranked 
ones were selected in each case.

Considering that complex models in small datasets 
limit generalization, low complexity models were used. 
In the case of the proposed ternary classification, perfor-
mance metrics of linear support vector machines (SVM), 

Naïve Bayes (NB) and Random Forest algorithms were 
compared. For the binary classification, we compared 
linear SVM, NB, partial least squares discriminant analy-
sis (PLS-DA), and least absolute shrinkage and selection 
operator (LASSO). In all cases, we combined the model-
based prediction with feature selection to optimize the 
performance of the classifier and to identify strongly dis-
criminative proteins. Accuracy was used as evaluation 
measure in the feature selection process. Both, the model 
training, and the feature selection, were done in a fivefold 
cross-validation procedure. The quality of classification 
was assessed using several parameters: accuracy, recall, 
true and false positive rate, and the area under the ROC 
curve. MATLAB (The MathWorks Inc., Natick, USA) and 
WEKA data mining software were used for building the 
models.

Results
Proteomic evaluation of asymptomatic COVID‑19 patients’ 
serum
In total, 191 proteins were identified in serum by prot-
eomic analysis (Additional file 1: Table S2). Among them, 
several proteins were altered in asymptomatic patients 
(PCR + /IgG − and PCR −/IgG + at the time of serum 
extraction), compared to COVID-19 negative subjects 
(Fig.  2). The differential protein patterns seen between 
groups are shown in a heat-map cluster (Fig.  2A). Pro-
teins like TTR, SERPINA1, FGA, THBS1 or CFHR1 were 
up-regulated in the serum of PCR + and IgG + donors 
compared to negative individuals, showing significant 
differences between them (Fig. 2B). Others, like ECM1 or 
APOH, were down-regulated in PCR + and IgG + serums 
compared to negative controls. In some cases, like APOD 
or Cholesteryl ester transfer protein (CETP), the levels 
increased in PCR + donors while decreased (still higher 
than in controls) in the serum of IgG + individuals. These 
proteins participate, among others, in the coagulation 
cascade process, platelet degranulation (APOH, ECM1, 
SERPINA1), or regulation of endothelial cell migration 
(APOH, ECM1, THBS1) and proliferation (AGT, APOD, 
HGFAC, FGA, SERPINA1) (Fig.  2C). Also, accord-
ing to IPA analysis, some of them have been associated 
with viral infection (APOD, APOH, SERPINA1), severe 
COVID-19 (APOD, APOH, PCYOX1), or leukocyte 
migration (APOD, IGHV3-13, IGHV3-23, SERPINA1, 
IGLC7, IGLV3-21).

Molecular changes in CACs after incubation with COVID‑19 
serum samples
In total, 1438 proteins were identified in CACs incubated 
with the serum of COVID-19 negative (CACs + Neg), 
PCR + (CACs + PCR) and IgG + (CACs + IgG) asympto-
matic donors (Additional file 1: Table S3). Furthermore, 
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Fig. 2  Proteins altered in asymptomatic patients’ serum and functional network. A Hierarchical clustering comparing the proteins patterns of 
the three groups analyzed. B Graphical representation of the label-free quantification (LFQ) intensities registered for proteins altered in the serum 
of COVID-19 PCR + (n:8) and COVID-19 IgG + asymptomatic patients (n:27) compared to COVID-19 negative donors (n:29). Differences were 
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according to the LFQ analysis (Fig.  3A, B), several pro-
teins were up-regulated in CACs + PCR (19 proteins) 
or CACs + IgG (3 proteins) compared to CACs + Neg 
controls (Fig.  3C). Also, other proteins were down-
regulated (37 in CACs + PCR vs CACs + Neg and 30 in 
CACs + IgG vs CACs + Neg respectively) (Fig. 3C), while 
common alterations in both comparisons were identified 
too (Fig. 3D). A hierarchical classification of differentially 
expressed proteins indicated that the protein profiles of 
CACs in response to PCR + or IgG + serum were more 
similar between themselves than in CACs + Neg controls 
(Fig. 3E).

Proteins like Toll like receptor 2 (TLR2), Radixin, 
Matrix metalloproteinase 14 (MMP14), Intercellu-
lar adhesion molecule 1 (ICAM-1), CD44, GLUL, 
RAB10 or FLNA were significantly up-regulated in 
CACs + PCR, but the levels decreased in CACs + IgG. 

Similarly, proteins like Stabilin-1 (STAB1) or Myeloid 
cell nuclear differentiation antigen (MNDA),  were 
down-regulated in the CACs + PCR group while recov-
ered in CACs + IgG + serums. Other proteins (COPZ1, 
RPS23, CAPN2, NCF1) were down-regulated in both, 
CACs + PCR and CACs + IgG compared to CACs + Neg 
controls. The most relevant changes are shown in Fig. 4.

Some of these differentially expressed proteins were 
clearly discriminative for CACs in response to PCR + vs 
Negative serum or between CACs + IgG vs CACs + Neg 
groups, as indicated by the high AUCs values (Fig.  4B). 
Furthermore, several proteins stood out as result of 
applying machine learning algorithms (Additional 
file 1: Tables S4–6), including MNDA, STAB1, TLR2 or 
the Heat shock protein family A member 5 (HSPA5), 
among others. The built linear SVM, NB, PLS-DA, and 
LASSO models presented an accuracy of 1.00, achieving 
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a maximum performance when classifying CACs + PCR 
and CACs + Neg treatments. Likewise, significant results 
were obtained with all these models (Table 1) when a ter-
nary classification was applied to discriminate between 
CACs + PCR, CACs + IgG or CACs + Neg conditions. 
The NB classifier provided the best results, with an accu-
racy of 0.93 and a ROC area of 0.96 (Fig. 4C).

Functional classification of proteins differentially 
expressed in CACs after incubation with COVID‑19 serum 
samples
The functional classification of differentially expressed 
proteins highlighted several major pathways altered in 
CACs + PCR (Fig. 5A). Moreover, according to IPA func-
tional classification, several proteins altered in CACs in 
response to the PCR + serum have been previously linked 
to severe acute respiratory syndrome (SARS) or viral 
infection (Fig. 5B), together with leukocyte extravasation 
(Fig. 5C), among others. Similarly, some proteins altered 
in CACs + IgG were associated to coronavirus replica-
tion and its pathogenesis pathway (Fig. 4D). The most rel-
evant functions of proteins altered in CACs + PCR cells 
are shown in Table 2.

Interaction networks between serum and CACs altered 
proteins
An in-silico interaction network analysis was performed 
in order to find correlations between the proteins altered 
in the serum of COVID-19 asymptomatic donors and 
the protein changes in CACs in response to these fac-
tors (Fig.  6B). The networks found were mainly associ-
ated with platelet activation and signaling, as well as with 
extracellular matrix and activation of immune system in 
CACs. Several altered proteins in the serum of COVID-
19 positive asymptomatic donors (FGA, SERPINA1, 
THBS1) and moreover, in CACs treated with these serum 
factors (HSPA5, FN1), have been associated with platelet 
aggregation and coagulation problems (Fig. 6C).

Discussion
COVID-19 asymptomatic individuals or with mild symp-
toms present similar loads of SARS-CoV-2 virus in res-
piratory samples than symptomatic patients (Ra et  al. 
2021; You et  al. 2021), representing a population that 
highly increases the risk of viral transmission due to 

the difficulties to identify and “isolate” them at the time 
of infection (Kronbichler et  al. 2020; Gao et  al. 2021). 
In addition, despite extraordinary research progress in 
the last two years, much is still unknown about the real 
impact of SARS-CoV-2 over the organism and the long-
term consequences of such infection, even in asymp-
tomatic individuals. In particular, the interaction of 
this virus with the cardiovascular system is still largely 
unknown.

To date, different studies have extensively analyzed the 
proteomic changes in serum, plasma or even urine from 
severe, critical, moderate or mild COVID-19 patients, in 
an attempt to identify potential signatures of the differ-
ent stages of the disease (D’Alessandro et al. 2020; Mess-
ner et al. 2020; McArdle et al. 2021). However, not many 
studies have evaluated what happens in asymptomatic 
people. Herein, we have identified serum proteomic 
changes in asymptomatic individuals depending on the 
time of infection, including proteins up- or downregu-
lated only at the highest infective peak (PCR + /IgG − in 
serum). These data corroborate that SARS-CoV-2 causes 
molecular alterations even in total or partial absence of 
classical symptoms. Many of the protein changes seen, 
mainly in PCR + serums, correlated to viral infection, 
platelet degranulation and leukocyte migration. These 
processes have already been described in severe COVID-
19 patients (Shen et al. 2020; Shu et al. 2020).

Among them, CETP was up-regulated in the serum 
of asymptomatic individuals, as previously seen in 
COVID-19 patients with mild symptoms (Liu et  al. 
2021), while in the serum of critical patients this pro-
tein appeared down-regulated (Shu et  al. 2020). CETP 
mediates lipid exchange (Satoh et al. 2016), but it also 
inhibits prolonged inflammation. Thus, CETP upreg-
ulation might correlate with the alteration of lipids 
after viral infection (membrane fusion, vesicles, etc.) 
(Abu-Farha et al. 2020), or even contribute to the lack 
of symptomatology in these patients (Shu et  al. 2020). 
Similarly, plasma phospholipid transfer protein (PLTP) 
was up-regulated mainly in PCR + asymptomatic indi-
viduals. PLTP regulates lipoprotein metabolism, as 
well as inflammation and immune response, affecting 
Th1/Th2 polarization via modulation of IL18 expres-
sion (Desrumaux et  al. 2016). Remarkably, these and 
other serum proteins related to lipid metabolism were 

Fig. 4  Proteins altered in CACs incubated with asymptomatic patients’ serum compared with negatives and functional network. A Graphical 
representation of the label-free quantification (LFQ) intensities registered for several proteins altered in CACs + PCR (n:8) and CACs + IgG 
(n:8) compared to CACs + Neg controls (n:8). Differences were considered significant when p-values < 0.05. *p-value < 0.05, *p-value < 0.01, 
*p-value < 0.001. B Receiver operating characteristic (ROC) analysis of HSPA5, STAB1, RAB10 and TMP3 proteins in asymptomatic COVID-19 patients 
with area under curve (AUC). C Naïve Bayes classifier

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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previously seen in SARS-CoV patients, presenting an 
altered lipid and glucose metabolism even 12 years after 
infection (Wu et al. 2017). Further studies should evalu-
ate the exact mechanisms by which coronaviruses affect 
lipid and glucose metabolism (Keihanian and Bigdelu 
2020), since they could provide new insights regarding 
the adverse chronic cardiovascular complications.

Angiotensinogen (AGT) was also up-regulated in the 
serum of asymptomatic donors. AGT interacts with 
angiotensin converting enzyme 2 (ACE2), one of the 
main receptors responsible of SARS-CoV-2 entrance 
into the host cells which has been associated to 
COVID-19 cardiovascular complications (Wang et  al. 
2020; Wicik et  al. 2020). In addition, other proteins 
up-regulated were thrombospondin (THBS1), fibrino-
gen α (FGA) or Von Willebrand factor (vWF), normally 
secreted by platelets during the degranulation process 
(Mehta and Yusuf 2003). These three proteins were 
already identified as procoagulant and thrombo-inflam-
matory markers in severe COVID-19 patients (Liu et al. 
2021; Wool and Miller 2021; Zamanian-Azodi et  al. 
2021; Ward et al. 2021), but our data suggest that they 
are also altered at the peak of infection even in absence 
of symptoms. Since up-regulation of proteins like vWF 
correlates with inflammation, leaving the endothelium 
in a prothrombotic state (Ladikou et  al. 2020; Escher 
et  al. 2020), the potential long-term consequences 
of such endothelial damage in asymptomatic people 
should be tracked.

With this in mind, we next addressed whether the 
serum of asymptomatic COVID-19 individuals could 
affect basal endothelial cell function, by evaluating the 
protein changes taking place in CACs. Recent stud-
ies have reported an up-regulation of circulating EPCs 
levels even three months after SARS-CoV-2 infection, 
pointing them as vascular injury markers (Nizzoli et al. 
2020). Thus, the effect of viral infection over these cells 
might help to explain potential cardiovascular second-
ary effects (Poyatos et  al. 2021). Remarkably, many of 
the proteins altered in CACs incubated ex vivo with the 

serums of asymptomatic donors have been previously 
associated with viral infection, infection by RNA virus 
and SARS, but also to ECs movement or proliferation, 
and endothelial dysfunction. Besides, the alteration of 
proteins related to leukocyte extravasation and move-
ment in CACs exposed to the serum of PCR + people, 
corroborates the activation of the immune process in 
these cells (Eslava-Alcon et al. 2020; Beltrán-Camacho 
et  al. 2021; Medina et  al. 2011). In response to pro-
inflammatory stimuli such as viral infection, circulat-
ing EPCs initiate weak cell–cell interactions with the 
endothelium, promoting the expression of adhesion 
molecules such as E-selectin or ICAM-1 by these cells, 
which also promotes vascular permeability, EPCs adhe-
sion and trans-endothelial migration (Krenning et  al. 
2009), as well as leukocyte recruitment (Othumpangat 
et al. 2016; Yu et al. 2020; Dai et al. 2008). Interestingly, 
ICAM-1 appeared up-regulated in CACs + PCR cells, 
but returned to basal levels in CACs + IgG. Elevated 
levels of ICAM-1 have been associated with severe 
endothelial dysfunction in severe COVID-19 patients 
(Nagashima et  al. 2020; Tong et  al. 2020). Also, the 
number of ICAM-1 + circulating EPCs appeared sig-
nificantly increased in convalescent COVID-19 patients 
compared to healthy controls (Chioh et al. 2021). Thus, 
ICAM-1 levels might be indicative of the patient’s pro-
gression towards a worse condition or a prompt recov-
ery without major consequences, at least at the short 
term. Similarly, MMP14 was only up-regulated in 
CACs + PCR cells. MMP14 promotes LDL receptors 
shedding (Alabi et al. 2021), and it also participates in 
tissue remodeling by degrading several extracellular 
matrix components (collagen, gelatin, fibronectin, etc.), 
which is usually associated to inflammation (Xia et  al. 
2021; Hwang et al. 2004). Overall, MMP14 may regulate 
the infiltration and migration of inflammatory precur-
sor cells under arterial inflammation (Ries et al. 2007).

CD44, receptor for hyaluronic acid (HA) in adult ECs 
and CACs, was also up-regulated in CACs + PCR cells, 
in agreement with recent findings reporting high cir-
culating HA levels in COVID-19 patients compared to 
healthy controls (Queisser et  al. 2021). Similarly, hepa-
rin sulfate levels increased in HUVECs incubated with 
the plasma of COVID-19 patients, which was associ-
ated with endothelial glycocalyx shedding and degrada-
tion (Potje et  al. 2021). Indeed, the glycocalyx becomes 
significantly damaged in severe COVID-19 patients, cor-
relating with vascular damage in these patients (Queis-
ser et al. 2021; Yamaoka-Tojo 2020; Teuwen et al. 2020). 
Finally, the incubation of human lung microvascular ECs 
with HA isolated from the plasma of COVID-19 patients, 
promoted endothelial barrier dysfunction in a CD44-
depedent manner (Queisser et al. 2021).

Table 1  Evaluation of different machine learning models to 
classify CACs samples incubated with serum of PCR +, IgG + and 
negative donors

ROC receiver operating characteristic, SVM support vector machines, TP true 
positive, FP false positive

Accuracy Recall ROC area Avg. TP 
rate

Avg. FP rate

Linear SVM 0.92 0.92 0.94 0.92 0.04

Naïve Bayes 0.93 0.92 0.96 0.92 0.04

Random 
forest

0.83 0.79 0.91 0.79 0.10
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Radixin was also over-expressed only in CACs + PCR. 
This protein shares 70% of the sequence with Ezrin, 
which appears to interact with the S spike protein of 
SARS-CoV, reducing viral entry (Millet et al. 2012), while 
in other cases like the human immunodeficiency virus-1 
(HIV-1) Erzin enhances viral infectivity (Roy et al. 2014; 
Gadanec et al. 2021). Like Ezrin, Radixin might be exert-
ing similar roles by modulating viral entry, although fur-
ther studies should confirm such hypothesis.

Machine learning algorithms reported a list of pro-
teins highly discriminating between the three groups 
compared (CACs + PCR, CACs + IgG or CACs + Neg). 
Among them, TLR2, up-regulated only in CACs + PCR, 
constitutes a cell surface innate immune sensor that can 
recognize several viral proteins upon infection (Oliveira-
Nascimento et al. 2012), including the SARS-CoV-2 pro-
tein (Zheng et al. 2021). TLR2 activation in response to 
the SARS-CoV-2 E-protein promotes the production of 
pro-inflammatory cytokines such as TNF-α and INF-γ 
in vivo and in vitro, in both human and mice cells. Inter-
estingly, the administration of TLR2 inhibitors to infected 
mice might protect against SARS-CoV-2 by impairing the 

release of cytokines (IL6, MCP1 or CXCL10) necessary 
for the development of the disease (Zheng et  al. 2021; 
Sariol and Perlman 2021). Remarkably, TLR2 decreased 
significantly to basal levels in CACs + IgG. Thus, the 
blockade of TLR2 might prevent the progression of the 
disease towards a more severe stage. Different clinical tri-
als using TLR-antagonists (M5049, MMG11, CuCpt22, 
hydroxychloroquine sulfate, imiquimod, etc.) are cur-
rently evaluating this therapeutic strategy (Gadanec et al. 
2021; Patra et al. 2021; Grabowski et al. 2020).

The cell-surface receptor HSPA5, up-regulated mainly 
in CACs + PCR, has been proposed as an additional 
receptor for SARS-CoV-2 attachment and entry, together 
with ACE2, susceptible to viral recognition through the 
substrate-binding domain (Ha et  al. 2020; Chu et  al. 
2018). Indeed, HSPA5 inhibitors interfere with SARS-
CoV-2 infection (Palmeira et al. 2020), corroborating this 
hypothesis, while HSPA5 levels might predispose to a 
severe progression and outcome of COVID-19 in patients 
with older age, obesity, and diabetes (Shin et al. 2021).

MNDA was one of the most discriminating proteins 
highlighted by the predictive approaches. MNDA is 

Table 2  Functional classification of differentially expressed proteins in CACs after PCR + serum vs Neg serum incubation

Functions P-value Z-score Molecules Proteins

Cell movement 2.62E-04 0.602 CAPN2, CD44, FLNA, GLUL, ICAM1, MMP14, 
PRDX2, RALA, RAP1A, RDX, RTN4, SEPTIN9, 
SQSTM1, STAB1, TLR2

15

Cell Migration 3.07E-04 0.321 CAPN2, CD44, FLNA, GLUL, ICAM1, MMP14, 
PRDX2, RALA, RAP1A, RDX, RTN4, SEPTIN9, 
STAB1, TLR2

14

Viral infection 3.47E-04 0.401 ACSL1, CD44, FLNA, GLUL, HLA-C, ICAM1, 
MNDA, MYO1F, NCF1, NDRG1, PTGES3, 
SAMSN1, STAB1, TLR2

14

Apoptosis 1.78E-03 1.037 CD44, DYNLL1, EWSR1, FLNA, H1-0, MNDA, 
NDRG1, PPP2CA, PRDX2, RAP1A, RDX, RTN4, 
SQSTM1, TLR2

14

Necrosis 1.42E-02 0.284 CD44, DYNLL1, EWSR1, FLNA, ICAM1, IQGAP2, 
PPP2CA, PRDX2, RDX, RTN4, SQSTM1, TLR2

12

Cell survival 2.45E-04 0.943 CD44, EIF3A, FLNA, ICAM1, LILRB4, NDRG1, 
PRDX2, RPS11, SQSTM1, TLR2, XRCC5

11

Vasculogenesis 4.31E-06 1.545 CD44, FLNA, GLUL, ICAM1, MMP14, RAP1A, 
RDX, RTN4, STAB1, TLR2

10

Infection by RNA 
virus

1.88E-03 − 0.442 ACSL1, CD44, FLNA, HLA-C, MYO1F, PTGES3, 
SAMSN1, STAB1, TLR2

9

Cell activation 1.66E-04 0.669 CD44, EIF3A, FLNA, ICAM1, LILRB4, MMP14, 
PPP2CA, TLR2

8

Endothelial Cell 
Migration

4.28E-05 0.275 CD44, FLNA, GLUL, ICAM1, MMP14, RTN4, 
STAB1

7

Leukocytes Cell 
movement

1.09E-03 0.281 CD44, ICAM1, 
MMP14, RTN4, STAB1, 
TLR2

6

Phagocytes Migra‑
tion

4.25E-05 0.453 CD44, ICAM1, 
MMP14, RTN4, STAB1

5

ROS production 2.71E-04 0.322 CD44, HVCN1, NCF1, 
PRDX2, TLR2

5
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required for INFα production from human blood cells in 
response to viruses (Gu et  al. 2022). MNDA down-reg-
ulation in CAC + PCR might reflect down-regulation of 
INFα, a powerful antiviral factor, in an attempt of SARS-
CoV-2 to endorse its own propagation and infectabil-
ity (Gu et  al. 2022).  The application of IFNα therapy to 
COVID-19 patients resulted in accelerated viral clearance 
from the upper airways and in a reduction of the inflam-
matory biomarkers IL-6 and C-reactive protein (CRP) 
(Zhou et  al. 2020). The fact that the MNDA went back 
to “normal” levels in CACs treated with IgG + serums 
could be indicative of cells overcoming the anti-viral 
blockade and cell post-infection recovery. Future stud-
ies should validate whether MNDA contributes indeed to 
the immune response to SARS-CoV-2.

Finally, the interactions detected between the altered 
serum factors and the protein changes in CACs corre-
lated with platelet activation, degranulation and an acti-
vation of the coagulation cascade. Noteworthy, EPCs are 
known to modulate platelet’s function and they also seem 

to limit thrombogenic events by supporting vascular 
repair of injured areas (Li and Li 2016; Abou-Saleh et al. 
2009). Given the few interactions found with this in silico 
approach, the changes in CACs might be promoted by 
additional serum proteins, not identified herein, or even 
by other molecules such as microRNA or exosomes pre-
sent in serum after COVID-19 infection.

Several limitations of this study should be addressed, 
such as the fact that serum samples were collected at the 
early period of the pandemic, and the number of sam-
ples collected was limited. Furthermore, donors were 
recruited prior vaccination started, so the potential effect 
that vaccines could have over the endothelial response 
should be also evaluated in future assays. Similarly, CACs 
were obtained from two healthy donors from whom 
no information was provided due to data protection 
assignments. Future studies may determine whether the 
response seen in our study would be different depending 
on the “endothelial” donors’ profile (healthy vs individu-
als with certain pathologies).
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Conclusions
Overall, our results indicate that the ex-vivo incuba-
tion of CACs with the serum from COVID-19 asymp-
tomatic patients promoted changes that resembled the 
effects associated to SARS-CoV-2 infection (inflamma-
tory response, ECM disruption and vascular damage, 
among others). Remarkably, such processes are currently 
considered as the primary causes of COVID-19 related 
coagulopathy. Therefore, our model has proven to be 
effective to evaluate the effect of SARS-CoV-2 at the cel-
lular level. The protein changes detected were different 
depending on the disease stage, when cells were exposed 
to serum of PCR + donors (at the highest peak of infec-
tion) or the serum of IgG + /PCR  − patients that had 
already overcome the disease with no apparent symp-
toms. Some of the proteins identified here, such as TLR2, 
ICAM-1, CD44, HSPA5 or MNDA, might be considered 
as potential targets to inhibit the direct or indirect effects 
of SARS-CoV-2 on the endothelium and the vascular sys-
tem. Further studies should evaluate whether the con-
tinuous alteration of these proteins correlates with the 
individual’s progression to a more severe condition or 
even with long-hauler sequelae or, on the contrary, their 
modulation could help to overcome the disease hopefully 
without major consequences.
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