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Abstract 

c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular 
processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome 
complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that 
it also functions in neurological development and disorders. In this review, we summarize the general features of the 
JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight 
the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differen-
tiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurologi-
cal disorders such as Alzheimer’s disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Further-
more, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
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Introduction
c-Jun, a component of the activator protein-1 (AP-1) 
complex, is implicated in a wide range of cellular pro-
cesses (Herdegen et  al. 1997; Shaulian and Karin 2002; 
Raivich and Behrens 2006). c-Jun activation domain 
binding protein-1 was identified as a coactivator of c-Jun 
and hence was originally termed JAB1 (Claret et al. 1996). 
Two Arabidopsis JAB1 homologs, AJH1 and AJH2, were 
also identified, presenting in both monomeric forms and 

a constitutive photomorphogenic-9 (COP9) signalosome 
complex (Kwok et  al. 1998). The COP9 signalosomes 
which were both discovered in plants and animals par-
ticipate in diverse cellular and developmental processes 
(Seeger et  al. 1998; Wei et  al. 1998; Freilich et  al. 1999; 
Qin et al. 2020). Biochemical purification and molecular 
characterization of the COP9 signalosome from different 
organisms has identified eight core subunits (Seeger et al. 
1998; Mundt et al. 1999; Wei and Deng 1999). JAB1 was 
identified as the fifth component in the COP9 complex 
and thereby specified as CSN5 (COP9 signalosome 5) or 
COPS5 (COP9 signalosome subunit 5) according to dif-
ferent nomenclature (Deng et al. 2000).

JAB1/CSN5 (hereafter JAB1) has been extensively 
studied in its crucial roles in regulating tumorigenesis. A 
myriad of evidence demonstrated that JAB1 was upregu-
lated in a variety of malignancies and usually was asso-
ciated with poor prognosis for human cancers (Sui et al. 
2001; Pan et al. 2017; Liu et al. 2019; Wang et al. 2020a). 
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Basically, JAB1 promotes tumor development by pro-
pelling cell cycle progression, impairing DNA repair 
response, regulating cell apoptosis and proliferation, 
which has been extensively discussed in several reviews 
(Shackleford and Claret 2010; Pan et al. 2014; Guo et al. 
2019; Yuan et al. 2021).

An embryonically lethal phenotype in JAB1-deficient 
mice suggested that JAB1 was a vital factor in embryo-
genesis and cell survival. Nullizygous embryos were 
severely growth-retarded and became inviable before gas-
trulation (Tomoda et  al. 2004). JAB1-deficient embryos 
exhibited accelerated apoptosis, increased spontane-
ous DNA damage and homologous recombination (HR) 
defects which were possibly due to aberrant upregulation 
of JAB1 targets, such as p27, p53, c-myc, and cyclin E 
(Tian et al. 2010). JAB1 can also activate c-Jun signaling 
pathway by potentiating the c-Jun binding specificity to 
target sites (Claret et al. 1996). c-Jun is spatially differen-
tially expressed in embryonic and adult neural precursor 
cells (Kawashima et al. 2017) and has been widely recog-
nized as a vital regulator in brain development (Raivich 
and Behrens 2006; Haeusgen et al. 2009; Raj et al. 2018). 
Moreover, in recent years, accumulated evidence demon-
strated that JAB1 was also functionally implicated in neu-
rodevelopment and the pathologies of some neurological 
diseases which have been rarely discussed in any review. 

Herein, we summarize the roles and mechanisms of JAB1 
in neurological development and diseases.

JAB1 gene and protein
The human JAB1 gene, spanning 19,055 bp of genomic 
DNA, is located on chromosome 8q13.1, which is fre-
quently amplified in some cancers (Fejzo et  al. 1998; 
Rummukainen et al. 2001; Sun et al. 2007). The human 
JAB1 gene contains eight exons which assemble into a 
1296  bp-length transcript and subsequently encode a 
protein of 334 amino acids. The JAB1 protein is highly 
evolutionarily conserved across different species in 
Eucaryotae (Barth et al. 2016) (Fig. 1A). JAB1 contains 
a Mpr1-Pad1 N terminal (MPN) domain with a JAB1/
MPN/Mov34 metalloenzyme (JAMM) motif (Fig.  1B, 
C). The MPN domain is associated with isopeptidase/
deubiquitinase activities in the ubiquitin-based protein 
turnover pathways (Schwechheimer and Deng 2001; 
Tran et  al. 2003; Wolf et  al. 2003; Duda et  al. 2008), 
and is also supposed to provide a platform for protein 
interactions (Birol and Echalier 2014). MPN domain 
also exists in CSN6 while the JAMM  (MPN+) motif, 
which functions as a catalytic center of CSN isopepti-
dase, is only specific in CSN5/JAB1 (Tran et  al. 2003; 
Pan et  al. 2022). JAB1 also contains a nuclear export 
signal (NES) motif ranging from amino acids 233 to 

Fig. 1 The profile of JAB1 protein. A The bootstrap consensus phylogenetic tree of JAB1 proteins from different species. The phylogenetic tree 
was constructed by using MEGA software version 11.0.13. B Human JAB1 amino acid sequences. MPN, NES, and C-terminal domains are shown in 
yellow, red, and cyan, respectively. JAMM motif is marked by a black box. C The structure of human JAB1 is shown based on the data from Protein 
Data Bank (ID 4D18; https:// www. rcsb. org/ struc ture/ 4D18). MPN, NES, and C-terminal domains are shown in yellow, red, and cyan, respectively. 
JAMM motif is exhibited by ball and sticks

https://www.rcsb.org/structure/4D18
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242 (Fig.  1B, C) which resembles the NES sequences 
in protein kinase I (PKI) and mitogen activated pro-
tein kinase (MAPKK). The NES sequence is crucial 
for the translocation of  p27Kip1 between nucleus and 
cytoplasm mediated by chromosomal maintenance 
1 (CRM1) (Tomoda et  al. 2002). Some reviews have 
indicated that a specific sequence termed as  p27Kip1 
binding domain (PBD) at the C-terminal of JAB1 was 
responsible for the interaction between JAB1 and 
 p27Kip1 (Shackleford and Claret 2010; Wang et  al. 
2016a; Yuan et  al. 2021). The crystal structure of the 
human COP9 signalosome revealed a specific C-ter-
minal domain (251-329aa) in JAB1 showing a pro-
nounced effect on CSN integrity (Fig.  1C) (Lingaraju 
et al. 2014). However, whether the C-terminal domain 
is implicated in the binding of JAB1 to  p27Kip1 remains 
unknown. Moreover, Tomoda et  al. reported that 
N-terminal JAB1(199–334  aa) was highly associated 
with p27 in glycerol gradient fractionation followed 
by immunoblotting (Tomoda et al. 2004). Hwang et al. 
also showed that  p27Kip1 interacted with the N-ter-
minal region of JAB1 (Hwang et  al. 2004). This evi-
dence indicates that the interaction between JAB1 and 
 p27Kip1 is probably mediated by multiple sequences 
and needs to be further elucidated by a structural 
insight into the JAB1-p27Kip1 complex.

Regulation of JAB1 expression
Gene amplification and deletion
The expression of JAB1 is known to be regulated at 
genomic, transcriptional, post transcriptional, trans-
lational, and post-translational levels. Gene amplifica-
tion is a crucial mechanism influencing the expression 
level of JAB1. The copy number of JAB1 gene has been 
shown to be constantly increased in some human cancers 
and was always correlated with aggressive tumor devel-
opment and metastatic progression (Fejzo et  al. 1998; 
Rummukainen et al. 2001; Sun et al. 2007). However, the 
mechanism of JAB1 amplification remains obscure at 
present. Moreover, a clinical report showed that an inter-
stitial deletion of 1.4 Mb-length sequences at the 8q13.1-
q13.2 region containing the JAB1 gene was associated 
with inferior cerebellar vermian hypoplasia and digital 
anomalies (Mordaunt et al. 2015). Nevertheless, chromo-
some deletion-induced JAB1 deficiency rarely happens 
in physiological or even pathological conditions, which 
can be partially explained by the vital function of JAB1 in 
embryonic development (Tomoda et al. 2004).

Transcription
Primer extension analysis revealed the transcription start 
site of the JAB1 gene at 68  bp upstream of the transla-
tion initiation site (ATG) (Fig. 2) (Shackleford et al. 2011). 

Fig. 2 A summary scheme of molecular pathways involved in JAB1 expression. The sequence in the dotted box indicates the promoter of the 
JAB1 gene. The identified transcription factor binding sites are color-coded. The transcription start site is marked as “+1”. “P” and “Ub” represent the 
phosphorylation and ubiquitination of target proteins, respectively
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CCAAT/enhancer binding protein (C/EBP), GATA 
binding protein 1 (GATA1), β-catenin/TCF, Sp1 tran-
scription factor (SP1), signal transducer, and activator 
of transcription-1 and -3 (Stat1 and Stat3) were demon-
strated to regulate JAB1 transcription by directly bind-
ing to their consensus binding sites within the promoter 
region of the JAB1 gene (Fig. 2) (Hsu et al. 2007, 2008a, b; 
Shackleford et al. 2011; Yang et al. 2011; Pan et al. 2017). 
Moreover, Erb-b2 receptor tyrosine kinase 2 (ERBB2, also 
termed HER-2/neu) increased β-catenin/TCF-mediated 
JAB1 transcription via the AKT signaling pathway (Hsu 
et  al. 2007, 2008a). Troglitazone, a peroxisome prolif-
erator-activated receptor γ (PPARγ) ligand, inhibited 
JAB1 promoter activity by suppressing SP1- and TCF4-
mediated transcription (Hsu et  al. 2008b). The alpha5 
nicotinic acetylcholine receptor could also increase JAB1 
transcription by activating STAT3 phosphorylation (Zhu 
et al. 2022).

Post‑transcription and translation
MicroRNAs (miRNAs) regulate JAB1 expression. For 
example, miR-24 interacted with both the 3′ untranslated 
region (UTR) and 5′ UTR of the JAB1 mRNA, leading to 
degradation of JAB1 mRNA and translational suppres-
sion (Lal et al. 2009; Wang et al. 2016b). MiR-17 directly 
targeted JAB1 mRNA and negatively regulated JAB1 
expression in triple-negative breast cancer cells (Wang 
et al. 2019b). Let-7d was also reported to directly regulate 
JAB1 transcription in breast cancer (Wei et al. 2018).

Degradation
JAB1 is degraded through the ubiquitin–proteasome 
pathway. Cullin 4B ubiquitin ligase complex targeted 
JAB1 for degradation. USP22, a ubiquitin carboxyl-termi-
nal hydrolase, interacted with JAB1 and stabilized JAB1 
through deubiquitination (Wang et al. 2020b). Moreover, 
the degradation of JAB1 was also regulated by protein 
modifications. Inhibitor kappa B kinase 2 could phospho-
rylate JAB1 and induced its ubiquitination and degrada-
tion (Orel et  al. 2010). MAPK activated protein kinase 
2 (MK2) phosphorylated JAB1 at Ser177 and facilitated 
c-Jun recruitment to AP1 binding sites (Chen et al. 2021); 
however, whether MK2-mediated phosphorylation 
affects JAB1 degradation remains obscure.

Molecular functions of JAB1
Transcriptional co‑activation
JAB1 actively takes part in transcriptional co-activation 
by interacting with transcriptional factors or other tran-
scriptional co-effectors and subsequently influences 
DNA binding activities of such regulators in a CSN5 
independent pathway. JAB1 was first recognized as a 
transcriptional co-activator because it interacted with 

c-Jun and regulated AP-1 transcriptional activity (Claret 
et al. 1996). AP-1 proteins are a cluster of dimeric tran-
scription factors that can be classified into four differ-
ent subfamilies: Jun (e.g., c-Jun, JunB, JunD), Fos (e.g., 
c-Fos, Fra1, Fra2, FosB), ATF (e.g., ATF2, ATF3, ATF4 
and BATF3) and Maf (e.g., c-Maf, MafA, MafB, MafG) 
(Yoshitomi et  al. 2021). AP-1 proteins are characterized 
by the presence of a basic leucine zipper (bZip) domain 
which mediates dimerization of different AP-1 compo-
nents (Wu et  al. 2021). JAB1 interacted with c-Jun and 
specifically stabilized the c-Jun/JunD-DNA complexes, 
thereby potentiating c-Jun transactivation (Claret et  al. 
1996). JAB1-mediated AP-1 activation is also regulated 
by other JAB1 binding partners. LFA-1 synergized with 
JAB1 in inducing AP-1 transcriptional activity by regu-
lating redistribution of JAB1 from cytoplasm to nucleus 
(Bianchi et  al. 2000). Hepatopoietin bound to JAB1 and 
led to potentiation of AP-1 activation (Lu et  al. 2002). 
Similarly, the hepatitis B virus X protein also accelerated 
AP-1 activation through interaction with JAB1 (Tanaka 
et al. 2006) (Table 1).

More than mediating c-Jun/AP-1 signaling activa-
tion, JAB1 also acted as a specific modulator for other 
transcription factors. For instance, JAB1 interacted with 
B-cell lymphoma 3(Bcl-3) and facilitated the formation 
of NF-κB/p50 and a DNA complex. Bcl-3 also activated 
NF-κB transcriptional activity, as opposed to other mem-
bers of the inhibitory proteins in IκB family (Dechend 
et al. 1999). Similarly, JAB1 bound directly to the helix-
loop-helix domain of heart and neural crest derivatives 
expressed 2 (HAND2) and augmented HAND2 tran-
scriptional activity by enhancing HAND2 DNA binding 
affinity (Dai et al. 2004). Moreover, JAB1 also interacted 
with Brn-2, a Class III POU transcription factor, and 
possibly was implicated in regulating neurological func-
tions (Huang et al. 2005). Moreover, binding of JAB1 to 
HIF-1α resulted in an enhancement of HIF-1α transcrip-
tional activity which could be verified by the increased 
VEGF expression. However, whether JAB1 potentiates 
HIF-1α’s DNA-binding activity or just reduces its stabil-
ity remains obscure (Bemis et al. 2004). In addition, JAB1 
interacted with SET and MYND Domain Containing 3 
(SMYD3), which functioned as a histone-lysine N-meth-
yltransferase. SMYD3 bound to p16INK4a promoter region 
containing clustered SMYD3-binding sites and JAB1-
SMYD3 complex was shown to activate p16INK4a tran-
scription (Mori et al. 2008).

Isopeptidase activity‑mediated deNEDDylation 
and deubiquitination
CSN is similar in structure and architecture to the lid 
subcomplex of the 26S proteasome which catalyzes deg-
radation of ubiquitin-conjugated proteins in both the 
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Table 1 JAB1-interacting proteins

Functions of Jab1 Target proteins Effects References

Transcriptional coactivation c-Jun Regulating AP-1 transcriptional activity Claret et al. (1996)

Bcl-3 Facilitating the formation of NF-κB/p50 
and DNA complex

Dechend et al. (1999)

HAND2 Augmenting HAND2 transcriptional activ-
ity by enhancing HAND2 DNA binding

Dai et al. (2004)

LFA-1 LFA-1 interacts with the transcriptional co-
activator JAB1 to modulate AP-1 activity

Bianchi et al. (2000)

Brn-2 Regulating Brn-2 DNA-binding activity Huang et al. (2005)

5-HT(6)R 5-HT(6)R induced the translocation of Jab1 
into the nucleus and increased c-Jun phos-
phorylation and the interaction between 
Jab1 and c-Jun

Yun et al. (2010)

Fank1 Suppressing cell apoptosis by activating 
the AP-1-induced anti-apoptotic pathway

Wang et al. (2011)

MIF Inhibiting AP-1 activity Kleemann et al. (2000)

E2F1 Jab1 is an cofactor for E2F1 dependent 
transcription of apoptotic and mitotic 
genes

Hallstrom and Nevins (2006), Lu et al. (2011)

DeNEDDylation Cullins Modulating the activity of CRLs Cope et al. (2002), Cope and Deshaies (2003)

MsrA Enhancing JAB1’s deneddylase activity Jiang et al. (2020)

Deubiquitination ANGPTL2 Inhibiting ANGPTL2 degradation Xie et al. (2021)

PD-L1 Inhibiting PD-L1 degradation Lim et al. (2016)

EGFR Inhibiting EGFR degradation Wan et al. (2019)

Survivin Inhibiting survivin degradation Li et al. (2018)

HK2 Inhibiting HK2 degradation Huang et al. (2020)

FOXM1 Inhibiting FOXM1 degradation Mao et al. (2019)

ZEB1 Inhibiting ZEB1 degradation Zhang et al. (2017)

p97/VCP Controling the ubiquitination status of 
proteins bound to p97/VCP

Cayli et al. (2009)

ABCA1 Inhibiting ABCA1 degradation Azuma et al. (2009)

Protein interactions p53 Promoting p53 nuclear export and deg-
radation

Oh et al. (2006), Zhang et al. (2008)

CENP-T and CENP-W Promoting the ubiquitin-dependent deg-
radation of CENP-T and CENP-W

Chun et al. (2013)

HIF-1α Stabilizing HIF-1 alpha aerobically by inhib-
iting HIF-1 alpha prolyl-hydroxylation

Bemis et al. (2004)

STAMBPL1 Required for the stabilisation and function 
of STAMBPL1

Chaithongyot and Naumann (2022)

Malt1 and Carma1 Enhancing the stability of Carma1-Bcl10-
Malt1 (CBM) complex

Welteke et al. (2009)

p27 Promoting cytoplasmic shuttling and 
subsequent degradation of p27

Tomoda et al. (2002)

Sec6 Promoting p27 degradation in the cyto-
plasm via interaction with Jab1

Tanaka and Iino (2014)

Rig-G Regulating JAB1 cellular distribution 
through interacting with this protein and 
increases the intracellular level of p27

Xiao et al. (2006)

PGP9.5 (UCH-L1) Contributing to p27 degradation via its 
interaction and nuclear translocation with 
Jab1

Caballero et al. (2002)

53BP1 Required for mitotic checkpoint activation 
via its involvement in hyperphosphoryla-
tion of 53BP1

Kwak et al. (2005)
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Table 1 (continued)

Functions of Jab1 Target proteins Effects References

RUNX3 Inducing RUNX3 nuclear export and 
degradation

Kim et al. (2009)

Smad7 Inducing Smad7 nuclear export and 
degradation

Kim et al. (2004)

TRAF-2 Regulating lysine-63-linked polyubiquitin 
of TNF receptor-associated-factor 2 which 
in turn induce TNF-α signaling activation

Wang et al. (2006)

MDM2 Regulating stabilization of MDM2 through 
inhibiting MDM2 self-ubiquitination

Zhang et al. (2008)

HBx HBx interacts with Jab1 and trigger AP-1 
activation

Tanaka et al. (2006)

LHR precusor Promoting LHR precusor degradation Li et al. (2000)

Smad4 Induces its Smad4 ubiquitylation and 
degradation

Wan et al. (2002)

ERα Increasing ligand-induced ERα degrada-
tion

Callige et al. (2005)

Cyclin E Promoting Cyclin E degradation Doronkin et al. (2002)

CDK2 Inhibiting CDK2 phosphorylation via AKT 
pathway

Yoshida et al. (2013)

Myc Promoting MYC ubiquitination and 
degradation

Adler et al. (2006)

MIF MIF stabilize p27Kip1 by interacting with 
Jab1; JAB1 inhibits MIF secretion

Kleemann et al. (2000), Lue et al. (2007)

DNA topoisomerase (topo) II α Promoting topo II α degradation Yun et al. (2004)

ET(A)R and ET(B)R Promoting ET(A)R and ET(B)R ubiquitina-
tion and degradation

Nishimoto et al. (2010)

Smad5 Inhibiting Smad5-mediated BMP signaling 
activation

Haag and Aigner (2006)

PR and SRC-1 Stabilizing PR-SRC-1 complexes Chauchereau et al. (2000)

SMYD3 Jab1-SMYD3 complex activates p16INK4a 
transcription

Mori et al. (2008)

NCoR Promoting ubiquitination and proteas-
ome-mediated degradation of NCoR

Lu et al. (2016)

PAR-2 Promoting PAR-2-induced activation of 
AP-1

Luo et al. (2006)

Rad51 Directly affecting Rad51-p53-binding, 
stabilizing Rad51 and promoting HR DNA 
repair

Tian et al. (2010)

CD89 Increasing CD89 surface expression Bakema et al. (2010)

CPNE1 JAB1 activates the neuronal differentiation 
through binding to CPNE1

Yoo et al. (2018)

TRAF2 JAB1 regulates ubiquitination of TRAF2 Wang et al. (2006)

Thioredoxin Stabilizing thioredoxin under oxidative 
stress

Zhou et al. (2017)

Id3 Mouse Jab1 was identified to interact with 
Id3 but the effect remains unclear

Bounpheng et al. (2000)

NLRP3 Possibly promoting NLRP3 inflammasome 
activation

Dai et al. (2020)

Trc8 Trc8 physically interacts with CSN-5 and 
regulate JAB1 localization

Gemmill et al. (2002)

PDLIM2 PDLIM2 interacts with CSN5 and regulate 
CSN activity

Bowe et al. (2014)

CSNAP CSNAP binds CSN3, CSN5, and CSN6, 
thereby regulates the function of CSN 
complex

Rozen et al. (2015)



Page 7 of 17Yang et al. Molecular Medicine           (2023) 29:80  

cytosol and the nucleus (Wei and Deng 2003; Wolf et al. 
2003; Bard et  al. 2018). Regulatory particle non-ATPase 
11 (Rpn11), a component of lid subcomplex in 26S pro-
teasome, also contains a JAMM domain and is responsi-
ble for the proteasome’s cleavage activity (Maytal-Kivity 
et  al. 2002; Verma et  al. 2002). JAB1 is the core subu-
nit of the CSN complex responsible for the cleavage of 
ubiquitin or ubiquitin-like peptides from target proteins 
(isopeptidase activity). However, JAB1 alone does not 
have isopeptidase (metalloproteinase) activity indicat-
ing other CSN subunits, or perhaps the entire complex, 
are required for this function (Cope et al. 2002; Cope and 
Deshaies 2003; Kato and Yoneda-Kato 2009).

A notable role of JAB1 is modulating the activity of 
cullin-RING ubiquitin ligases (CRLs). CRLs are multi-
subunit E3 ubiquitin ligases, which use a cullin (Cul1, 
Cul2, Cul3, Cul4, Cul5, Cul7, and Cul9) and a RING-box 
protein (Rbx1 or Rbx2) as the scaffold to connect the 
E2 enzyme with a specific substrate (Fouad et al. 2019). 
NEDD8, a ubiquitin-like molecule, is a positive regula-
tor of CRLs. All cullins were shown to be NEDDylated at 
conserved lysines which were essential for CRL activation 
and stability (Wu et al. 2005; Schwechheimer 2018; Baek 
et al. 2020). CSN modulated CRL activity via its deNED-
Dylation function, thereby regulating the degradation of 
various CRL-targeted proteins (Shackleford and Claret 
2010; Schulze-Niemand and Naumann 2022). For exam-
ple, NEDDylation of Cul-1 activated  SCFβ-TrCP-mediated 
ubiquitination of IκBα (Read et  al. 2000). JAB1 deNED-
Dylated Cul-1 and stabilized IkappaB kinase (IκB), 
thereby significantly attenuating NF-κB activation 
(Khoury et  al. 2007; Majolee et  al. 2019). Moreover, 
downregulation of JAB1 induced proteasome-mediated 
degradation of the ubiquitin-conjugating enzyme UBC3, 
which was targeted for ubiquitination and degradation 
by the cullin-RING ubiquitin ligase  SCFβ-TrCP (Fernan-
dez-Sanchez et  al. 2010). On the other hand, some evi-
dence indicated that CSN could also enhance SCF-CRL 
activity (Lyapina et  al. 2001). For example, JAB1 knock-
down inactivated Cul-1 due to enhancement of NEDD8 
modification and markedly reduced the basal protein 
level of the interferon receptor (Muromoto et  al. 2013). 
Moreover, JAB1 was also reported to promote degrada-
tion of seven in absentia homolog-1 (SIAH-1) and acti-
vate β-catenin pathway via its deNEDDylase activity 
(Jumpertz et al. 2014). This paradox has been explained 
in that the deNEDDylation of cullin is necessary to sup-
press the auto-ubiquitination of F-box proteins and that 
deNEDDylation is a prerequisite for dynamic cycles 
of CRL assembly and disassembly, which are also regu-
lated by cullin associated and NEDDylation dissociated 
1 (CAND1) (Wee et  al. 2005; Cope and Deshaies 2006; 
Schmidt et  al. 2009). CAND1 bound to unNEDDylated 

cullin-RING box protein complexes and inhibited CRL 
assembly and activity (Dubiel 2009; Wu et  al. 2013). 
Accumulated evidence showed that CSN exerted a mul-
tivalent CRL binding mode and CRLs were differentially 
sensitive to CSN regulation, both of which increased the 
complexity of CSN (or JAB1) in regulating CRL activity 
(Schulze-Niemand and Naumann 2022).

The CSN complex also possesses de-ubiquitination 
activity. For instance, JAB1 was reported to modulate 
ubiquitin-dependent protein sorting into exosomes by 
mediating de-ubiquitination of HSP70 and Snail (Liu 
et al. 2009; Wu et al. 2009). JAB1 could also de-ubiquit-
inate and stabilize PD-L1 which, in turn, leaded to T cell 
suppression (Lim et  al. 2016). Moreover, JAB1 directly 
interacted with angiopoietin-like protein 2 (ANGPTL2) 
and attenuated its ubiquitin-mediated degradation 
through de-ubiquitylation (Xie et al. 2021).

Other functions mediated by protein interactions
In addition to transcriptional co-activation and isopepti-
dase activity, JAB1 possesses a broad series of functions 
mediated by protein interactions (Table 1). As mentioned 
above, JAB1 controls cullin-dependent protein degrada-
tion through regulating cullin deNEDDylation. However, 
accumulated studies have revealed more mechanisms on 
JAB1-involved regulation of protein degradation, which 
are possibly independent to its isopeptidase activity. 
First, JAB1 regulated protein degradation by controlling 
protein subcellular translocation. JAB1 bound to p27 and 
promoted p27 shuttling from the nucleus in a Exportin 
1 (XPO1)-dependent manner, which in turn acceler-
ated p27 degradation through the ubiquitin-dependent 
proteasome pathway (Tomoda et  al. 1999, 2002). Simi-
larly, JAB1 also induced nuclear export and degrada-
tion of p53 (Oh et  al. 2006; Zhang et  al. 2008), RUNX3 
(Kim et al. 2009), and Smad7 (Kim et al. 2004). Another 
notable role of JAB1 is to affect protein mortification. 
For instance, JAB1 regulated lysine-63-linked polyubiq-
uitin of TNF receptor-associated-factor 2 which in turn 
induced TNF-α signaling activation (Wang et  al. 2006). 
JAB1 also regulated stabilization of mouse double min-
ute 2 homolog (MDM2) through inhibiting MDM2 self-
ubiquitination (Zhang et  al. 2008). Moreover, JAB1 also 
regulates protein transmembrane transport. For example, 
JAB1 controlled autocrine MIF-mediated Akt signaling 
by inhibiting MIF secretion (Lue et  al. 2007). Further-
more, JAB1 can also function as a mediator in stabiliz-
ing or competing with protein interactions. For example, 
JAB1 interacted with both the progesterone receptor (PR) 
and the steroid receptor coactivator 1 (SRC-1) and stabi-
lized the PR-SRC-1 complex (Chauchereau et al. 2000). In 
contrast, JAB1 competed with p53 to bind directly to the 
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oxygen-dependent death domain of HIF-1α, resulting in 
stabilization of HIF-1α by blocking hypoxia dependent 
degradation (Bae et al. 2002).

JAB1 in neurodevelopment
Increasing evidence supports that JAB1 is functional in 
neurodevelopment. In this section, we will review the 
roles and underlying mechanisms of JAB1 in the pro-
cesses of neuronal differentiation, synaptic morphogen-
esis, myelination, and hair cells development (Fig. 3), and 
also discuss potential implications of JAB1 in neurode-
velopmental disorders.

Neuronal differentiation
Copines (CPENs) are a family of membrane-anchored 
proteins that are highly evolutionarily conserved in 
sequence and structure within eukaryotes (Creutz et  al. 
1998; Tomsig et  al. 2003). CPENs function in a myriad 
of cellular processes and signaling pathways, such as 
membrane transport, lipid second messenger regula-
tion, GTPase activation and protein phosphorylation 
(Mukhopadhyay et al. 2017; Tang et al. 2021). An increas-
ing number of studies have demonstrated that CPNEs 
participate in neuronal differentiation. CPNE1 is abun-
dantly expressed in neural stem cells (NSCs) and imma-
ture neurons in human and mouse brains and CPNE1 
deficiency could decrease the proliferation and multi-
lineage differentiation potential of NSCs by downregu-
lating the mTOR signaling pathway (Kim et  al. 2018). 
In a hippocampal progenitor cell line HiB5, CPNE1 was 
increased at the early stage of neuronal differentiation 

while CPNE1 knocked-down leaded to a defect in PDGF-
mediated neurite outgrowth (Park et al. 2012). Park et al. 
demonstrated that the C2 domains of CPEN1 mediated 
neuronal differentiation by regulating Akt phospho-
rylation (Park et al. 2014). AKT has been shown to be a 
crucial cassette for signal transduction during neuronal 
development (Read and Gorman 2009; Zhong 2016). 
Moreover, 14-3-3γ, a phospho-binding protein, inter-
acted with CPNE1 and acted as a coordinator of CPNE1 
in regulating HiB5 differentiation (Cheal Yoo et al. 2017). 
Similar to 14-3-3γ, JAB1 specifically bound to the CA2 
domain of CPEN1. Overexpression of JAB1 enhanced 
CPNE1-dependent differentiation of HiB5 indicating a 
synergistic effect of JAB1 and CPNE1 during neuronal 
differentiation even though the underlying mechanism 
deserves further clarification (Yoo et al. 2018).

JAB1 is also critical for photoreceptor neuron differ-
entiation. Rod and cone photoreceptors are specialized 
neurons found in the retina that function in the initial 
step of vision through converting light into electrical 
signals to the brain for processing (Molday and Moritz 
2015). In Drosophila, JAB1 is highly expressed in rod cells 
and accumulates in the developing optic lobe neuropil. 
JAB1 was shown to affect rod and cone cell development 
by regulating lamina glial cell migration into the target 
region in a COP9 signalosome dependent pathway (Suh 
et  al. 2002). At present, it still remains unclear whether 
JAB1 functions in connections of optic ganglia by regu-
lating photoreceptor development in other species 
except for Drosophila. However, in mouse neural stem 
cells (NSCs), Wang et  al. identified JAB1 as a potential 

Fig. 3 Schematic overview of JAB1 in neurodevelopment and neurological diseases. The downstream factors and potential mechanisms of JAB1 in 
different processes are depicted
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modulator downstream of the melanopsin/transient 
receptor potential channel 6 (TRPC6) pathway which 
directed light-induced NSC differentiation (Wang et  al. 
2019a). Moreover, JAB1 also interacted with Brn-2 and 
possibly activated Brn-2 downstream signaling pathway 
in neuronal differentiation (Huang et  al. 2005). Brn-2 is 
a POU domain transcription factor which is crucial for 
the differentiation of fibroblasts to functional excitatory 
cortical neurons (Miskinyte et al. 2017).

Synaptic morphogenesis
Dendritic spine morphogenesis is a fundamental process 
in synapse formation and maturation, which is crucial 
for synaptic plasticity and function. Dendritic abnormali-
ties are featured pathology in various neurological disor-
ders (Kaufmann and Moser 2000; Dierssen and Ramakers 
2006; Knobloch and Mansuy 2008). In Drosophila, a JAB1 
homozygous mutant could lead to aberrant dendritic mor-
phology in dendritic arborization (DA) sensory neurons 
exhibiting shorter and less dendritic branching. Moreover, 
normally highly branched ddaC neurons also developed 
significantly fewer branches and a shrunken dendritic tree 
due to JAB1 deficiency. Mechanistically, JAB1 functions in 
synaptic morphogenesis possibly through regulating cullin 
NEDDylation and cullin-mediated proteins degradation in 
a CSN-dependent pathway (Djagaeva and Doronkin 2009).

Myelination
Myelination is developed as an ingenious strategy to 
segregate neuronal axons from environmental insult 
and to promote conduction of electric action potentials 
down the axons. In peripheral nerves, Schwann cells 
(SCs) produce lipid-rich layers of myelin to wrap around 
the neuronal axons. Axonal sorting is a crucial event in 
myelination which requires SCs proliferation, differen-
tiation, and contact with axons (Williamson and Lyons 
2018). In this process, SCs proliferate and expand cellular 
extensions into bundles of unsorted axons and establish 
the one-to-one relationship with individual axons (Web-
ster et al. 1973; Jessen et al. 2015; Min et al. 2021). Mice 
with conditional knock-out of JAB1 in SCs manifested 
impaired axonal sorting and motor dysfunction. Axonal 
sorting is supported by proper SC differentiation (Jes-
sen and Mirsky 2005) while JAB1 deletion led to delayed 
or arrested SC differentiation which was associated with 
abnormally increased level of p27 (Porrello et  al. 2014). 
Increased levels of p27 have been reported to cause cell 
cycle arrest in oligodendrocytes and SCs (Casaccia-Bon-
nefil et al. 1999; Li et al. 2011). However, genetic deple-
tion of p27 restored SC number and axonal sorting in 
JAB1 deficiency SCs. This evidence indicates that JAB1 
regulates SC proliferation and axonal sorting through the 
p27-associated signaling pathway (Porrello et al. 2014).

Hair cells development
Hair cells (HCs) function as the specialized sensory 
receptors for both the auditory and vestibular systems 
in the ears of animals. Inner ear hair cells can trans-
duce sound-evoked mechanical vibrations into electrical 
signals which are then relayed to the brain (Wang et al. 
2015). HC development and innervation by the verte-
brate statoacoustic ganglion (SAG) are crucial for the 
auditory function and involve a plethora of signaling 
pathways (Wang et  al. 2019b). Macrophage migration 
inhibitory factor (MIF) acts as neurotrophic cytokines 
during the earliest stages of inner ear development. JAB1 
has been reported to control autocrine MIF-mediated 
Akt signaling by inhibiting MIF secretion (Mcginley 
et al. 2021). More than that, JAB1 is also a downstream 
effector of MIF during inner ear hair cell development 
in zebrafish (Wang et al. 2016b). However, the potential 
function of JAB1 in hair cell development in mammals 
needs further verification.

Putative roles of JAB1 in neurodevelopmental disorders
Considering the vital functions of JAB1 and its effectors 
in different neurodevelopmental processes, dysregulation 
or dysfunction of JAB1 may contribute to some neurode-
velopmental disorders. First, this could be partially sup-
ported by a clinical case in which a patient with a 1.4 Mb 
interstitial deletion at the 8q13.1-q13.2 locus (JAB1 con-
tained) exhibited inferior cerebellar vermian hypoplasia 
and digital anomalies (Mordaunt et  al. 2015). Moreo-
ver, JAB1 may be involved in the pathogenesis of autism 
through affecting c-Jun activation. Aberrant increase of 
c-Jun was reported in an autism-like mouse model (Tri-
pathi et al. 2009), and c-Jun activation could also induce 
a disordered inflammatory response in the central nerv-
ous system (Shimoyama et al. 2019) which was featured 
in the autism brain (Bjorklund et  al. 2020; Roe 2022). 
Furthermore, as a component of the CSN complex, JAB1 
potentially participated in the pathogenesis of Down syn-
drome (Peyrl et al. 2002) and Smith–Magenis syndrome 
(Elsea et al. 1999).

JAB1 in neurological diseases
Alzheimer’s disease
As the dominating contributor to dementia, Alzheimer’s 
disease (AD) is the most prevalent neurodegenerative 
disorder. β-amyloid (Aβ) and hyperphosphorylated Tau 
are two of the most featured pathological proteins that 
lead to senile plaques and neurofibrillary tangles, respec-
tively in AD brains. Aβ peptides are produced from 
amyloid precursor protein (APP) through sequential 
cleavages by β-secretase and γ-secretase. Ran-binding 
protein (RanBP) is a scaffolding protein implicated in a 
variety of signal transduction pathways (Suresh et  al. 
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2012). RanBP9 interacted with APP and BACE1, thereby 
enhancing β-secretase processing of APP by accelerat-
ing APP internalization and interaction with BACE1 
(Lakshmana et  al. 2009). Transgenic mice overexpress-
ing RanBP9 exhibited increased Aβ plaque burden in 
the brain (Lakshmana et  al. 2012) while knockdown of 
endogenous RanBP9 significantly reduced Aβ produc-
tion in Chinese hamster primary neurons (Lakshmana 
et al. 2009). Similar to RanBP9, JAB1 could also increase 
the Aβ level by promoting β-secretase processing of APP 
while down-regulation of JAB1 reduced Aβ generation, 
indicating the vital role of JAB1 in regulating Aβ produc-
tion (Wang et al. 2013). JAB1 was shown to be increased 
in the brains of AD patients and APP/PS1 transgenic 
mice (AD mouse model); JAB1 overexpression strongly 
increased the RanBP9 protein level by increasing its half-
life (Wang et al. 2013); however, whether JAB1 regulates 
RanBP9 subcellular translocation or its degradation-
associated modifications is unknown. Consistently, JAB1 
overexpression in APP/PS1 transgenic mice significantly 
increased amyloidogenic processing of APP, and reduced 
spinophilin (the marker of dendritic spines) in both 
the cortex and the hippocampus, leading to significant 
defects in learning and memory skills (Wang et al. 2015). 
Taken together, this evidence implied that JAB1 could 
aggravate Aβ pathology and cognitive decline by increas-
ing RanBP9 stability in AD brain (Fig. 3).

Furthermore, JAB1 may be implicated in AD progres-
sion through other pathways. For instance, JAB1 partici-
pated in unfolded protein responses by interactions with 
ER-resident transmembrane kinase-endoribonuclease 
inositol-requiring enzyme 1 (IRE1) in response to ER 
stress (Oono et  al. 2004), a well-known abnormal phe-
nomena in the context of AD (Uddin et  al. 2021). IRE1 
is an ER-located kinase and endoribonuclease that func-
tions as a major transducer under ER stress. In human 
brains, IRE1 activation was reported to exacerbate pro-
gression of AD histopathology (Duran-Aniotz et  al. 
2017). JAB1 also interacted with ubiquitin C-terminal 
hydrolase L1 (UCH-L1, also termed as PGP9.5) (Cabal-
lero et al. 2002), which was found to be highly expressed 
in the cerebral cortex and hypothalamus (Sharma et  al. 
2020). UCHL1 affected Aβ production by promoting 
APP ubiquitination and lysosomal degradation (Zhang 
et al. 2014). However, whether JAB1 regulates APP modi-
fication and processing via UCHL1 remains unclear so 
far.

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune-mediated neu-
rodegenerative disease with the main and distinguish-
ing feature of inflammatory demyelination with axonal 
transection (McGinley et al. 2021). In MS, demyelination 

caused by focal lymphocytic infiltration into the central 
nervous system (CNS) can lead to permanent damage 
or deterioration of the nerves in CNS (Hauser and Cree 
2020). Arising as the most common cause of non-trau-
matic neurologic disability in young adults, MS affects 
more than 2.5 million people worldwide (McGinley et al. 
2021; Rodriguez Murua et al. 2022). In MS patients, JAB1 
was shown to be reduced in oligodendrocytes (Rivel-
lini et  al. 2022). Moreover, oligodendrocyte-conditional 
JAB1 mutant mice exhibited MS-like pathologies, such as 
demyelination, fostered chronic inflammation, and oxi-
dative stress in the CNS. Oligodendrocyte lacking JAB1 
expression developed a premature senescence pheno-
type with deteriorative DNA damage and defective DNA 
repair while deletion of p21 could ameliorate these JAB1 
deficiency-induced phenotypes (Rivellini et al. 2022). This 
evidence indicates that JAB1 deficiency-induced cellular 
senescence may be a crucial cause to MS (Fig.  3). JAB1 
was reported to regulate cellular senescence by affecting 
cyclin dependent kinase 2 (CDK2) translocation. Dele-
tion of JAB1 in mouse embryonic fibroblasts suppressed 
cell proliferation, and induced premature senescence 
characterized by enhancing senescence-associated-β-
galactosidase activity and increased expression of CDK 
inhibitors (Tsujimoto et  al. 2012). JAB1 interacted with 
CDK2 and inhibited CDK2 phosphorylation. Deletion 
of JAB1 increased the phosphorylation of CDK2 by Akt, 
resulting in accumulated CDK2 together with cyclin E in 
cytoplasm (Yoshida et  al. 2013). However, whether the 
JAB1-CDK2 signaling axis is implicated in the pathogen-
esis of MS needs further exploration.

Neuropathic pain
Neuropathic pain, a chronic pain condition, is commonly 
caused by a lesion or dysfunction in the somatosensory 
nervous system (Baron et al. 2010). Neuropathic pain is 
considered to be the consequence of aberrant excitabil-
ity of dorsal horn neurons evoked by peripheral sensory 
inputs, which is clinically featured as hyperalgesia and 
allodynia (Finnerup et al. 2021); however, the mechanism 
has not been fully elucidated. Interestingly, in a neuro-
pathic pain rat model induced by chronic constriction 
injury (CCI), JAB1 was mostly increased in the neurons 
in the dorsal root ganglion and spinal cord (Chen et  al. 
2016). Moreover, phosphorylation of JNK1 and p65 (NF-
κb) were also upregulated in this model. Importantly, 
down-regulation of JAB1 could significantly reduce 
phosphorylated JNK1 and p65, and effectively amelio-
rate neuropathic pain-associated behavior shown by 
the increased values of the paw withdrawal latency and 
the paw withdrawal threshold (Chen et  al. 2016). These 
results implied that JAB1 was implicated in the pathogen-
esis of neuropathic pain via the JNK and NF-κB pathway 
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(Fig. 3), but whether JAB1 affects the phosphorylation of 
JNK and p65 or regulates the degradations of phospho-
rylated JNK1 and p65 remains unclear.

Peripheral nerve injury
Peripheral nerve injury caused by traumatic damage or 
complications of other diseases is increasing as a devas-
tating clinical and public health problem that often gives 
rise to significant functional morbidity and permanent 
disability (Alvites et  al. 2018). Patients with peripheral 
nerve injury can suffer severe and persistent pain, or 
even total loss of sensation in the part of the body influ-
enced by the damaged nerve (Burnett and Zager 2004). 
In a rat model with sciatic nerve injury, JAB1 was shown 
to be increased from 12  h to 7  days post-injury (Cheng 
et al. 2013). Consistently, p27 also presented a significant 
change contrary to that of JAB1 as JAB1 was reported 
to regulate p27 subcellular translocation and degrada-
tion (Tomoda et  al. 2002). Moreover, the interaction 
between JAB1 and p27 was also identified in the sciatic 
nerve (Cheng et  al. 2013). These results illustrated that 
JAB1 and p27kip1 may be involved in the pathology of 
the sciatic nerve after injury (Fig. 3) but how JAB1 acts 
in this model remains unclear. Moreover, SCs within the 
peripheral nervous system possess a remarkable regener-
ation capacity which is crucial for nerve regeneration and 
functional recovery following traumatic injuries (Nocera 
and Jacob 2020; Min et  al. 2021). Considering the piv-
otal roles of JAB1 in SC proliferation and axonal sorting, 
which have been described above, JAB1 may function as 
a potential target for nerve repair by promoting remyeli-
nation and axonal growth.

Challenges and prospects on drug development 
by targeting JAB1
Considering the participations of JAB1 in diverse patho-
logical processes, JAB1 can be developed as a biomarker 
or therapeutic target in various neurological disor-
ders. However, so far there is no specific JAB1-targeting 
drug has been developed in clinical trials, as inconsist-
ent expression change and bidirectional roles of JAB1 
in different diseases should be taken into consideration. 
For example, JAB1 was increased in AD brains (Wang 
et al. 2013) but was reduced in oligodendrocytes of MS 
patients (Rivellini et  al. 2022). In AD model, reduced 
JAB1 is beneficial for inhibiting Aβ production while 
JAB1 deficiency can also cause MS-like pathologies. 
Hence, simply changing JAB1 levels may not be an effec-
tive strategy as this could produce unpredictable side 
effects. For instance, as an oncogene, it remains unclear 
whether exogenous upregulation of JAB1 may increase 
the risk of tumor development. Nevertheless, for some 
acute disorders, interventions for JAB1 levels in some 

specific local tissues may be an alternative method to 
ameliorate the deteriorative symptoms. For example, 
down-regulation of JAB1 in dorsal root ganglion can 
effectively improve hyperalgesia in a CCI-induced rat 
model (Chen et al. 2016). However, another concern on 
intervening in JAB1 expression is that there are limited 
studies investigating the regulatory pathways involved in 
JAB1 expression in the nervous system. As we have sum-
marized above, the expression of JAB1 is regulated at 
multiple levels. However, it has been rarely studied as to 
whether these mechanisms are functional in neurodevel-
opment or neurological diseases. Hence, it still remains 
a challenging to modulate JAB1 expression and requires 
further studies in the future.

Some chemicals targeting the interactions of JAB1 with 
its downstream effectors may bring more prospects for 
clinical application. JAB1 functions by interacting with 
different proteins in various biological pathways, hence, 
modifying a single specific activity of JAB1 or regulating 
the interaction between JAB1 and one protein through 
peptides or small molecular compounds may provide a 
more precise therapeutic strategy. For instance, Azain-
doles, a Zinc-binding small-molecule, was reported 
to inhibit JAB1 deNEDDylation activity by interact-
ing with the active-site zinc ion of JAB1 (Altmann et al. 
2017). Similarly, thiolutin can also inhibit JAB1 metal-
loprotease activity (Lauinger et al. 2017) and has shown 
potential benefits for treatment of NLRP3-associated 
inflammatory diseases (Ren et  al. 2021). Besides, caffeic 
acid phenethyl ester suppressed the interaction between 
NLRP3 and CSN5 and inhibited NLRP3 inflammasome 
activation (Dai et  al. 2020). CSN5i-3, a potent, selective 
and orally available inhibitor of JAB1 exhibited anti-
tumour activity by traping CRLs in the neddylated state, 
which leaded to CRLs inactivation (Schlierf et  al. 2016; 
Xiao et al. 2019). On the other hand, although accumu-
lating evidence has supported JAB1-targeted chemicals 
provide more potential for medical application, detailed 
pharmacokinetics and safety evaluation of such com-
pounds should also be addressed in future studies.

Conclusion
JAB1 has been identified as a vital regulator involved in 
various signaling pathways. More importantly, mounting 
evidence supports that JAB1 plays crucial roles in neu-
ronal differentiation, synaptic morphogenesis, myelina-
tion, and hair cell development, and is also implicated 
in the pathogenesis of some neurological diseases. JAB1 
downregulation exerts potential benefits for AD and neu-
ropathic pain treatment, but may also increase the risk 
for MS development. Interventions for JAB1 expression 
levels have shown therapeutic potential for some neuro-
logical diseases, but specific molecules interfering with 
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the interaction of JAB1 with target proteins may have a 
brighter future.
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