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Abstract 

Background Although significant advances have been made in intensive care medicine and antibacterial treatment, 
sepsis is still a common disease with high mortality. The condition of sepsis patients changes rapidly, and each hour of 
delay in the administration of appropriate antibiotic treatment can lead to a 4–7% increase in fatality. Therefore, early 
diagnosis and intervention may help improve the prognosis of patients with sepsis.

Methods We obtained single-cell sequencing data from 12 patients. This included 14,622 cells from four patients 
with bacterial infectious sepsis and eight patients with sepsis admitted to the ICU for other various reasons. Mono-
cyte differentiation trajectories were analyzed using the “monocle” software, and differentiation-related genes were 
identified. Based on the expression of differentiation-related genes, 99 machine-learning combinations of prognostic 
signatures were obtained, and risk scores were calculated for all patients. The “scissor” software was used to associate 
high-risk and low-risk patients with individual cells. The “cellchat” software was used to demonstrate the regulatory 
relationships between high-risk and low-risk cells in a cellular communication network. The diagnostic value and 
prognostic predictive value of Enah/Vasp-like (EVL) were determined. Clinical validation of the results was performed 
with 40 samples. The “CBNplot” software based on Bayesian network inference was used to construct EVL regulatory 
networks.

Results We systematically analyzed three cell states during monocyte differentiation. The differential analysis 
identified 166 monocyte differentiation-related genes. Among the 99 machine-learning combinations of prognostic 
signatures constructed, the Lasso + CoxBoost signature with 17 genes showed the best prognostic prediction perfor-
mance. The highest percentage of high-risk cells was found in state one. Cell communication analysis demonstrated 
regulatory networks between high-risk and low-risk cell subpopulations and other immune cells. We then deter-
mined the diagnostic and prognostic value of EVL stabilization in multiple external datasets. Experiments with clinical 
samples demonstrated the accuracy of this analysis. Finally, Bayesian network inference revealed potential network 
mechanisms of EVL regulation.
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Conclusions Monocyte differentiation-related prognostic signatures based on the Lasso + CoxBoost combination 
were able to accurately predict the prognostic status of patients with sepsis. In addition, low EVL expression was asso-
ciated with poor prognosis in sepsis.

Keywords Sepsis, Single cell, Machine learning, Prognosis, EVL

Introduction
Sepsis is a fatal organ dysfunction attributed to host 
response disorder to severe infection. It is one of the 
major causes of death in critical patients. The condition 
of patients with sepsis changes rapidly. Therefore, early 
diagnosis and intervention may help improve the prog-
nosis of patients with sepsis (Arina and Singer 2021). At 
present, many studies are examining various biomarkers 
measured by a variety of different technologies to quickly 
distinguish systemic inflammatory response syndrome 
(SIRS), which is an over-defensive source of harmful 
body pressure (such as infection, trauma, surgery, acute 
inflammation, blood deficiency/reperfusion, or cancer) 
(Chakraborty and Burns 2022) or early identification 
of organ dysfunction (sepsis) caused by infection. Bio-
markers may help to stratify patients with sepsis based 
on biological phenotypes, such as high inflammation 
and immunosuppression. Biomarkers can also be used 
to evaluate intestinal permeability, blood–brain barrier 
(BBB) permeability, readmission probability, and long-
term outcomes (Yende et al. 2019; Barichello et al. 2021).

The main cause of sepsis is the replication and release 
of components by pathogenic pathogens, such as endo-
toxin and exotoxin, and DNA. These components are 
called pathogen-associated molecular patterns (PAMPs) 
(Kumar et al. 2013; Heckenberg et al. 2014). PAMPs are 
recognized by pattern recognition receptors (PRR) as 
well as non-PRRs (Mook-Kanamori et  al. 2011; Sellner 
et  al. 2010). The recognition of PAMPs by a variety of 
immune cell receptors triggers a series of signal path-
ways, which activate a variety of transcription factors to 
promote the production and release of proinflammatory 
and anti-inflammatory mediators, which are necessary 
to eliminate invading pathogens (Iwasaki and Medzhitov 
2010).

Both host immune response and pathogen virulence 
factors can cause cell damage and/or induce cell stress. 
Many damage-associated molecular patterns (DAMPs) 
have been identified, some of which are currently used 
as biomarkers of inflammation. Examples include 
heat shock protein (HSP), high mobility group box  1 
(HMGB-1), and members of the S100 family (Kataoka 
et al. 2014; Kigerl et al. 2014; Wiersinga et al. 2014). The 
immune response may induce vascular endothelial dam-
age and may promote the transfer of the pathogen and/
or its PAMP from the intestinal tract to the bloodstream 

and lymphatic vessels, thereby amplifying the systemic 
inflammatory response (Generoso et al. 1999).

Past studies have explored biomarkers that can help 
identify endothelial damage, intestinal permeability, 
organ failure, and BBB decomposition and predict read-
mission, short-term and long-term mortality, and the 
cognitive consequences in survivors (Barichello et  al. 
2019). However, molecular mechanisms underlying 
sepsis have not been fully elucidated. To identify suit-
able biomarkers for the early detection and treatment of 
sepsis, we collected sequencing data of peripheral blood 
single cells derived from patients with sepsis. The dif-
ferentiation trajectories of monocytes was analyzed, and 
the differentiation-related genes were identified. Based 
on the expression of differentiation-related genes, 99 
machine-learning combinations of prognostic signatures 
were derived, and the best machine-learning algorithm 
was used to calculate the risk scores of all patients. The 
validity and accuracy of the best signature were system-
atically analyzed. In addition, Enah/Vasp-like (EVL) has 
been implicated in cancer, cardiovascular disease, and 
neurological disorders. EVL is involved in regulating 
processes such as cytoskeletal dynamics, cell division, 
cell migration, and intercellular communication. How-
ever, the diagnostic and prognostic value of EVL in sep-
sis remains unclear. In our study, we validated the strong 
diagnostic performance of EVL in differentiating sepsis 
from healthy individuals across multiple datasets and 40 
clinical samples. Furthermore, we observed significant 
differential expression of EVL between high- and low-
risk patients. Overall, our study provides insights for clin-
ical diagnosis and treatment.The flow of all the analyses 
in this study is shown in Fig. 1

Materials and methods
Acquisition and pre‑processing of single‑cell data
Single-cell transcriptome data were obtained from the 
Single Cell Portal (https:// singl ecell. broad insti tute. org/ 
single_ cell/ study/ SCP548/ an- immune- cell- signa ture- of- 
bacte rial- sepsis- patie nt- pbmcs# study- summa ry). Qual-
ity control was performed in R(4.1.2) environment using 
standard single cell processing procedures. The count 
matrix were read using the Read10X function from the 
Seurat package (Version 4.0.4), and the latter was fur-
ther converted to dgCMatrix format. The merge function 

https://singlecell.broadinstitute.org/single_cell/study/SCP548/an-immune-cell-signature-of-bacterial-sepsis-patient-pbmcs#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP548/an-immune-cell-signature-of-bacterial-sepsis-patient-pbmcs#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP548/an-immune-cell-signature-of-bacterial-sepsis-patient-pbmcs#study-summary
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was used to integrate all individual objects into an aggre-
gate object, and the RenameCells function was used to 
ensure that all cell labels were unique. We filtered low 
quality cells with the following filtering criteria: when 
a gene was expressed in less than 3 cells, the gene was 
deleted. When the number of genes expressed in a cell 
was less than 200, the cell was deleted. A global-scaling 
normalization method (“LogNormalize”) was employed 
to ensure that the total gene expression in each cell was 
equal, and the scale factor was set to 10,000. The top 
2000 variably expressed genes were returned for down-
stream analysis using the FindVariableFeatures function. 
The ScaleData function, “vars.to.regress” option UMI, 
and percent mitochondrial content were used to regress 
out unwanted sources of variation. Principal component 
analysis (PCA) incorporating highly variable features 
reduced the dimensionality of this dataset, and the first 
30 PCs were identified for analysis. Harmony method 
(Korsunsky et al. 2019) was used to remove batch effects 
between samples. Cells were down-dimensioned using 
the UMAP method. Clustering analysis was performed 
based on the edge weights between any two cells, and a 
shared nearest-neighbor graph was produced using the 

Louvain algorithm, which was implanted in the Find-
Neighbors and FindClusters functions. The parameter of 
resolution in the FindClusters function was tried repeat-
edly between 0.1 and 1. Cell clustering trees at different 
resolutions were observed using the clustree function, 
and the results showed that the clearest clustering results 
were obtained when the resolution was 0.5. To annotate 
the cell clusters, differentially expressed markers of the 
resulting clusters were identified with the FindAllMark-
ers function using the default nonparametric Wilcoxon 
rank sum test with Bonferroni correction. All cells were 
annotated according to cell surface markers and anno-
tated genes used in the relevant literature and CellMarker 
database (Zhang et  al. 2019) (http:// xteam. xbio. top/ 
CellM arker/).

Pseudo time analysis
The “monocle” package (2.24.1) was used to perform the 
proposed pseudo time analysis (Trapnell et al. 2014).The 
NewCellDataSet function was used to create a new object 
for the monocle using transcript count data. Signature 
genes expressed in at least 10% cells of the dataset and 
with a P < 0.01 calculated using the differentialGeneTest 

Fig. 1 All analytical processes in this study

http://xteam.xbio.top/CellMarker/
http://xteam.xbio.top/CellMarker/
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function were included to define the trajectory progress. 
The ReduceDimension function reduced the space down 
to two dimensions, and the orderCells function ordered 
the cells according to gene expression. After the order-
Cells function is run, the monocyte states 1, 2 and 3 are 
available. The FindAllMarkers function in the “seurat” 
package was used to determine the genes characteris-
tic of each differentiation state. If |log2FC|  > 0.585, an 
adjusted P value < 0.05 was considered as a differentially 
expressed gene.

Machine learning to build prognostic signatures
We used a total of 10 machine learning algorithms, 
including random survival forest (RSF), elastic network 
(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial 
least squares regression for Cox (plsRcox), supervised 
principal components (SuperPC), generalised boosted 
regression (GBM), and survival support vector machine 
(survival-SVM). In the process, we use one algorithm to 
filter the variables and another algorithm to build the 
prognostic signature. Out of the possible 100 combi-
nations of machine learning algorithm pairs, one was 
excluded because the number of genes included in the 
final prognostic signature was less than five. A total of 
99 combinations of machine learning algorithms were 
eventually integrated. Finally, the Harrell’s concordance 
index (C-index) was calculated for each signature, and 
the signature with the highest average C-index value was 
considered to be the best signature. After calculating the 
risk score for each patient using the predict function, 
the optimal cutoff value for the risk score is determined 
using the surv_cutpoint function in the “srvminer” pack-
age. Based on the optimal cutoff value of the risk score, 
patients are divided into high-risk and low-risk groups.

Identification of phenotypic‑related cells
Scissor algorithm from the “Scissor” package (Sun et al. 
2022) (2.0.0). By leveraging bulk data and phenotype 
information, this algorithm automatically selects cell sub-
populations from single-cell data that are most respon-
sible for the differences of phenotypes. The novelty of 
Scissor is that it utilizes phenotype information from 
bulk data to identify the most highly disease-relevant 
cell subsets. In our study, high-risk patients and low-risk 
patients identified in GSE65682 were treated as two dif-
ferent phenotypes. Based on the scissor algorithm, the 
high-risk phenotype and the low-risk phenotype were 
associated with each monocyte. Parameter α balances 
the effect of the L1-norm and the network-based penal-
ties. A larger alpha inclines to emphasize the L1-norm 
to encourage sparsity, making Scissor selects fewer cells 
than the result using a smaller alpha. According to the 
requirements of the scissor algorithm: the number of 

Scissor selected cells should not exceed a certain per-
centage of total cells (default 20%) in the single-cell data, 
we finally choose an alpha value of 0.5. To determine 
whether the inferred phenotype-to-cell associations are 
reliable, we use the Reliability.Test function to perform a 
reliability significance test. The motivation for the relia-
bility significance test is: if the chosen single-cell and bulk 
data are not suitable for the phenotype-to-cell associa-
tions, the correlations would be less informative and not 
well associated with the phenotype labels. Thus, the cor-
responding prediction performance would be poor and 
not be significantly distinguishable from the randomly 
permutated labels. If the P-value of the test was found to 
be less than 0.05, the inferred phenotype-cell association 
was reliable.

Cellular communication network
Cell–cell interaction analysis was performed based on 
the “CellChat” (v1.0.0) R package (Jin et  al. 2021). Cell-
Chat has a public repository of ligands, receptors, cofac-
tors and their interactions (http:// www. cellc hat. org/). 
The CellChat R package is a versatile and easy-to-use 
toolkit for inferring, analyzing, and visualizing cell–cell 
communication from any given scRNA-seq data. The 
ligand and receptor genes expressed by each cell were 
projected into a manually selected reference communi-
cation network and the probability of communication in 
each pathway was inferred by gene expression. Finally use 
the netVisual_bubble function for visualization, with all 
parameters as default.

Enrichment analysis
Enrichment analysis of differential genes was performed 
using the “GSEABase” package, “ClusterProfiler” package 
and “org.Hs.eg.db” package. The database used for the 
enrichment analysis was derived from the Gene Ontology 
(http:// geneo ntolo gy. org/). Use the EnrichGO function 
for enrichment. If P < 0.05, the pathway was considered 
to be significantly enriched. “ggplot2” package, “ggpubr” 
package for visualization.

Inference of gene interaction networks
When investigating gene expression profiles, identifying 
important directional edges between genes can provide 
valuable insights in addition to identifying differentially 
expressed genes. The “CBNplot” package (Sato et  al. 
2022) for the inference of gene interaction networks 
was used to calculate the gene interaction networks. 
Sequence data from 761 sepsis patients in the GSE65682 
data were used as background to calculate the interaction 

http://www.cellchat.org/
http://geneontology.org/
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direction and plot the graph using the bngeneplot func-
tion, with a filtering criterion of 0.95 as the intensity.

Analysis of immune cell content and immune function
Immune cell content and immune function analysis 
was performed using the gsva function in the “GSVA” 
package. By default, kcdf = “Gaussian” which is suitable 
when input expression values are continuous, such as 
microarray fluorescent units in logarithmic scale, RNA-
seq log-CPMs, log-RPKMs or log-TPMs. Therefore, 
the parameters method choose ssgsea and kcdf choose 
Gaussian. Use ggpubr to visualize the results.

Clinical sample collection
In total, 20 patients with sepsis (mean age, 58  years; 
66%men) and 20 age-and sex-matched healthy controls 
(mean age, 56 years; 66%men) were included. The diag-
nosis of sepsis was established according to the Third 
International Consensus Definitions for Sepsis and Sep-
sis Shock (Sepsis-3). Sepsis was defined as a documented 
or suspected infection (defined as a pathologic process 
induced by a microorganism) and some of the following 

parameters (Table  1). The study was approved by the 
Institutional Review Boards of The Second Hospital of 
Hebei Medical University.

Quantitative reverse transcription polymerase chain 
reaction (qRT‑PCR)
PBMCs were isolated from whole blood using a stand-
ard Ficoll-Paque isolation method. Total RNA from the 
PBMC was isolated using TRIzol reagent (Invitrogen, 
Carlsbad, California, USA), and qRT-PCR was performed 
with SYBR® Green dye (TaKaRa, Shiga, Japan), following 
the manufacturer’s instructions. Primer sequences: EVL: 
F-CAG CAG CAG CGT CAG GAA TCTC; R-GTG GGT 
GGA GGT GGG ACT GG. GAPDH: F-AGA ACA TCA 
TCC CTG CCT CTACT; R-GAT GTC ATC ATA TTT GGC 
AGGTT. GAPDH was used as a reference gene.

Statistical analysis
All statistical analyses were carried out using R (4.1.2) 
and Strawberry Perl software (5.14.2.1, 64-bit).

Table 1 Inclusion criteria for sepsis

General parameters

• Hyperthermia (> 38.3 °C) or hypothermia (< 36.0 °C)

• Tachycardia (heart rate > 90 beats/min)

• Tachypnea (respiratory rate higher than 30 breaths/min)

• Altered mental status

• Significant edema or positive fluid balance > 0 ml/kg over a 24-h period)

• Hyperglycemia in the absence of diabetes (plasma glucose > 110 mg/dl)

Inflammatory parameters

• Lleukocytosis or leukopenia (white blood cell count > 12,000/mm3 or < 4000  mm3), normal white blood cell count with a percentage of immature 
forms > 10%

• Plasma C-reactive protein more than 2 standard deviations above the normal value

• Plasma procalcitonina more than 2 standard deviations above the normal value

Hemodynamic parameters

• Arterial hypotension: systolic blood pressure < 90 mm Hg, mean arterial blood pressure < 70 mm Hg, or decrease of systolic blood pressure from the 
baseline to > 40 mm Hg)

• Mixed venous oxygen saturation > 70%

• Cardiac index > 3.5 l/min/m2

Organ dysfunction

• Arterial hypoxemia (pressure of arterial oxygen/fraction inspired oxygen  (PaO2/FIO2) ratio < 300)

• Acute oliguria (urine output < 0.5 ml/kg/h for at least 2 h)

• Creatinine increase of 0.5 mg/dl or more

• Coagulation abnormalities defined as international normalized ratio (INR) > 1.5 or activated partial thromboplastin time (APTT) > 60 s

• Ileus (absent bowel sounds)

• Thrombocytopenia (platelet count < 100,000/μl)

• Hyperbilirubinemia (plasma total bilirubin > 4 mg/dl)

Tissue perfusion parameters

• Hyperlactatemia (> 3 mmol/l)

• Decreased capillary refill or mottling
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Results
Analysis of monocyte differentiation trajectories
We first obtained peripheral blood single-cell sequenc-
ing data for a total of 14,622 cells obtained from four 
patients with bacterial infection-related sepsis and 
eight patients with sepsis admitted to the ICU for vari-
ous reasons. We annotated all cells according to com-
mon cell surface markers (Fig.  2A). The annotation 
results showed that six different cell types, including B 
cells, NK cells, monocytes, DC cells, T cells, and mega-
karyocytes (Fig.  2B). Cell proportion analysis showed 
that monocytes accounted for more than 50% of both 
cohorts (Fig. 2C). Since monocytes were the largest cell 
subpopulation, we extracted only monocytes for subse-
quent analysis. We performed a pseudo time analysis of 
7631 monocytes (Fig. 2D). The results showed three dif-
ferent differentiation states of monocytes among patients 
with sepsis (Fig.  2E). We determined the differentially 
expressed genes in each cell state compared to other cell 
states, and a total of 166 differential genes were included 
using |log2FC|  > 0.585 adjusted for P < 0.05 as a screen-
ing condition (Fig. 2F). These genes were termed mono-
cyte differentiation-related genes found in patients with 
sepsis. We found that the expression of pro-inflammatory 
genes such as S100A12, S100A8, S100A9, and VCAN was 
significantly increased in cells of state one. However, the 
expression of HLA family genes (HLA-DRA, HLA-DRB1, 
HLA-DPA1, HLA-DPB1) was low, suggesting a low anti-
gen-presenting ability of these monocytes. The expres-
sion of IFITM2 and IFITM3 was decreased, indicating 
a weaker signal associated with type I interferon, which 
may be responsible for the diminished antigen-present-
ing capacity of monocytes. In addition, the expression 
of FCGR3A, C1QA, and C1QB was also downregulated, 
suggesting that monocytes in state one did not seem to 
be sensitive to adaptive immune responses. Subsequently, 
state one monocytes differentiated into those character-
ized by states two and three. In state two, the expression 
of the HLA family (HLA-DRB5, HLA-DRA, HLA-DRB1) 
genes was upregulated, while FCGR3A, C1QA, and C1QB 
showed low expression. Interestingly, the characteristics 
of state three were in contrast to those of state one. In 
state three, FCGR3A, C1QA, C1QB, HLA-DPB1, HLA-
DPA1, IFITM2, and IFITM3 were expressed at higher 
levels, while S100A9, S100A8, S100A12, and LYZ were all 
expressed at lower levels.

Establishment of a prognostic signature related 
to monocyte differentiation in patients with sepsis
Single-cell transcriptome sequencing data based on 12 
patients with sepsis provide great assistance in the analy-
sis of monocyte differentiation trajectories at the individ-
ual cell level. However, in contrast to bulk transcriptome 

sequencing, single-cell data are missing essential clini-
cal information, such as patient survival information. To 
determine the prognostic value of 166 monocyte differ-
entiation-related genes, we downloaded the GSE65682 
dataset with survival information. The GSE65682 dataset 
comprises peripheral blood transcriptome sequencing 
data of 760 patients with sepsis and 42 healthy donors. 
We first used the transcriptome data of 469 patients with 
sepsis who had a clear 28-day record of survival status. 
We performed univariate Cox regression analysis on 
166 monocyte differentiation-related genes and identi-
fied 51 prognosis-related genes. Among them, 42 genes 
were classified as protective genes and 9 genes as risk 
genes. These 51 prognosis-related genes were subjected 
to our machine learning integration process. Specifically, 
we used random survival forest (RSF), elastic network 
(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial 
least squares regression for Cox (plsRcox), supervised 
principal components (SuperPC), generalized boosted 
regression (GBM), and survival support vector machine 
(survival-SVM). In the process, we used one algorithm 
to filter the variables and another to build the prognos-
tic signature. When the number of genes included in the 
final prognostic signature was less than 5, the signature 
was considered invalid. Also, for signature accuracy vali-
dation, we randomly divided the 469 case samples into 
two validation cohorts, namely, test 1 and test 2, in a 1:1 
ratio. Finally, we successfully fitted 99 signature combina-
tions (Fig. 3A). For each signature, the Harrell’s concord-
ance index (C-index) was calculated across all validation 
datasets, and the signature with the highest average 
C-index was considered optimal (Fig.  3A). Interestingly, 
among all signature combinations, the Lasso + CoxBoost 
signature with 17 genes showed the best prognostic pre-
diction performance (Fig. 3A). Among all patient cohorts, 
the C-index value of Lasso + CoxBoost was 0.715. Fur-
thermore, the C-index for test 1 and test 2 were 0.684 and 
0.755, respectively.

Signature validity and stability analysis
Based on the expression of these 17 genes, a risk 
score was calculated for each patient using the pre-
dict function. Risk score = (−  0.23041 × LST1 expres-
sion) + (−  0.13571 × LYZ expression) + (0.19471 × YBX1 
expression) + (− 0.16417 × MTSS1 expression) + (− 0.28 
547 × SELL expression) + (−  0.07437 × ABI3 expression)  
+ (0.22436 × C1QA expression) + (0.49227 × RNASET2  
expression) + (− 0.28756 × NUP214 expression) + (− 0.13 
198 × LILRA1 expression) + (0.23376 × PPDPF express 
ion) + (0.25875 × RHOB expression) + (0.25079 × CLEC1 
2A expression) + (0.15692 × INSIG1 expression) + (−   
0.18470 × EVL expression) + (0.39340 × NDUFB1 expres-
sion) + (0.23379 × BCL2A1 expression).
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Fig. 2 Analysis of monocyte differentiation trajectories. A Expression of marker genes used in the cell annotation process. The size of the bubble 
represents the percentage of cells in that cell subpopulation that express the gene. From gray to red indicates higher gene expression values; B 
Landscape of single-cell annotation; C Percentage of each cell type in different cohorts; D Monocyte differentiation trajectories. The pseudotime 
represents the order of differentiation time, the darker the color means the more biased to the early stage of differentiation, the lighter the color, 
the more backward the differentiation time sequence; E Monocyte differentiation states. Red represents state 1 cells, blue represents state 2 cells, 
and green represents state 3 cells. Cells start to differentiate from state 1, after which they partly differentiate to state 2 and partly to state 3; F 
Differentially expressed genes for each cell state. Differentially expressed genes were determined for each state by a Wilcoxon rank-sum test, with a 
screening bar of |logFC| > 0.585 adjusted for P < 0.05. Blue represents down-regulated genes, red represents up-regulated genes
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Subsequently, we further analyzed the validity of the 
risk scores in the total cohort, test 1 cohort, and test 2 
cohort, respectively. First, patients in the total cohort, 
test 1 and test 2 cohorts were divided into high-risk and 
low-risk groups based on the risk score of each patient 
using the “srvminer” package to determine the optimal 
threshold value. In the total cohort and test 1 and test 
2 cohorts, the 28-day overall survival (OS) was signifi-
cantly lower in the high-risk patients (Fig.  3B–D), and 
the receiver operating characteristic (ROC) analysis 
showed that the area under curve (AUC) values for risk 
scores in the total cohort were 0.759, 0.735, and 0.733 at 
5, 15, and 25 days, respectively. The AUC values for risk 
scores in test 1 and test 2 cohorts could still reach 0.735, 
0.714, 0.687 and 0.777, 0.756, 0.781 at 5, 15, and 25 days 
(Fig. 3E, F). In summary, our results showed that the risk 
score could demonstrate stable and robust performance 
across multiple cohorts.

Characterization of high‑ and low‑risk patients
To investigate the internal characteristics of patients in 
the high-risk and low-risk groups, we first analyzed the 

differential expression of 17 genes involved in the signa-
ture construction between healthy and sepsis samples, 
of which 14 genes were differentially expressed (Fig. 4A). 
The expression of nine and five genes was down-regu-
lated and up-regulated, respectively. We then analyzed 
the expression trends of the 17 genes during mono-
cyte differentiation (Fig.  4B). We observed that SELL, 
NUP214, LYZ, and NDUFB1 were highly expressed in 
the early stages of cell differentiation. These genes are 
associated with the promotion of leukocyte migration to 
secondary lymphoid organs and sites of inflammation, 
lysozyme secretion, and other effects (Bernimoulin et al. 
2003; Mehta-D’souza et  al. 2017). CLEC12A expression 
was upregulated in the intermediary stages of cell dif-
ferentiation. This gene encodes a member of the C-type 
lectin/C-type lectin-like structural domain (CTL/CTLD) 
superfamily, which participates in cell adhesion, intercel-
lular signaling, and inflammatory and immune responses 
(Marshall et al. 2006). The remaining genes, such as EVL 
and BCL2A1 were highly expressed at the end of differ-
entiation. These genes may be associated with the secre-
tion of inflammatory cytokines, such as TNF and IL-1, at 

Fig. 3 Establishment of a prognostic signature related to monocyte differentiation in patients with sepsis. A C-index values of 99 machine learning 
combinations. The color from green to yellow represents the gradual increase of C-index value. Each row represents a signature and each column 
represents a cohort; B Survival analysis of the total cohort of high-risk and low-risk patients. Blue represents low-risk patients and red represents 
high-risk patients; C Survival analysis of the Test 1 cohort of high-risk and low-risk patients. Blue represents low-risk patients and red represents 
high-risk patients; D Survival analysis of high-risk and low-risk patients in the Test 2 cohort; E ROC analysis of risk scores for the total cohort. Red 
represents the AUC of signature at 5 days, blue represents the AUC of signature at 15 days, and green represents the AUC of signature at 25 days; F 
ROC analysis of risk scores for the Test 1 total cohort. Red represents the AUC of signature at 5 days, blue represents the AUC of signature at 15 days, 
and green represents the AUC of signature at 25 days; G ROC analysis of the risk scores of the total cohort in Test 2. Red represents the AUC of 
signature at 5 days, blue represents the AUC of signature at 15 days, and green represents the AUC of signature at 25 days
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this stage. We aimed to identify monocytes that contrib-
ute to the high-risk phenotype for disease. Therefore, the 
“scissor” package was used to correlate bulk sequencing 
data with single-cell sequencing data. This method uses 
single-cell data and phenotypic information to identify 
subpopulations of cells. Using a large amount of data and 
its annotated information with various types of pheno-
types, the algorithm automatically selects cells that are 
highly correlated with the phenotype. We considered 
high-risk and low-risk in patients as two phenotypes, 
associating both phenotypes with 7631 monocytes. We 
identified a total of 715 high-risk cells and 597 low-risk 
cells (Fig.  4C). We performed a reliability significance 
t-test using the “reliability.test” function in the “scissor” 
package. The results showed a correlation of t = 0.896 
(P < 0.0001). This finding validates the accuracy of our cell 
identification. The results of the cell proportion analysis 
showed that the subpopulation of cells in status one had 
the highest percentage of high-risk cells (Fig. 4D). This is 
consistent with our previous results indicating that the 
cell subpopulation in state one showed a low expression 
of HLA family genes and a low antigen-presenting capac-
ity. In addition, we analyzed the communication relation-
ships between high- and low-risk cell subpopulations and 
other immune cells (Fig.  4E). We found significant dif-
ferences between high-risk and low-risk cell subpopula-
tions (Fig. 4F). For instance, FCER2A-(ITGAM + ITGB2) 
signaling was activated between B cells and high-risk 
cells. This signal activates a potent mitotic growth fac-
tor that plays an important role in the growth, differ-
entiation, and regulation of IgE production in B cells. 
MIF-(CD74 + CD44) signaling was activated between B 
cells and low-risk cells. This finding suggests that the reg-
ulation of monocyte function in host defense, initiation of 
cell proliferation (Oddo et al. 2005). SELPLG-SELL sign-
aling were activated between DC cells and low-risk cells. 
This signal plays a key role in the transport of leukocytes 
and the subsequent binding (Sako et  al. 1995). CD99–
CD99 signaling was activated between NK cells and 
high-risk cells (Fig.  4G). CD99-encoded protein can be 

involved in mediating cell death via a caspase-independ-
ent pathway (Hahn et al. 1950). Finally, we analyzed the 
immune microenvironment of patients in the high and 
low-risk groups. We calculated the immune cell func-
tion and immune cell content of patients in the high and 
low-risk groups using the ssGSEA method. The results of 
the immune cell content showed a decrease in the levels 
of several T cells in the high-risk group, such as CD8T 
cells and T helper cells. In addition, the levels of NK cells 
and B cells were significantly downregulated (Fig.  4H). 
These findings suggest that high-risk patients may be in a 
state of immune cell depletion. Immune function analysis 
showed that antigen-presenting ability, pro-inflammatory 
ability, T cell co-activation and co-inhibitory ability were 
all downregulated in high-risk patients (Fig. 4I). Interest-
ingly, IFN-I responses were down-regulated while IFN-II 
responses were up-regulated, which also remained con-
sistent with state one cells.

EVL showed a stable diagnostic and prognostic value
We aimed to identify a gene with both diagnostic and 
prognostic value, which may be more important for 
clinical purposes. Among the genes involved in the con-
struction of our prognostic signature, the EVL gene in 
the signature had protective functions. In addition, we 
noted that EVL expression was low in high-risk patients 
in all cohorts, test 1 and test 2 cohorts (Fig. 5A). Impor-
tantly, as a diagnostic marker, EVL could reach an AUC 
value of 0.990 in the GSE65682 dataset (Fig. 5B). To fur-
ther determine the stability of the diagnostic value of 
EVL, we analyzed GSE28750, GSE95233, GSE57065, and 
GSE69063. The baseline characteristics of the samples in 
these datasets are shown in Additional file  1: Table  S1. 
GSE28750 included 20 healthy samples and 10 sepsis 
samples. GSE95233 included 22 healthy samples and 102 
sepsis samples. GSE57065 included 25 healthy samples 
and 82 sepsis samples. GSE69063 included 33 healthy 
samples and 57 sepsis samples. Our results showed that 
the AUC of EVL was 1 in GSE28750, 0.978 in GSE95233, 
0.995 in GSE57065, and 0.970 in GSE69063 (Fig.  5B), 

Fig. 4 Characterization of high- and low-risk patients. A Differential expression of 17 signature gene between healthy individuals and sepsis 
patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two-tailed t-test; B Expression of 17 signature gene in monocyte differentiation 
trajectory. Each row is a gene, each column is a sample, and the differentiation time is from left to right. The color changes from blue to red 
indicating increasing levels of gene expression; C Identification of cell subpopulations highly correlated with the phenotypes of high-risk and 
low-risk patients. Blue are identified low-risk cells, red are identified high-risk cells, and gray are unclassified cells; D Proportional analysis of 
phenotype-associated cell subpopulations in three differentiation states. The horizontal axis is the percentage of cells and the vertical axis is 
the different states of monocytes. Blue are identified low-risk cells, red are identified high-risk cells, and gray are unclassified cells; E Cellular 
communication landscape. Different colors represent that the signal originates from different cells, the thicker the line represents the higher weight 
of the signal action, and the arrows represent the direction of signal sending and receiving; F Analysis of ligand-receptor communication between 
different immune cells. The horizontal axis is the ligand cell and the corresponding receptor cell, and the vertical axis represents the different signal 
pairs. The color of the dots from blue to red represents the stronger the strength of the signal; G Cellular communication analysis of CD99 signaling; 
H Analysis of immune cell content. Low-risk patients in blue and high-risk patients in red; I Analysis of immune function. Low-risk patients in blue 
and high-risk patients in red. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two-tailed t-test

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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and EVL expression was downregulated in patients with 
sepsis compared to that in healthy samples in all data-
sets (Fig. 5C). To validate the altered EVL expression in 
patients with sepsis in the real world, we enrolled a clini-
cal cohort of 20 healthy individuals (mean age, 56 years; 
66% men) and 20 patients with sepsis (mean age, 58 years; 
66% men). EVL expression were significantly lower in the 
cohort of sepsis patients than in healthy donors (Fig. 5D). 
In conclusion, EVL demonstrated a stable diagnostic 
value for sepsis and that the downregulation of EVL may 

be related to disease progression in patients with sepsis. 
However, the causal relationship between EVL and sepsis 
progression remains largely unknown.

EVL‑related gene regulatory networks
We divided all monocytes into EVL low-expression 
group and EVL high-expression group based on whether 
they expressed EVL or not (Fig. 6A). We performed dif-
ferential analysis between the low and high expression 
groups and identified 39 differential genes in the low 

Fig. 5 Analysis of the diagnostic and prognostic value of EVL. A Expression of EVL in high-risk and low-risk patients. Low-risk patients in blue and 
high-risk patients in red; B ROC curves of EVL in different datasets; C Differential expression of EVL among healthy patients with any sepsis. Blue is for 
healthy people and red is for sepsis patients; D Clinical sample validation of EVL differential expression in healthy individuals and sepsis patients. Red 
for healthy people and blue for septic patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two-tailed t-test
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expression group (|log2FC|  > 0.585, adjusted P < 0.05) 
(Fig.  6B). Interestingly, FCGR3A, IFITM3, HLA-DAPA, 
HAL-DPB1, and HLA-DRA were down-regulated, and 

S100A8 and S100A12 were up-regulated. This finding 
was consistent with the characteristics of state one cells. 
Once again, we demonstrated that cells in state one may 

Fig. 6 Analysis of the gene regulatory network of EVL. A EVL was divided into high and low expression groups by the presence or absence of EVL 
expression. The color changes from gray to red representing increasing gene expression; B Differential analysis of EVL low-expressing cells and EVL 
high-expressing cells. Green represents down-regulated genes, red represents up-regulated genes, and blue represents genes that did not change; 
C GO enrichment analysis. In the outermost circle, different colors represent different pathways. In the inner circle, each bar represents a gene, 
and the bluer the color, the lower the expression value of that gene; D Bayesian network to infer the gene regulatory network of EVL. Each node 
represents a gene, the redder the node color, the larger the node means the higher the expression value of the gene. The thicker the line is, the 
greater the strength of the regulatory effect
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be key for identifying poor prognosis in patients with 
sepsis. We subjected these differential genes to Gene 
ontology (GO) enrichment analysis, which showed that 
a large number of downregulated genes were enriched 
in antigen-presentation-related pathways (Fig.  6C). This 
finding remains consistent with our hypothesis that low 
expression of EVL promotes impairment of monocyte 
antigen-presentation capacity. To explore unelucidated 
roles in this regulatory network as accurately as possible, 
we used a “CBNplot” package for the inference of interac-
tions between genes. The software uses a computational 
approach based on Bayesian networks to infer directed 
regulatory relationships between genes. The method is 
efficient, as analyzed based on currently known regu-
latory roles and published literature. In our putative 
regulatory network (Fig.  6D), EVL directly regulates 
HLA-DPB1, HLA-DRA, MALAT1, and PFN1. MS4A7 
acts as an upstream gene to regulate the expression of 
EVL. In conclusion, the results of these analyses suggest a 
mechanism by which the downregulation of EVL leads to 
the downregulation of HLA family genes, which leads to 
low monocyte antigen presentation and ultimately affects 
the prognostic status of patients with sepsis.

Discussion
Septicemia, which refers to “decay” in Greek, is con-
sidered a common wound complication (Evans 2018). 
The definition of sepsis is still very difficult to elucidate 
(Simonsen et al. 2014). Although intensive care medicine 
and antibacterial treatment have made significant pro-
gress, sepsis is still a common disease with high mortal-
ity (Dellinger et al. 2013; Minasyan 2019). Patients most 
affected by sepsis need to be treated in the intensive care 
unit (Evans 2018; Hunt 2019). The condition of patients 
with sepsis changes rapidly, and a delay of each hour in 
administering appropriate antibiotic treatment can lead 
to a 4–7% increase in case fatality. Therefore, early diag-
nosis and intervention may help improve the prognosis of 
patients with sepsis (Arina and Singer 2021; Evans 2018; 
Emr et  al. 2018). The early diagnosis and treatment of 
patients with sepsis is the main problem (Suetrong and 
Walley 2016; Jain 2018). To find better biomarkers for 
the early detection and treatment of sepsis, we collected 
sequencing data of peripheral blood mononuclear cells 
derived from patients with sepsis. The differentiation 
sites of monocytes were analyzed, and the differentiation-
related genes were identified. Based on the expression of 
differentiation-related genes, a combination of prognos-
tic features based on machine learning methods was con-
structed, and the best machine learning algorithm was 
used to calculate the risk score of all patients. The validity 
and accuracy of the best model were systematically ana-
lyzed. Then, the diagnostic value and prognostic value 

of EVL were determined. The results of 40 samples were 
clinically verified. The data provide a reference for clini-
cal diagnosis and treatment.

First, we obtained the sequencing data of peripheral 
blood single cells derived from 12 patients with sep-
sis and annotated all cells. Monocytes accounted for 
more than 50% of all cells. Three distinct differentiation 
states of monocytes were identified. The low expression 
of HLA family genes (HLA-DRA, HLA-DRB1, HLA-
DPA1, HLADPPB1) in state one cells suggests that these 
monocytes had a low antigen-presenting ability and do 
not seem to be sensitive to adaptive immune responses. 
Subsequently, monocytes in state one differentiated into 
those in state two and state three. The HLA family (HLA-
DRB5, HLA-DRA, HLA-DRB1) genes were up-regulated 
in state two cells. Interestingly, the characteristics of 
state three cells were in contrast to those of state one 
cells. In state three, FCGR3A, C1QA, C1QB, HLA-DPB1, 
HLA-DPA1, IFITM2, and IFITM3 were highly expressed, 
while the expression of S100A9, S100A8, S100A12, and 
LYZ was low. This is similar to the previous report dem-
onstrating different states of immune cells during sep-
sis (Ming et  al. 2019). Some cells are pro-inflammatory, 
while others inhibit the onset of inflammation. These 
immune cells are often the primary factors responsi-
ble for the development of sepsis (Rimmelé et  al. 2016; 
Boomer et al. 2011). Monitoring the expression of HLA-
DR can aid in the diagnosis, prognosis, and prediction 
of sepsis (Zhuang et  al. 2017; Kyriazopoulou and Gia-
marellos-Bourboulis 2021; Yoshida 2004; Pandey et  al. 
2021; Xu et al. 2020; Boeddha et al. 2018; Lelubre et  al. 
2017). Two studies published in 2022 also examined the 
relationship and mechanism associated with the expres-
sion of HLA family proteins and sepsis (Horn et al. 2022; 
Wu et al. 2022). In general, during sepsis, monocytes in 
the body of patients differentiate into those with different 
states along with progress in the condition of the patient, 
which also plays an important role in the development 
of sepsis (Boeddha et al. 2018; Liu et al. 2021; Silva et al. 
2013). In particular, the ability of antigen presentation 
is of great significance for the diagnosis, prognosis, and 
prediction of sepsis in patients (Silva et  al. 2013; Quad-
rini et al. 2021; Hahn et al. 2017; Fernández-Grande et al. 
2019).

Subsequently, we established a prognosis signature 
related to monocyte differentiation in patients with sep-
sis. Transcriptome data of patients with sepsis with a 
defined 28-day survival status were used. A total of 51 
prognosis-related genes were identified. We accepted 
the integration process of machine learning and selected 
the most effective machine learning algorithm to build a 
prognosis signature. The results of cell proportion analysis 
showed that the high-risk cells accounted for most cells 
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in the subpopulation of state one cells. This is consistent 
with our previous results; expression of the HLA family 
genes in state one cell subsets was low, along with reduced 
antigen presentation ability. In addition, the results of cell 
communication were also consistent with those reported 
in previous articles. The FCER2A −  (ITGAM + ITGB2) 
signal between B cells and high-risk cells was activated. 
The MIF −   (CD74 + CD44) signal between B cells and 
low-risk cells was activated (Bu et al. 2020; Parvaneh et al. 
2010; Wen et al. 2022; Tilstam et al. 2021; Martin 2000). 
The SELPLG-SELL signal between DC cells and low-risk 
cells was activated (Bime et  al. 2018). The CD99-CD99 
signal between NK cells and high-risk cells was acti-
vated (Cruz et  al. 2004). Finally, for the immune micro-
environment, we calculated the immune cell function 
and immune cell content of patients in high-risk groups. 
Immune cell analysis showed that the number of various 
T cells, such as CD8T cells and T helper cells, in the high-
risk group decreased. In addition, NK cell levels were also 
significantly reduced. The results suggest that high-risk 
patients may be in a state of immune cell depletion (Cru-
zat et al. 2018; He et al. 2021; Nakamori et al. 2020).

Finally, we identified a gene EVL with both diagnostic 
and prognostic value. To determine the diagnostic value 
of EVL, the gene expression was verified by GEO data 
and clinical samples. EVL showed a stable diagnostic 
value for sepsis, and the down-regulation of EVL may be 
related to the disease progression in patients with sepsis. 
However, the causal relationship between EVL and sepsis 
progression remains largely unknown. We divided mono-
cytes into high and low EVL expression groups. A total 
of 39 differential genes were identified (|log2FC| > 0.585, 
P < 0.05 after adjustment). Interestingly, the expres-
sion of FCGR3A, IFITM3, HLA-DAPA, HAL-DPB1, and 
HLA-DRA was down-regulated and that of S100A8 and 
S100A12 was up-regulated. This was consistent with the 
characteristics of state one cells. State 1 may be the key 
cell state with poor prognosis in patients with sepsis. 
The enrichment analysis showed that a large number of 
downregulated genes were enriched in the antigen pro-
duction-related pathway. This was consistent with our 
hypothesis stating that the low expression of EVL pro-
moted the damage in monocyte antigen presentation 
ability. Therefore, in the regulatory network, we specu-
lated that EVL directly regulated HLA-DPB1, HLA-DRA, 
MALAT1, and PFN1. As an upstream gene, MS4A7 regu-
lates the expression of EVL. In conclusion, these results 
suggest that the downregulation of EVL leads to the 
downregulation of the expression of HLA family genes, 
which, in turn, results in reduced monocyte function and 
ultimately affects the prognosis of patients with sepsis.

It is important to note that the prevention of sepsis is 
multifaceted. Early identification and prompt treatment 

of infections with appropriate antibiotics or other thera-
pies can effectively control infections before they develop 
into sepsis in many cases. Proper antibiotic use is another 
important strategy to prevent sepsis, but it must be used 
judiciously to avoid the emergence of antibiotic-resistant 
bacteria (Rhee et  al. 2020). We recommend that health-
care providers prescribe antibiotics only when truly nec-
essary, and choose the most appropriate antibiotics for 
specific infections. Vaccination is also an important strat-
egy for preventing sepsis. Vaccines can reduce the risk of 
infection from certain diseases (such as influenza, pneu-
monia, and meningococcal disease) that can lead to sep-
sis, thereby reducing the risk of sepsis (Richardson et al. 
2014). Infection control measures are also key to pre-
venting sepsis. These measures include practices such as 
hand hygiene, the use of personal protective equipment, 
and isolation precautions for infectious patients. These 
measures can help prevent the spread of infections in 
healthcare settings and communities. In addition to these 
strategies, exploring the use of new antibiotics, immu-
notherapies, or other treatments to prevent infections 
from progressing to sepsis may be necessary in the future. 
Improving surveillance and monitoring systems is also an 
important step in preventing sepsis, which involves devel-
oping better tools and methods for detecting and tracking 
cases of infection and sepsis. By improving surveillance 
and monitoring, healthcare providers can detect cases of 
sepsis earlier and provide more timely and effective treat-
ment. Finally, raising awareness of sepsis and its preven-
tion is crucial for healthcare institutions and the public. 
Education and awareness campaigns can help ensure that 
healthcare providers are aware of sepsis and take appro-
priate measures to prevent it. At the same time, public 
awareness campaigns can help people understand the 
importance of preventive measures for infection, as well 
as early recognition and treatment of infections.

In conclusion, to perform early detection, diagnosis, 
and treatment of sepsis, we examined associated bio-
markers. We not only found the best prognosis model 
through a variety of machine learning algorithms but also 
finally determined the gene EVL with diagnostic value 
and prognostic value. The results were verified at clinical 
levels in patients. The findings provide a certain reference 
for clinical diagnosis and treatment and a direction for 
the exploration for related mechanisms.

Conclusions
Monocyte differentiation-related prognostic signatures 
based on the Lasso + CoxBoost combination were able to 
accurately predict the prognostic status of patients with 
sepsis. In addition, low EVL expression was associated 
with poor prognosis in sepsis.



Page 15 of 16Ning et al. Molecular Medicine           (2023) 29:37  

Abbreviations
SIRS   Systemic inflammatory response syndrome
BBB   Blood–brain barrier
PAMPs   Pathogen-associated molecular patterns
PRR   Pattern recognition receptors
PCA   Principal component analysis
HSP   Examples include heat shock protein
HMGB-1   High mobility group box 1
EVL   Enah/Vasp-like
PCs   Principal components
GEO   Gene expression omnibus
GO   Gene Ontology
ROC   Receiver operating characteristic
AUC    Area under the curve
RSF   Random survival forest
Enet   Elastic network
plsRcox   Partial least squares regression for Cox
SuperPC   Supervised principal components
GBM   Generalised boosted regression
survival-SVM  Survival support vector machine
C-index   Concordance index
OS   Overall survival

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s10020- 023- 00634-5.

Additional file 1: Table S1. The baseline information of the samples used 
in the study.

Acknowledgements
We thank Bullet Edits Limited for the linguistic editing and proofreading of the 
manuscript. We thank Jun Zhang from College of Life Science and Technology, 
China Pharmaceutical University for developing "scRNAtoolVis" software to 
help visualize single cell sequencing data.

Author contributions
JN, KS, XW conceived and wrote the paper. JN, KS, XW, XF, KJ, CJ, and CM ana-
lyzed the materials and drafted the manuscript. CM revised the whole paper. 
All authors read and approved the final manuscript.

Funding
This work was supported by grants from the National Natural Science Founda-
tion of China (81971474), Natural Science Foundation of Hebei Province 
(No. C2021206011), Hebei Key R&D Program Project Special Project for the 
Construction of Beijing-Tianjin-Hebei Collaborative Innovation Community 
(No. 22347702D), Hebei Provincial Department of Education Grants for 
Cultivating Innovation Ability of Graduate Students at the Provincial Level 
(CXZZBS2023107) and Hebei Province Graduate Innovation Funding Project 
(XCXZZB202301).

Availability of data and materials
Single-cell transcriptome data were obtained from the Single Cell Portal 
(https:// singl ecell. broad insti tute. org/ single_ cell/ study/ SCP548/ an- immune- 
cell- signa ture- of- bacte rial- sepsis- patie nt- pbmcs# study- summa ry). Bulk 
transcriptome sequencing data were obtained from the GEO database, 
GEO registration numbers are GSE65682, GSE69063, GSE28750, GSE95233, 
GSE57065.

Declarations

Ethics approval and consent to participate
All methods were carried out in accordance with relevant guidelines and 
regulations.

Consent for publication
All authors have agreed to publish this manuscript.

Competing interests
The Authors declare no conflicts of interest regarding this study.

Author details
1 Department of Immunology, Hebei Medical University, Shijiazhuang, People’s 
Republic of China. 2 Department of Laboratory, The Second Hospital of Hebei 
Medical University, Shijiazhuang, People’s Republic of China. 3 Department 
of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang, People’s Republic 
of China. 

Received: 16 November 2022   Accepted: 13 March 2023

References
Arina P, Singer M. Pathophysiology of sepsis. Curr Opin Anaesthesiol. 

2021;34:77–84.
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della 

Giustina A, et al. Long-term cognitive outcomes after sepsis: a transla-
tional systematic review. Mol Neurobiol. 2019;56:186–251.

Barichello T, Generoso JS, Dominguini D, Córneo E, Giridharan VV, Sahrapour 
TA, et al. Postmortem evidence of brain inflammatory markers and injury 
in septic patients: a systematic review. Crit Care Med. 2021. https:// doi. 
org/ 10. 1097/ CCM. 00000 00000 005307.

Bernimoulin MP, Zeng X-L, Abbal C, Giraud S, Martinez M, Michielin O, et al. 
Molecular basis of leukocyte rolling on PSGL-1. Predominant role 
of core-2 O-glycans and of tyrosine sulfate residue 51. J Biol Chem. 
2003;278:37–47.

Bime C, Pouladi N, Sammani S, Batai K, Casanova N, Zhou T, et al. Genome-
wide association study in African Americans with acute respiratory 
distress syndrome identifies the selectin P ligand gene as a risk factor. Am 
J Respir Crit Care Med. 2018;197:1421–32.

Boeddha NP, Kerklaan D, Dunbar A, van Puffelen E, Nagtzaam NMA, Vanhore-
beek I, et al. HLA-DR expression on monocyte subsets in critically ill 
children. Pediatr Infect Dis J. 2018;37:1034–40.

Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immu-
nosuppression in patients who die of sepsis and multiple organ failure. 
JAMA. 2011;306:2594–605.

Bu L, Wang Z-W, Hu S-Q, Zhao W-J, Geng X-J, Zhou T, et al. Identification of 
key mRNAs and lncRNAs in neonatal sepsis by gene expression profiling. 
Comput Math Methods Med. 2020;2020:8741739.

Chakraborty RK, Burns B. Systemic inflammatory response syndrome. Stat-
Pearls [Internet]. Treasure Island: StatPearls Publishing; 2022 [cited 2022 
Oct 11]. Available from: http:// www. ncbi. nlm. nih. gov/ books/ NBK54 7669/.

Cruz AAV, de Oliveira Leite LV, Chahud F, Neder L, Tone LG, Valera ET, et al. T-cell 
sinonasal lymphoma presenting as acute orbit with extraocular muscle 
infiltration. Ophthal Plast Reconstr Surg. 2004;20:473–6.

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: 
metabolism and immune function, supplementation and clinical transla-
tion. Nutrients. 2018;10:E1564.

da Silva FP, Preuhs Filho G, Finger E, Barbeiro HV, Zampieri FG, Goulart AC, et al. 
HLA-A*31 as a marker of genetic susceptibility to sepsis. Rev Bras Ter 
Intensiva. 2013;25:284–9.

Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviv-
ing sepsis campaign: international guidelines for management of severe 
sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

Emr BM, Alcamo AM, Carcillo JA, Aneja RK, Mollen KP. Pediatric sepsis update: 
how are children different? Surg Infect. 2018;19:176–83.

Evans T. Diagnosis and management of sepsis. Clin Med Lond Engl. 
2018;18:146–9.

Fernández-Grande E, Cabrera CM, González B, Varela C, Urra JM. Enhanced 
HLA-DR expression on T-lymphocytes from patients in early stages of 
non-surgical sepsis. Med Clin (Barc). 2019;152:346–9.

Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the 
microbiota-gut-brain axis in neuropsychiatric disorders. Rev Bras Psiquiatr 
Sao Paulo Braz. 1999;2021(43):293–305.

Hahn JH, Kim MK, Choi EY, Kim SH, Sohn HW, Ham DI, et al. CD99 (MIC2) 
regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its 
gene encodes both positive and negative regulators of cellular adhesion. 
J Immunol Baltim Md. 1950;1997(159):2250–8.

https://doi.org/10.1186/s10020-023-00634-5
https://doi.org/10.1186/s10020-023-00634-5
https://singlecell.broadinstitute.org/single_cell/study/SCP548/an-immune-cell-signature-of-bacterial-sepsis-patient-pbmcs#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP548/an-immune-cell-signature-of-bacterial-sepsis-patient-pbmcs#study-summary
https://doi.org/10.1097/CCM.0000000000005307
https://doi.org/10.1097/CCM.0000000000005307
http://www.ncbi.nlm.nih.gov/books/NBK547669/


Page 16 of 16Ning et al. Molecular Medicine           (2023) 29:37 

Hahn EC, Zambra FMB, Kamada AJ, Delongui F, Grion CMC, Reiche EMV, et al. 
Association of HLA-G 3′UTR polymorphisms and haplotypes with severe 
sepsis in a Brazilian population. Hum Immunol. 2017;78:718–23.

He W, Xiao K, Xu J, Guan W, Xie S, Wang K, et al. Recurrent sepsis exacerbates 
CD4+ T cell exhaustion and decreases antiviral immune responses. Front 
Immunol. 2021;12: 627435.

Heckenberg SGB, Brouwer MC, van de Beek D. Bacterial meningitis. Handb Clin 
Neurol. 2014;121:1361–75.

Horn DL, Mindrinos M, Anderson K, Krishnakumar S, Wang C, Li M, et al. HLA-A 
locus is associated with sepsis and septic shock after traumatic injury. 
Ann Surg. 2022;275:203–7.

Hunt A. Sepsis: an overview of the signs, symptoms, diagnosis, treatment 
and pathophysiology. Emerg Nurse J RCN Accid Emerg Nurs Assoc. 
2019;27:32–41.

Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate 
immune system. Science. 2010;327:291–5.

Jain S. Sepsis: an update on current practices in diagnosis and management. 
Am J Med Sci. 2018;356:277–86.

Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. Inference 
and analysis of cell-cell communication using Cell Chat. Nat Commun. 
2021;12:1088.

Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL. Evaluation of the contribution of 
multiple DAMPs and DAMP receptors in cell death-induced sterile inflam-
matory responses. PLoS ONE. 2014;9: e104741.

Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern 
recognition receptors and central nervous system repair. Exp Neurol. 
2014;258:5–16.

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive 
and accurate integration of single-cell data with Harmony. Nat Methods. 
2019;16:1289–96.

Kumar S, Ingle H, Prasad DVR, Kumar H. Recognition of bacterial infection by 
innate immune sensors. Crit Rev Microbiol. 2013;39:229–46.

Kyriazopoulou E, Giamarellos-Bourboulis EJ. Monitoring immunomodulation 
in patients with sepsis. Expert Rev Mol Diagn. 2021;21:17–29.

Lelubre C, Medfai H, Akl I, Leentjens J, Kox M, Pickkers P, et al. Leukocyte phos-
phodiesterase expression after lipopolysaccharide and during sepsis and 
its relationship with HLA-DR expression. J Leukoc Biol. 2017;101:1419–26.

Liu Y, Wang R, Cheng J, Wu J, Zhang S. Ratio of serum procalcitonin to mono-
cytic HLA-DR as a reliable parameter in prognosis prediction of sepsis. 
Clin Chim Acta Int J Clin Chem. 2021;519:94–100.

Marshall ASJ, Willment JA, Pyz E, Dennehy KM, Reid DM, Dri P, et al. Human 
MICL (CLEC12A) is differentially glycosylated and is down-regulated fol-
lowing cellular activation. Eur J Immunol. 2006;36:2159–69.

Martin TR. MIF mediation of sepsis. Nat Med. 2000;6:140–1.
Mehta-D’souza P, Klopocki AG, Oganesyan V, Terzyan S, Mather T, Li Z, et al. Gly-

can bound to the selectin low affinity state engages Glu-88 to stabilize 
the high affinity state under force. J Biol Chem. 2017;292:2510–8.

Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J 
Trauma Resusc Emerg Med. 2019;27:19.

Ming S, Li M, Wu M, Zhang J, Zhong H, Chen J, et al. Immunoglobulin-like 
transcript 5 inhibits macrophage-mediated bacterial killing and antigen 
presentation during sepsis. J Infect Dis. 2019;220:1688–99.

Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D. Pathogenesis 
and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev. 
2011;24:557–91.

Nakamori Y, Park EJ, Shimaoka M. Immune deregulation in sepsis and septic 
shock: reversing immune paralysis by targeting PD-1/PD-L1 pathway. 
Front Immunol. 2020;11: 624279.

Oddo M, Calandra T, Bucala R, Meylan PRA. Macrophage migration inhibitory 
factor reduces the growth of virulent Mycobacterium tuberculosis in 
human macrophages. Infect Immun. 2005;73:3783–6.

Pandey K, Malviya D, Awasthi NP, Nath SS, Harjai M. Comparison of neutrophil 
CD64 and monocytic HLA-DR with existing biomarkers for the diagnosis 
and prognosis of sepsis. Anaesthesiol Intensive Ther. 2021;53:304–11.

Parvaneh N, Mamishi S, Rezaei A, Rezaei N, Tamizifar B, Parvaneh L, et al. 
Characterization of 11 new cases of leukocyte adhesion deficiency 
type 1 with seven novel mutations in the ITGB2 gene. J Clin Immunol. 
2010;30:756–60.

Quadrini KJ, Patti-Diaz L, Maghsoudlou J, Cuomo J, Hedrick MN, McCloskey 
TW. A flow cytometric assay for HLA-DR expression on monocytes 

validated as a biomarker for enrollment in sepsis clinical trials. Cytometry 
B. 2021;100:103–14.

Rhee C, Kadri SS, Dekker JP, Danner RL, Chen H-C, Fram D, et al. Prevalence of 
antibiotic-resistant pathogens in culture-proven sepsis and outcomes 
associated with inadequate and broad-spectrum empiric antibiotic use. 
JAMA Netw Open. 2020;3: e202899.

Richardson A, Morris DE, Clarke SC. Vaccination in Southeast Asia—reducing 
meningitis, sepsis and pneumonia with new and existing vaccines. Vac-
cine. 2014;32:4119–23.

Rimmelé T, Payen D, Cantaluppi V, Marshall J, Gomez H, Gomez A, et al. 
Immune cell phenotype and function in sepsis. Shock Augusta Ga. 
2016;45:282–91.

Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD. A 
sulfated peptide segment at the amino terminus of PSGL-1 is critical for 
P-selectin binding. Cell. 1995;83:323–31.

Sato N, Tamada Y, Yu G, Okuno Y. CBNplot: Bayesian network plots for enrich-
ment analysis. Lu Z, editor. Bioinformatics. 2022;38:2959–60.

Sellner J, Täuber MG, Leib SL. Pathogenesis and pathophysiology of bacterial 
CNS infections. Handb Clin Neurol. 2010;96:1–16.

Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal 
sepsis. Clin Microbiol Rev. 2014;27:21–47.

Suetrong B, Walley KR. Lactic acidosis in sepsis: it’s not all anaerobic: implica-
tions for diagnosis and management. Chest. 2016;149:252–61.

Sun D, Guan X, Moran AE, Wu L-Y, Qian DZ, Schedin P, et al. Identifying 
phenotype-associated subpopulations by integrating bulk and single-
cell sequencing data. Nat Biotechnol. 2022;40:527–38.

Tilstam PV, Schulte W, Holowka T, Kim B-S, Nouws J, Sauler M, et al. MIF but not 
MIF-2 recruits inflammatory macrophages in an experimental polymicro-
bial sepsis model. J Clin Investig. 2021;131: e127171.

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynam-
ics and regulators of cell fate decisions are revealed by pseudotemporal 
ordering of single cells. Nat Biotechnol. 2014;32:381–6.

Wen L, Marki A, Wang Z, Orecchioni M, Makings J, Billitti M, et al. A humanized 
β2 integrin knockin mouse reveals localized intra- and extra-vascular 
neutrophil integrin activation in vivo. Cell Rep. 2022;39: 110876.

Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune 
responses to sepsis. Virulence. 2014;5:36–44.

Wu H-P, Chuang L-P, Liu P-H, Chu C-M, Yu C-C, Lin S-W, et al. Decreased mono-
cyte HLA-DR expression in patients with sepsis and acute kidney injury. 
Med Kaunas Lith. 2022;58:1198.

Xu J, Li J, Xiao K, Zou S, Yan P, Xie X, et al. Dynamic changes in human HLA-DRA 
gene expression and Th cell subsets in sepsis: Indications of immunosup-
pression and associated outcomes. Scand J Immunol. 2020;91: e12813.

Yende S, Kellum JA, Talisa VB, Peck Palmer OM, Chang C-CH, Filbin MR, et al. 
Long-term host immune response trajectories among hospitalized 
patients with sepsis. JAMA Netw Open. 2019;2:e198686.

Yoshida S. Monocyte HLA-DR expression as predictors of clinical outcome for 
patients with sepsis. Nihon Rinsho Jpn J Clin Med. 2004;62:2281–4.

Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. Cell Marker: a manually 
curated resource of cell markers in human and mouse. Nucleic Acids Res. 
2019;47:D721–8.

Zhuang Y, Peng H, Chen Y, Zhou S, Chen Y. Dynamic monitoring of monocyte 
HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. 
Front Biosci Landmark Ed. 2017;22:1344–54.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Use of machine learning-based integration to develop a monocyte differentiation-related signature for improving prognosis in patients with sepsis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Acquisition and pre-processing of single-cell data
	Pseudo time analysis
	Machine learning to build prognostic signatures
	Identification of phenotypic-related cells
	Cellular communication network
	Enrichment analysis
	Inference of gene interaction networks
	Analysis of immune cell content and immune function
	Clinical sample collection
	Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
	Statistical analysis

	Results
	Analysis of monocyte differentiation trajectories
	Establishment of a prognostic signature related to monocyte differentiation in patients with sepsis
	Signature validity and stability analysis
	Characterization of high- and low-risk patients
	EVL showed a stable diagnostic and prognostic value
	EVL-related gene regulatory networks

	Discussion
	Conclusions
	Anchor 29
	Acknowledgements
	References


