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The benefits of rehabilitation exercise 
in improving chronic traumatic encephalopathy: 
recent advances and future perspectives
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Abstract 

Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic 
encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence 
has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively 
improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects 
of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review 
the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.

Keywords Traumatic encephalopathy syndrome, Chronic traumatic encephalopathy, Rehabilitation exercise, 
Neuropathology, Nerve regeneration

Introduction
In recent years, the concept of traumatic encephalopa-
thy syndrome (TES) has been proposed to describe the 
clinical manifestations of CTE. TES is a progressive pro-
cess in which patients present with cognitive dysfunction 
and neurobehavioral disorders (Katz et  al. 2021). How-
ever, the current understanding of TES remains still not 

completely clear, and there is a lack of effective preven-
tive and therapeutic strategies.

Exercise has been shown to be beneficial in the prog-
nosis of a variety of diseases (Dibben et  al. 2021; Kana-
ley et  al. 2022). The pathophysiology of CTE may be 
related to abnormal protein accumulation, neuroinflam-
mation, microcirculation injury. Studies have demon-
strated that rehabilitation exercise can reduce abnormal 
protein deposition by enhancing signal pathway trans-
duction, promote neurogenesis, promote synaptogen-
esis, and increase synaptic plasticity (Xu et  al. 2022a; 
Horowitz et  al. 2020; Mu et  al. 2022). Neuroinflamma-
tion is a common pathological manifestation of a variety 
of nervous system diseases, including neurodegenerative 
diseases and central nervous system tumors, and rehabil-
itation exercises also help to reduce neuroinflammation 
(Miguel et  al. 2021a; Pang et  al. 2022a). Several stud-
ies have demonstrated the effectiveness of rehabilitation 
exercise in the treatment of neurodegenerative diseases 
(Ruiz-González et  al. 2021a; López-Ortiz et  al. 2021a; 
Johansson et  al. 2022), and rehabilitation exercise, as a 
less expensive and convenient treatment, may also have 
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a good effect on improving the prognosis of patients with 
CTE, so it is necessary to investigate this area. This arti-
cle discusses some of the identified and possible molecu-
lar mechanisms of CTE pathogenesis, and explores the 
potential of rehabilitation exercise to improve the clinical 
manifestations of TES.

Clinical phenotype and possible molecular 
mechanisms of traumatic encephalopathy 
syndrome
CTE has a unique pathological profile, and its diagnosis 
can currently only be confirmed by neuropathological 
examination at autopsy (Murray et  al. 2022a). The spe-
cific molecular mechanism of CTE pathogenesis is not 
fully understood, and there are few studies on CTE from 
the perspective of neurovascular units (NVU), so some of 
the identified and possible pathogenesis of CTE are listed 
below.

Pathological and clinical features of CTE
Although the consensus defines CTE-related clinical 
syndromes as TES, the diagnosis of TES does not rep-
resent the diagnosis of CTE, and the diagnosis of CTE 
still requires neuropathological examination (Katz et  al. 
2021). In addition, the existence of TES remains difficult 
to determine, and the subjective judgment of the physi-
cian is sometimes required in the TES diagnostic pro-
cess, which can introduce bias (Cullum and LoBue 2021). 
Patients with CTE are mostly veterans, contact sports 
athletes, and civilians who have suffered long-term head 
violence in various situations (Mez et  al. 2021). At pre-
sent, the etiology of CTE is not clear, and it may be highly 
related to repetitive head blows, and a small number of 
patients have no clear history of neurotrauma (McKee 
et al. 2023). McKee divided CTE into four stages accord-
ing to the severity of p-tau lesions. With progression 
through the stages, the patients’ clinical symptoms grad-
ually worsen (McKee et al. 2013). The first stage mainly 
manifests as cognitive impairment and headache; psychi-
atric features (usually depression and suicide) persist in 
the second to fourth stages; the third stage usually shows 
behavior disorder; dementia, motor problems and severe 
mental disorders are common in the fourth stage (McKee 
et  al. 2013). It should be noted that the relationship 
between pathological changes and clinical symptoms has 
not been confirmed (Iverson et al. 2019).

Molecular mechanisms of CTE
The gross pathology can show ventricular dilation and 
brain atrophy, usually located in the frontal and tempo-
ral lobes (McKee et  al. 2015). The pathological changes 
of CTE mainly involve abnormal protein deposition, neu-
roinflammation, and microcirculation disorders, among 

which the typical microscopic pathological features are 
the aggregation of abnormal P-tau protein in the neurons 
and astroglia distributed around vessels in the deep cer-
ebral cortical groove (McKee et al. 2016; Kaufman et al. 
2021). The misfolded tau protein can induce the tem-
plate misfolding and aggregation of healthy tau molecules 
in healthy cells, spread in a prion like manner, and then 
develop the lesions to other regions of the brain (Brunello 
et al. 2020; Falcon et al. 2019). P-tau lesions most often 
affect five regions of the brain: the dorsolateral frontal 
cortex, the superior temporal cortex, the entorhinal cor-
tex, the amygdala, and the locus coeruleus (Alosco et al. 
2020, 2019). In addition, diffuse amyloid β (A β) plaque 
and pathological inclusion bodies composed of transac-
tive response DNA-binding protein can be seen in some 
CTE cases (Smith et al. 2019). Aβ deposition may result 
from axonal damage and loss, resulting in increased 
release of amyloid precursor protein (APP) (Chaves et al. 
2021; Ikonomovic et al. 2017).

Microglia are the main cells mediating inflammation 
in various diseases of the central nervous system (Pang 
et al. 2022b; Khan et al. 2023). The activation of microglia 
in CTE may create conditions for maintaining chronic 
neuroinflammation and promote the accumulation of 
P-tau (Verboon et  al. 2021). In addition, abnormal pro-
tein deposition can cause neuroinflammation, and RHIs 
can also directly cause neuroinflammation, such as the 
activation of Toll-like receptor myeloid difference factor 
88 (MYD88) after RHIs, the promotion of nuclear fac-
tor kappa B (NF kappa B) transcription, and an increase 
in the expression of nucleotide-binding oligomerization 
domain-like receptor family pyrin domain-containing-3 
(NLRP3), interleukin 1 (IL-1), and interleukin 18 (IL-
18) (Bauernfeind et  al. 2009). Elevated inflammatory 
cytokines, such as tumor necrosis factor- α (TNF- α) and 
interleukin-4, can induce an increase in arginase activity 
and expression (Thornhill and Haskard 1990). Arginase 
has an inhibitory effect on nitric oxide synthase (eNOS), 
which can reduce the production of eNOS-derived nitric 
oxide (NO), resulting in vasodilation dysfunction that 
affects parenchymal perfusion (Shin et  al. 2019; Mahdi 
et  al. 2020). In addition, neuropathological examination 
of CTE patients reveals disruption of the blood–brain 
barrier, which may be associated with loss of tight junc-
tion complex 5 (claudin-5) (Farrell et al. 2019). This may 
lead to a vicious circle of neuroinflammation, microcir-
culatory disorder and neuronal death.

Inflammation and microcirculation damage can reduce 
synaptic plasticity. The mechanism may be related to up-
regulation of D-serine level by astrocytes, and an increase 
in excitatory neurotransmitter glutamate levels (Wolo-
sker et  al. 2016; Tapanes et  al. 2022). Therefore, how to 
inhibit neuroinflammation, microcirculation disorder 
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and neuron death, promote neurogenesis and increase 
synaptic plasticity are the keys to improving the progno-
sis of CTE (Fig. 1).

Potential mechanisms by which rehabilitation 
exercises improve CTE
Rehabilitation exercise can improve cognitive function, 
clinical symptoms such as depression and anxiety (Pearce 
et al. 2022a), and can also protect the nervous system by 
inducing the production of brain-derived neurotrophic 
factor (BDNF), insulin-like growth factor I and vascular 
endothelial growth factor (VEGF), which has a benefi-
cial effect on brain plasticity (Ruiz-González et al. 2021a; 
Morland et  al. 2017a). For example, light and moderate 
aerobic treadmill exercise can reduce fatigue, improve 
neonatal hippocampal neuron survival, and improve 
neurobehavioral outcomes after neurological disease 
(Karelina et al. 2021). Regular physical exercise has been 
shown to be an effective way to slow the progression of 
neurodegenerative diseases such as Alzheimer’s disease 
(Pearce et al. 2022a).

Repeated concussions can be a trigger for CTE (McKee 
et  al. 2023), and rehabilitative physical activity for post-
concussion patients has been shown to improve symp-
toms and speed recovery (Howell et al. 2021; Leddy et al. 
2021). CTE progresses slowly, and as a neurodegenerative 

disease, rehabilitation exercises may also be effective for 
it (Murray et al. 2022b). In this section, we aim to intro-
duce the potential mechanism of rehabilitative physical 
exercise in improving CTE. It may be related to prevent-
ing abnormal protein deposition, alleviating neuroin-
flammation, regulating microcirculation, and promoting 
neurogenesis and synaptic plasticity (Table 1) (Fig. 2).

Rehabilitation exercises reduce abnormal protein 
deposition
The deposition of p-tau is an important pathological fea-
ture of CTE. Deposition of other proteins such as Aβ can 
accelerate p-tau deposition, aggravating pathological out-
comes. However, rehabilitation exercise can reduce the 
deposition of abnormal proteins and thus could benefit 
those with CTE.

Rehabilitation exercises reduce P‑tau generation
Rehabilitation exercises can reduce P-tau synthesis and 
increase P-tau clearance. Tau protein acetylation can pro-
mote Tau protein aggregation and hyperphosphorylation, 
and make P-tau more difficult to degrade, while regular 
aerobic rehabilitation exercise can reduce Tau protein 
acetylation and improve the pathological process of 
CTE (Mankhong et  al. 2020). In addition, rehabilitation 
exercise can inhibit tau protein hyperphosphorylation. 

Fig. 1 The pathological mechanisms of CTE. The accumulation of abnormal protein deposition, reduction in synaptic plasticity, and abnormal 
activation of the inflammatory reaction, reduced microcirculation function, and impaired blood–brain barrier are the main pathological features 
of CTE. It worsens the brain microenvironment and leads to extensive neuronal degeneration
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Glycogen synthase kinase-3 (GSK-3) is involved in the 
regulation of many key cell biological pathways, and 
one of its subforms, GSK-3β, is involved in phospho-
rylation of Tau protein after CTE (Hernandez et  al. 
2013; Moszczynski et  al. 2018). Rehabilitation exercises 
reduce GSK-3β activity and reduce Tau phosphorylation 
by inhibiting the expression of Dickkopf-1, an inhibitor 
of the Wnt/GSK3β pathway, by upregulating the Wnt/
GSK3β pathway (Chen et  al. 2020). Finally, rehabilita-
tion can activate the PI3K/Akt pathway to increase the 
expression of its downstream protein HSP70, a key pro-
tein that makes up the ubiquitin–proteasome system, 
so rehabilitation can enhance this system and promote 
P-tau clearance (Xu et al. 2022b).

Rehabilitation exercise reduces Aβ deposition
Amyloid precursor protein (APP) is an important pro-
tein for the growth and development of neurons and the 
implementation of various activities (Liu et al. xxxx). APP 
processing pathways are generally divided into the amy-
loid pathway (mediated by secretary enzyme β and γ) and 
non-amyloid (mainly mediated by secretary enzyme α) 
(Cho et al. 2022; Wilkins and Swerdlow 2017). Research 
on the APP processing pathway shows that exercise can 

increase the secretion of a disintegrin and metallopro-
tease 10 (ADAM10), the main member of the α secre-
tary enzyme, which increases the expression of soluble 
APP by increasing the non-amyloid pathway α (sAPP 
α) (Yu et  al. 2021a). In addition, the increase in sAPPα 
can inhibit BACE1, thereby reducing the amyloid path-
way and Aβ production (Nigam et al. 2017). Rehabilita-
tion exercise can also reduce Aβ-induced neurological 
dysfunction by increasing muscle expression of prolifer-
ator-activated receptor-γ coactivator-1α (PGC-1α) and 
through the PGC-1α/FNDC5/BDNF pathway (Azimi 
et  al. 2018; Neto et  al. 2023). Generally speaking, reha-
bilitation exercises can reduce abnormal proteins (P-tau 
and Aβ), therefore rehabilitation exercises may be used as 
a potential clinical intervention strategy for the treatment 
of CTE.

Rehabilitation exercise inhibits the vicious cycle 
of neuroinflammation—microcirculation disorders—
neuronal death
Neuroinflammation is the initiating factor of second-
ary brain injury, which can lead to microcirculation dis-
orders. Brain tissue and neuronal ischemia and hypoxia 
aggravate inflammatory reaction, forming a vicious cycle 

Table 1 The main beneficial mechanisms of rehabilitation exercise for CTE

Sorting Subclass Mechanism References

Reduction of abnormal protein deposition Tau protein Rehabilitation exercises can reduce tau 
protein acetylation and promote Wnt/
GSK3 β and PI3K/Akt signaling pathways, 
reducing P‑Tau production and increasing 
its clearance

Mankhong et al. (2020); Chen et al. (2020); 
Xu et al. (2022b)

β‑amyloid protein Rehabilitation exercise increases ADAM10 
expression and promote PGC‑1 α / FNDC5 
pathway thereby reduces Aβ production

Yu et al. (2021a); McMeekin et al. (2020)

Antiinflammation and oxidation stres IL‑6, CLU Rehabilitation exercise promotes 
the release of IL‑6 from skeletal muscles 
and the release of CLUs from the liver 
to reduce neuroinflammation

Chow et al. (2022); Bateman et al. (2016)

Promote angiogenesis and improve 
micro‑circulation

VEGF Rehabilitation exercise can increase 
plasma lactic acid to promote ERK1/2 
and Akt signal transduction and promote 
EPC to secretion VEGF

Morland et al. (2017b); Ross et al. (2014)

Promotion of neurogenesis BDNF BDNF promotes neuronal development 
and differentiation through the BDNF/
TrkB signaling pathway

Colucci‑D’Amato et al. (2020)

L‑lactic acid L‑lactate activates HCA1 to promote 
the AKT/PK pathway to promote cell 
survival and value‑added

Lambertus et al. (2021)

MCT2 Rehabilitation exercise increases MCT2 
expression and improves neuronal energy 
metabolism

Lev‑Vachnish et al. (2019); Yu et al. (2021b)

The promotion of synaptogenesis 
and the increase of synaptic plasticity

LTP Regular rehabilitation exercises can 
increase LTP

Vivar and Praag (2017)

Glutamate Rehabilitation exercise increases the excit‑
atory neurotransmitter glutamate

Andersen et al. (2021); Maddock et al. 
(2016)
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of neuroinflammation-microcirculation disorders-neu-
ronal death. Many studies have shown that rehabilita-
tion exercise could effectively inhibit this vicious circle, 
thereby improving the prognosis of patients.

Rehabilitation exercise has an anti‑inflammatory effect
The mechanism of rehabilitation exercise to reduce neu-
roinflammation may be related to reducing microglia 
activation and promoting the release of anti-inflam-
matory factors from skeletal muscle and the liver. Glia 
mediates neuroimmunity, and intervention in glial cells 
through different pathways may alter disease progres-
sion (Goenka et al. 2023; Xuan et al. 2022). For example, 
microglia-targeted immunotherapy has good promise in 
tumor treatment (Pang et al. 2022a). Similarly, rehabilita-
tion exercise helps to regulate microglia metabolic status, 
reduce microglia activation, and thus reduce neuroin-
flammation. IL-6 released from skeletal muscle after exer-
cise can enter the brain through the blood brain barrier. 

IL-6 demonstrates a dual effect of promoting inflamma-
tion and exerting anti-inflammatory actions at various 
levels (Forcina et al. 2022), on the one hand, a transient 
increase in IL-6 after exercise can combine with other 
anti-inflammatory factors to inhibit inflammation such 
as inhibiting the pro-inflammatory effect of TNF (Chow 
et al. 2022; Bateman et al. 2016), on the other hand, long-
term high systemic levels of IL-6 have pro-inflammatory 
effects and are associated with the occurrence of a vari-
ety of diseases, however, exercise individuals have lower 
baseline levels of IL-6 (Pedersen and Febbraio 2012), and 
functional neurogenesis refilling of post-CTE microglia 
may also be mediated by interleukin 6 (IL-6) trans-sign-
aling pathways (Willis et al. 2020). IL-6 may be the key to 
enhancing the survival of neurons after CTE. In addition, 
some studies have shown that rehabilitation exercise can 
promote clusterin (CLU) production in the liver, targets 
brain endothelial cells, inhibits interferon signals, and 
plays an anti-inflammatory role (Miguel et al. 2021b).

Fig. 2 The mechanisms of exercise in CTE. CTE triggers neurodegenerative changes. However, rehabilitation exercise reduces the pathological 
processes of CTE through a variety of mechanisms (such as reducing abnormal protein accumulation, promoting neurogenesis, synaptic formation, 
increasing synaptic plasticity and promoting angiogenesis, improving microcirculation, and resisting micro‑inflammation)
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Promotes angiogenesis and improves microcirculation
Rehabilitation exercise with a certain intensity can 
improve cerebral blood flow perfusion (Steventon et  al. 
2020). As a heparin binding growth factor, VEGF can 
target vascular endothelial cells, promote their prolifera-
tion and induce angiogenesis in vivo (Ahmad and Nawaz 
2022). The increase in VEGF caused by exercise may be 
achieved through the following two ways: (1) Exercise 
increases the plasma lactate concentration, activates 
ERK1/2 and Akt signals by acting on the lactate receptor, 
thereby increasing the expression of vascular endothe-
lial growth factor A (VEGFA) (Morland et  al. 2017b); 
(2) rehabilitation exercise can promote the migration of 
endothelial progenitor cells (EPCs) to the area of injured 
dendothelial cells, and the secretion of VEGF to promote 
vascular growth and repair (Ross et al. 2014). In addition, 
rehabilitation exercise can promote EPCs to secrete EPC-
derived exosomes and promote microvascular regen-
eration, thereby improving microcirculation (Wang et al. 
2020; Ma et  al. 2018). Rehabilitation exercises can also 
help improve vascular function. Exercise can increase 
vascular laminar shear stress, which can induce increased 
calcium-mediated eNOS enzyme activity in vascular 
endothelial cells, thereby increasing NO production 
(Tryfonos et  al. 2022). Therefore, rehabilitation exercise 
is conducive to avoiding vascular endothelial dysfunc-
tion and reducing vascular oxidative damage. To sum 
up, rehabilitation exercise may induce angiogenesis, and 
VEGF may improve microcirculation disorders and nerve 
function, which may be a potential therapeutic target for 
improving microcirculation disorders in CTE patients.

Rehabilitation exercises can promote nerve growth 
and increase synaptic plasticity
The brain is structurally and functionally highly plastic, 
and central nervous system diseases can have harmful 
effects through this property, such as neurodegenerative 
diseases, where the hippocampus is remodeled and cog-
nitive and functional impairment can be caused (Weeras-
inghe-Mudiyanselage et  al. 2022). Physical exercise has 
been shown to promote beneficial brain remodeling and 
improve neural function by regulating epigenetic inher-
itance and promoting the expression of neurotrophic 
factors (Liang et al. 2021). The positive effects of rehabili-
tation exercise on the brain plasticity of CTE patients are 
mainly reflected in promoting hippocampal neurogenesis 
and increasing synaptic plasticity.

Rehabilitation exercises contribute to hippocampal 
neurogenesis
During the pathological development of CTE, degenera-
tive necrosis of neurons often occurs (Bauernfeind et al. 
2009). However, the adult hippocampus can produce 

a type of neuron (dentate gyrus granule cells) that can 
eventually differentiate into new neurons (Zhou et  al. 
2022). Rehabilitation exercises can improve the hip-
pocampal environment and promote adult hippocam-
pal neurogenesis through various mechanisms, thereby 
improving the pathological outcome of CTE and the 
prognosis of patients. Rehabilitation exercise raises the 
level of BDNF, and its mechanism may be related to the 
Wnt/ β-catenin signal pathway (Cheng et al. 2020). Reha-
bilitation exercise can change the morphology of astro-
cytes and promote the expression of BDNF (Li et  al. 
2021). BDNF is an important neurodynamic factor in the 
brain, which promotes the development and differentia-
tion of neurons and plays an active role in the repair of 
nerve injury (Walsh and Tschakovsky 2018). Its role in 
adult hippocampal neurogenesis is mediated by BDNF/
TrkB signaling pathway (Colucci-D’Amato et al. 2020).

Rehabilitation exercise may promote neurogenesis 
by mediating L-lactic acid, and its mechanism may be 
associated with the hydroxycarboxylic acid receptor 1 
(HCA1)-mediated AKt/PK pathway (Lambertus et  al. 
2021). Also, L-lactic acid can activate monocarboxylate 
transporter 2 (MCT2) on newborn neurons (Lev-Vach-
nish et al. 2019). However, overexpression of MCT2 can 
increase mitochondrial biogenesis, thereby improving 
neuronal energy metabolism (Yu et al. 2021b). Rehabili-
tation training can also promote hippocampal neurogen-
esis in adults by altering blood composition. Selenium is 
an indispensable trace element in the human body. The 
secreting selenoprotein P (SEPP1) metabolized in the 
liver is the organic form of selenium in the human body, 
which has antioxidant and anti-inflammatory effects 
(Hariharan and Dharmaraj 2020; Burk and Hill 2015). 
Studies have shown that rehabilitation exercise can sig-
nificantly increase the concentration of SEPP1 in plasma 
and promote the binding of SEPP1 to the receptor. 
Researchers have reported that low-density lipoprotein 
receptor related protein 8 promoted hippocampal neu-
rogenesis (Leiter et  al. 2022). In addition, rehabilitation 
exercise can increase the concentration of glycosylphos-
phatidylinositol (GPI)-specific phospholipase D1 in 
plasma, and alter the signal cascade downstream of GPI 
anchor substrate lysis, thereby affecting neurogenesis, 
improving age-related regeneration and reducing cogni-
tive impairment (Leiter et  al. 2022; Fujihara and Ikawa 
2016). Finally, rehabilitation training can also induce 
platelet activation, promote the secretion of platelet fac-
tor 4, and contribute to the neurogenesis of the dentate 
gyrus of the hippocampus (Leiter et al. 2019).

Rehabilitation exercises help to increase synaptic plasticity
Synaptic plasticity is an important component of learn-
ing and memory (Magee and Grienberger 2020). The 
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progress of CTE is usually accompanied by the loss of 
synaptic connections, the rupture of neuronal axes and 
the loss of dendritic spines, which seriously damage the 
plasticity of synapses. In recent years, more and more 
data have shown that hippocampal synaptic plasticity 
can be achieved through regular rehabilitation exercise. 
Regular rehabilitation exercises can increase long-term 
enhancement (LTP), a form of synaptic plasticity and an 
important component of memory formation and mainte-
nance (Vivar and Praag 2017). The mechanism of reha-
bilitation exercise-enhanced LTP is complex and may be 
related to a variety of exercise-induced products (Vints 
et al. 2022). Rehabilitation exercise can also remotely reg-
ulate synaptic plasticity through exosomes, studies have 
shown that rehabilitation exercise can promote exosome 
release and promote synaptic remodeling through micro-
glia (Li et al. 2022; Jiang et al. 2023). Finally, rehabilitation 
exercises also affect the expression of neurotransmit-
ters, thereby altering synaptic plasticity, especially levels 
of glutamate, which is thought to be the main excitatory 
neurotransmitter involved in synaptic formation and syn-
aptic communication (Andersen et  al. 2021; Maddock 
et  al. 2016). Therefore, rehabilitation exercise may pro-
mote hippocampal neurogenesis and synaptic plasticity 
in a variety of ways to improve the prognosis of CTE.

At present, there are still few clinical studies and basic 
studies on rehabilitation exercise to improve CTE, and 
many patients with CTE are athletes and soldiers, com-
pared with other patients such as civilians who have suf-
fered from long-term head violence, they have performed 
long-term regular exercise before CTE, which will have 
an impact on the prognosis of CTE is unknown, so the 
specific molecular mechanism of rehabilitation exercise 
to improve CTE still needs to be explored and verified.

Clinical therapeutic intervention strategy 
of rehabilitation exercise for CTE
As the pathogenic factors and pathological mechanism of 
CTE have not been fully defined, and the diagnosis of its 
corresponding clinical syndrome TES is also challenging, 
the treatment of CTE is still in an emerging field. P-tau 
accumulation is a key pathological mechanism of CTE, so 
blocking P-tau deposition is also regarded as a promising 
target for the treatment of CTE (Kim et al. 2023). There 
have been studies to counter the accumulation of P-Tau 
by introducing adeno-associated virus vectors encoding 
anti-P-Tau antibodies to the central nervous system (Sac-
ramento et  al. 2020), and there have been studies using 
nanocapsules to deliver immunoglobulins to the central 
nervous system, which also help reduce the accumula-
tion of P-tau (Zhang et al. 2023). Although these studies 
have shown good effects, they are still confined to animal 
experiments, and the effectiveness of treatment for CTE 

patients may still need to be verified for a long time. At 
the present stage, rehabilitation exercise may still be one 
of the most potential and easiest to implement CTE treat-
ment. Rehabilitation exercise also has a good therapeu-
tic effect on the complications of CTE, including related 
metabolic disorders such as hypopituitarism, neurobe-
havioral disorders, cognitive dysfunction, dementia and 
other adverse consequences (Fig. 3).

Rehabilitation exercises may improve CTE‑related 
endocrine diseases
Pituitary dysfunction is a common concomitant endo-
crine complication after CTE, which can lead to the 
loss of pituitary hormones in patients, including growth 
hormone, adrenocorticotropic hormone, and thyroid-
stimulating hormone deficiency (Costanza et  al. 2011). 
For these patients, different intensities and different types 
of exercise have different effects on patients lacking dif-
ferent kinds of hormones. Studies have shown that high 
intensity exercise is effective in increasing growth-hor-
mone axis (GH Axis) activity, while the effect of resist-
ance exercise on hypothalamic–pituitary–adrenal axis 
(HPA Axis) has not been confirmed (Haunhorst et  al. 
2022), but moderate and high-intensity aerobic exercise 
seems to increase HPA Axis activity (Hill et  al. 2008; 
Takahashi et  al. 2022). The effect of exercise on hypo-
thalamic-pituitary-thyroid axis is uncertain (Babić Leko 

Fig. 3 Rehabilitation exercise has obvious clinical benefits 
for CTE patients, which can effectively improve the symptoms 
of CTE‑related endocrine diseases, and can significantly improve 
early neuropsychiatric symptoms and late diseases that are difficult 
to effectively treat with drugs such as AD
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et al. 2021). The above evidence suggests that rehabilita-
tion exercise may improve endocrine diseases related to 
CTE.

Rehabilitation exercises may improve neuropsychiatric 
symptoms caused by CTE
The early manifestations of CTE in patients are neu-
ropsychiatric symptoms, mainly depression and suicide. 
The effect of rehabilitation exercise on neuropsychiatric 
symptoms is positive (Kim 2022), and close in magnitude 
to that of traditional drug treatment (Smith and Mer-
win 2021). The mechanism of rehabilitation exercise to 
improve neuropsychiatric symptoms may be related to 
the change in neural plasticity (Smith and Merwin 2021). 
Rehabilitation exercise has a good effect on patients of 
different ages (Philippot et  al. 2022; Hidalgo and Sotos 
2021). Even low-intensity exercise has obvious benefits 
for improving neuropsychiatric symptoms (Pearce et  al. 
2022b). Therefore, it is recommended that TES patients 
start rehabilitation exercise as soon as possible.

Rehabilitation exercise may improve neurodegenerative 
diseases caused by CTE
Dementia is the terminal manifestation of CTE, which is 
similar to the clinical presentations of many neurodegen-
erative diseases. CTE is also considered to be associated 
with neurodegenerative diseases, especially Alzheimer’s 
disease (AD) (Gardner and Yaffe 2015; Yu et  al. 2020). 
CTE and AD have similar main neuropathological char-
acteristics: P-tau protein has different structures but sim-
ilar immunophenotypes. Aβ deposition can also be seen 
in some patients with TES (Falcon et  al. 2019; Johnson 
et  al. 2020). The clinical characteristics of CTE and AD 
are similar, which often leads to misdiagnosis. The effect 
of rehabilitation exercise on Alzheimer’s disease has been 
well established (Valenzuela et al. 2020). It can decrease 
abnormal protein deposition (Tan et  al. 2021), alleviate 
neuroinflammation and oxidative stress (Maddock et al. 
2016; Miguel et  al. 2021b), improve microcirculation 
(López-Ortiz et  al. 2021b), reduce neuronal apoptosis 
(Zhao et al. 2021), promote neural repair (Ruiz-González 
et  al. 2021b), and improve the prognosis of Alzheimer’s 
disease caused by CTE. The recommended modality for 
AD is at least 45  min of moderate-intensity resistance 
exercise and aerobic exercise (Northey et al. 2018).

It is important to note that different types of rehabili-
tation exercise, such as aerobic exercise or resistance 
exercise, as well as the time, intensity and frequency of 
rehabilitation exercise, often have different effects on the 
mitigation of neurological diseases. Therefore, follow-up 
studies are needed to determine the most effective reha-
bilitation exercise treatment strategy for CTE. In addi-
tion, it is necessary to develop personalized strategies for 

patients with different behavioral abilities in the clinical 
implementation process to facilitate the smooth develop-
ment of treatment. For some patients with obvious cog-
nitive impairment, cognitive rehabilitation may be more 
conducive to symptom relief and progress. At present, 
there are still few studies on drug development targeting 
the pathological mechanism of CTE, most of which focus 
on immunotherapy to slow down P-tau deposition. The 
therapeutic targets of other pathogenic pathways remain 
to be discovered, and the therapeutic effects of rehabili-
tation therapy for CTE, including rehabilitation exercise, 
still need to be further verified although they have good 
prospects.

Conclusion
The clinical syndrome of CTE, TES, begins early in injury 
and is difficult to relieve with existing means. This arti-
cle reviews the potential mechanism of physical reha-
bilitation exercise in the treatment of CTE from various 
aspects, aiming to explore the prospect of rehabilitation 
exercise, an effective and easy-to-implement treatment, 
for the application of CTE.

Further research into the neuropathology of CTE 
patients is needed, as it can provide valuable information 
for the development of disease biomarkers and the evalu-
ation of potential treatments. In addition, the impact of 
rehabilitation exercises on brain health in CTE patients 
that needs to be validated is important for improving our 
understanding of the mechanisms of neurodegenerative 
diseases, and the search for the most appropriate exercise 
strategy for CTE patients should continue, which may be 
a promising area of research in the future.
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