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Abstract 

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progres-
sive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes 
are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, 
autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signal-
ing pathways leading to these cell death processes are interconnected and can be activated simultaneously or in par-
allel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research 
on the mechanism of cell death, more and more researchers have devoted their attention to the underlying 
pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic 
role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type 
of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss 
the complexity and potential crosstalk between various modes of cell death, which will help improve the under-
standing of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment 
in the future.

Keywords Diabetic kidney disease, Podocyte, Apoptosis, Autophagy, Endoplasmic reticulum stress, Pyroptosis, 
Necroptosis, Ferroptosis, Mitotic catastrophe

Introduction
Diabetic kidney disease (DKD) is caused by kidney dam-
age due to the microvascular complications of diabetes 
and is the most common complication of type 2 diabe-
tes (Long and Dagogo-Jack 2011; Jung and Yoo 2022). It 
is the leading cause of end-stage renal disease worldwide 
and is characterized by its high morbidity and mortality 
(Steiner 2016). It occurs in about 40% of people with dia-
betes (Alicic et al. 2017). The clinical manifestations are 
proteinuria, increased creatinine levels, and abnormal 
glomerular filtration rate, and end-stage renal disease 
develops several years later (Brosius et  al. 2016; Zhou 
et  al. 2019; Denhez et  al. 2015; Manda et  al. 2015). The 
main pathological manifestations are podocyte loss and 
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the disappearance of the foot process, glomerular scle-
rosis, thickening of glomerular basement membrane 
(GBM), mesangial matrix expansion, interstitial fibrosis, 
and tubular atrophy (Manda et  al. 2015; Li et  al. 2007; 
Tuttle et  al. 2022). Among these, the injury and loss of 
podocytes is an important early pathological marker 
of DKD, which can accelerate the development of DKD 
(Wang et al. 2014; Tunçdemir and Oztürk 2011; Benzing 
and Salant 2021). Podocytes are terminal differentiated 
epithelial cells with primary, secondary, and tertiary pro-
cesses connected by a structure called the slit-diaphragm 
(SD), which is the only cell–cell connection structure 
between podocytes (Ronco 2007; Shankland et al. 2021). 
SD determines the filtration rate of the glomeruli, allow-
ing free filtration of water and small molecules, but hav-
ing a selective filtration effect on large molecules. The 
surface of podocytes is divided into two parts: the apical 
membrane and the basal membrane, which are located 
above and below the SD respectively. Integrin mediates 
the anchoring of podocytes basal membrane and GBM 
(Takeda et al. 2000).The types of podocyte death in renal 
diseases include apoptosis, autophagy, ER stress, pyrop-
tosis, necroptosis, ferroptosis, mitotic catastrophe, etc. 
(Altintas and Reiser 2019). Each cell death type has its 
own unique morphological characteristics (Table  1). 
Apoptosis is the most common mode of podocyte death. 
Although autophagy is a protective mechanism for cells, 
it can also lead to the damage and loss of podocytes in 
some respects. ER stress is caused by excessively pro-
longed unfolded protein response (UPR) UPR. In addi-
tion, pyroptosis and necroptosis can also lead to the lytic 
death of podocytes. The accumulation of reactive oxygen 
species (ROS) during ferroptosis causes oxidative stress 
damage to podocytes. In mitosis catastrophe, podocytes 
have an inherent barrier to mitosis, which eventually 
leads to cell loss. Understanding the types and detailed 
mechanisms of podocyte death is helpful to propose 
novel and ideal DKD-targeted therapeutic strategies.

Pathological changes of podocytes in DKD
The primary function of the kidneys is to maintain water, 
electrolytes, and acid–base balance. There are about 1 
million nephrons in each kidney. The nephron consists 
of glomeruli and tubules. The glomeruli are responsible 
for filtering water and small molecules from circulating 
plasma, and the renal tubule system regulates their selec-
tive reabsorption and secretion, thus determining the 
final composition of urine (American Diabetes 2005). 
The filtration barrier of the glomerulus is composed 
of podocytes, endothelial cells, and the GBM. Among 
these, podocytes are characteristic end-differentiated vis-
ceral epithelial cells in the kidney, which are composed 
of cell bodies and primary and secondary podocytes 

(Podgórski et  al. 2019). Podocytes adhere to the GBM 
mainly through α3β1 integrin (Mathew et al. 2012). The 
foot process of podocytes encloses the glomerular capil-
laries (Denhez et  al. 2015). The space between adjacent 
podocytes is covered by the hiatus membrane, which 
plays an important role in glomerular filtration (Li et al. 
2007; Pavenstädt et al. 2003; Chen et al. 2020). The repair 
and regeneration capacity of podocytes is limited in the 
diabetic environment due to factors, such as high glucose 
(HG), growth factors, fatty acids, angiotensin II (Ang II), 
transforming growth factor-β (TGF-β), hormones, and 
mechanical stretching (Liu et al. 2017; Anil Kumar et al. 
2014; Wolf et  al. 2005). Early renal changes in diabetes 
include glomerular hyperfiltration, renal hypertrophy, 
and microproteinuria. With the progression of DKD, 
the glomerular filtration rate is significantly reduced and 
proteinuria occurs, which eventually leads to end-stage 
renal disease (Burrows et  al. 2014; Barutta et  al. 2022). 
Hyperglycemia induces the production of ROS, which 
causes the disappearance of podocytes’ foot process and 
the detachment or death of podocytes from the GBM, 
which damages the filtration barrier of the glomeruli and 
eventually leads to the production of proteinuria (Lin and 
Susztak 2016; Susztak et  al. 2006; Moreno et  al. 2008). 
The loss and death of podocytes further increase the per-
meability of the glomerular filtration barrier to plasma 
proteins, which aggravates proteinuria and leads to a 
vicious cycle (Castrop and Schießl 2017). Therefore, the 
injury and death of glomerular podocytes are crucial to 
the occurrence and development of DKD (Fig. 1).

Types and mechanisms of podocyte death 
in diabetic kidney disease
Apoptosis
Apoptosis is a form of programmed cell death. The most 
important feature of which is the proteolytic cascade 
induced by caspases. Caspases exist widely in cells in the 
form of an inactive zymogen. When they are activated, 
other procaspases immediately start protease cascade 
reactions according to their proteolytic activity. This 
proteolytic cascade amplifies the apoptotic pathway, ulti-
mately leading to rapid and irreversible cell death (D’Arcy 
2019). The morphological changes of apoptosis include 
cell shrinkage, chromatin agglutination, DNA fragmen-
tation, and the formation of apoptotic bodies, which 
are eventually cleared by phagocytosis to prevent them 
from causing any inflammation (Erekat 2022a, b; Erekat 
2017; Erekat 2022a, b). There are two distinct pathways 
of apoptosis, namely the extrinsic pathway and intrin-
stic pathway (Fig.  2) (Tummers and Green 2017). The 
extrinsic pathway is also called the death receptor path-
way. The intrinstic pathway is also known as the mito-
chondrial pathway (D’Arcy 2019; Li et al. 1997; Du et al. 
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2000; Goldstein et  al. 2005; Kim et  al. 2006; Youle and 
Strasser 2008). The  Mitogen-activated protein kinase 
(MAPK)  pathway  plays  an  important  role  in  regulating 
apoptosis. MAPK is a serine/threonine protein kinase 
that can be activated by extracellular stimuli, including 
cytokines, cellular stress, hormones, and neurotransmit-
ters. The MAPK signaling pathway regulates a variety of 
biological processes through a variety of cellular mecha-
nisms. In the process of apoptosis, MAPK has a dual role, 
it can act as either an activator or an inhibitor, depending 
on the cell type and associated stimulus. The MAPK sign-
aling pathway is mainly composed of p38MAPK, C-Jun 
N-terminal kinase (JNK) and extracellular regulated 
kinase 1/2 (ERK1/2). Relevant studies have found that the 
activation of JNK and p38MAPK can promote apopto-
sis, while the activation of ERK1/2 can inhibit apoptosis. 
Therefore, MAPK signaling pathway has certain specific-
ity in the process of apoptosis (Yue and López 2020).

HG is associated with the pathogenesis of DKD. 
Whether in vivo or in vitro, HG can induce the produc-
tion of ROS, which triggers podocyte apoptosis and sub-
sequent podocyte decline, which leads to a decrease in 
podocyte numbers and glomerular damage, ultimately 
leading to the development of DKD (Chen et  al. 2015). 
Therefore, podocyte apoptosis and subsequent podo-
cyte decline may influence the early events of diabetic 
kidney and potential diabetic glomerulopathy, leading 
to DKD in both type I and type II diabetes (Wang et al. 
2021; Eisenreich and Leppert 2017). Therefore, the pro-
duction of excess ROS may be one of the mechanisms of 
the occurrence of DKD (Rask-Madsen and King 2013; 
Nishikawa et  al. 2000; Giacco and Brownlee 2010). 
Thioredoxin interacting protein (TXNIP), also known 
as vitamin D-upregulated protein 1 (VDUP-1) or thiore-
doxin binding protein-2 (TBP-2), has been reported 
to play an important role in the regulation of ROS (Lu 

Fig. 1 Pathological changes of podocytes in DKD. The kidney is comprised of functional units, nephrons, each of which is made of a glomerulus 
and a tubule. The normal healthy glomerulus includes afferent arterioles, efferent arterioles, capillary loops, endothelial cells, basement membrane, 
podocytes, parietal cells, and tubule epithelial cells. Foot processes from neighboring podocytes interdigitate and are connected by a modified 
adherent junction called a slit-diaphragm that provides intercellular space for the passage of glomerular filtrate. Podocyte foot processes, 
basement membrane, and endothelial cells form a tight filtration barrier in the glomerulus. Podocytes are lost due to death and detachment. 
Hyperglycemia-induced ROS release plays an important role in the process
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and Holmgren 2014). Further exploration of its mecha-
nism shows that TXNIP, as an endogenous thioredoxin 
(Trx) inhibitor, binds to the oxidation-reducing cysteine 
residue in thioredoxin, thus inactivating the antioxi-
dant function of thioredoxin and becoming a key com-
ponent of cellular REDOX regulation (Nishiyama et  al. 
1999). Shah et  al. experimentally demonstrated that 
TXNIP deficiency inhibits diabetes-induced cell surface 
matrix accumulation, renal fibrosis, podocyte deletion, 
and podocyte process disappearance. In HG-cultured 
podocytes, knocking down the TXNIP gene by siRNA 
terminates mitochondrial superoxide  (O2−) production, 
thereby reducing podocyte apoptosis (Shah et  al. 2015). 
Under pathological conditions, the overproduction of 
ROS activates the antioxidant defense system, resulting 
in cellular oxidative stress, damage to cellular oxidative 
components, and ultimately the regulation of cell apopto-
sis. In contrast, targeting cellular oxidative stress-related 
pathways protects podocytes from apoptosis (Zhu et  al. 
2022; Yang et al. 2016). For example, The overexpression 
of Sestrin2 alleviates oxidative stress by coordinating the 
TSP-1/TGF-β1/Smad3 pathway and alleviating apopto-
sis and injury to podocytes in DKD (Song et  al. 2022). 

In addition to the important influence of oxidative stress 
on the pathogenesis of DKD, the abnormal regulation 
of microRNAs (miRNAs) has also been confirmed to be 
related to the occurrence of DKD (Simpson et al. 2016). 
miRNAs are single-stranded non-coding RNAs with a 
length of 19–22 nucleotides that are important regula-
tors of post-transcriptional gene expression and play key 
roles in physiological and pathological processes, such 
as cell survival, proliferation, differentiation, apoptosis, 
and the immune response (Mendell and Olson 2012). For 
example, exosomes secreted from adipose-derived stem 
cells (ADSC-Exo) increase the expression of miR-486 in 
podocytes, thereby inhibiting the Smad1/mTOR signal-
ing pathway and reducing podocyte apoptosis (Jin et al. 
2019).

As for the targeted treatment of DKD podococyte 
apoptosis, in addition to the related pathological studies, 
there are also some drug studies. For example, astraga-
loside IV (AS-IV) also can reduces podocyte apoptosis 
by activating the PPARγ-Klotho-FoxO1 signaling path-
way to inhibit oxidative stress, thereby improving DKD 
(Xing et  al. 2021). In addition, swiprosin-1 is a protein 
that mediates HG-induced podocyte apoptosis and plays 

Fig. 2 Apoptosis-related pathway. There are two main ways of apoptosis. In the extrinsic pathway, the death receptor binds to its corresponding 
ligands, including Fas, TNFR1, DR4, and DR5, and the corresponding ligands include FasL, TNF-α, and TNF-associated apoptosis-inducing 
ligand (TRAIL), which activate caspase 8 and subsequently caspase 3. It leads to apoptosis. In the intrinstic pathway, when DNA is damaged, 
the pro-apoptotic proteins Bax and Bak are activated, and the anti-apoptotic proteins Bcl-2 and Bcl-xL are inhibited. Subsequently, a series 
of apoptotic factors are released, including cytochrome c, APAF-1, and procaspase 9, which form a complex called the apoptosome. This complex 
can activate caspase 9, which in turn activates caspase 3, and ultimately leads to apoptosis
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an important role in the development of DKD but can be 
treated by telmisartan, which mainly ameliorates HG-
stimulated mitochondria-dependent podocyte apopto-
sis through the p38 MAPK signaling pathway (Wei et al. 
2022). The Bcl-2 gene has an obvious inhibitory effect on 
apoptosis and is one of the oncogenes that has received 
much attention recently. Liu and his team evaluated the 
in vivo and in vitro effects of wogonin on DKD podocytes 
using HG-induced MPC5 cells and streptozotocin (STZ)-
induced diabetic mouse models and found that wogonin 
enhanced the activation of anti-apoptotic Bcl-2. It also 
alleviated the podocyte apoptosis mediated by Bax in 
DKD, and thus, it is expected to be a promising drug for 
the treatment of DKD (Liu et al. 2022a, b). In summary, 
the above events suggest that compounds or molecules 
that inhibit apoptosis can be used as potential therapeu-
tic agents for DKD.

Autophagy
Autophagy, also known as cellular self-digestion, is a 
conserved catabolic process that degrades abnormal 
proteins, organelles, and macromolecules and recycles 
the decomposition products to maintain cell homeo-
stasis and survival (Nishikawa et  al. 2000; Klionsky and 
Emr 2000; Parzych and Klionsky 2014). The morpho-
logical characteristics of autophagy are enhanced sub-
strate adhesion, focal expansion of the perinuclear space, 
expansion and fragmentation of the ER, early nuclear 
membrane curled, and late focal swelling of the perinu-
clear space. Autophagy is usually induced by nutrient 
deprivation, hypoxia, oxidative stress, genotoxic stress, 
or HG (Tang et  al. 2019; Liu et  al. 2022a, b). The most 
critical feature of autophagy is extensive cytoplasmic 
vacuolation to form autophagosomes, phagocytosis, and 
the subsequent lysosomal degradation (Glick et al. 2010). 
Autophagy is tightly regulated by a set of autophagy-
related proteins encoded by a highly conserved set of 
genes (Fig.  3). The MAPK signaling pathway is also 
involved in the regulation of autophagy. For example, 
p38MAPK and JNK are involved in autophagy processes. 
Recent studies have reported that activation of JNK and 
p38α can induce autophagy (Yue and López 2020).

The autophagy activity of podocytes decreased after 
STZ induced diabetes, so autophagy may be involved 
in the pathogenesis of DKD. In general, podocytes have 
high basal autophagy levels, suggesting that autophagy 
is necessary for maintaining podocyte homeostasis 
(Bork et  al. 2020). However, high blood glucose will 
reduce the level of autophagy, resulting in changes in 
podocyte function, and then damage the glomerular 
filtration barrier, and ultimately lead to the occurrence 
of DKD. For example, when podocytes are exposed to 
HG, they show reduced autophagy activity and levels of 

related proteins, including the Beclin-1 and Atg5-Atg12 
complexes (Guo et  al. 2017). Therefore, enhancing 
autophagy levels may be a potential way to treat DKD. 
LncRNA AK044604 (insulin sensitivity and autophagy 
regulator, Risa) and autophagy-related factors Sirt1 
and GSK3β play important roles in DKD. Therefore, 
the down-regulation of Risa is considered an effective 
treatment to improve podocyte damage in DKD by 
modulating the Sirt1/GSK3β axis to enhance autophagy 
(Su et  al. 2022). Mitochondrial dysfunction is a key 
mediator in the pathogenesis of DKD, and therapeutic 
strategies targeting mitochondrial dysfunction have 
considerable prospects. Zhou et  al. found that pro-
granulin (PGRN) maintains mitochondrial homeostasis 
through mitochondrial biogenesis and mitochondrial 
autophagy mediated by the PGRN-SIRT1-PGC-1α/
FoxO1 signaling pathway, thereby preventing podo-
cyte damage in DKD. This study provides an innovative 
therapeutic strategy for the treatment of DKD (Zhou 
et al. 2019; Fan et al. 2019).

When podocytes were exposed to HG, the mTORC1 
pathway was activated and protective autophagy levels 
are reduced (Dai et al. 2017). Markus et al. demonstrated 
that the mTOR signaling pathway is of great significance 
in maintaining podocyte autophagy levels. Therefore, 
targeting mTOR-related signaling pathways to improve 
podocyte autophagy levels is expected to be a promis-
ing prospect for DKD therapy (Gödel et  al. 2011). Cur-
rently, numerous studies have examined this topic. For 
example, Berberine (BBR), as an active component of 
Coptis, has various pharmacological effects, such as anti-
oxidant, anti-inflammatory, and anti-diabetes effects, and 
it increases podocyte autophagy levels and reduces apop-
tosis by inhibiting mTOR/P70S6K/4EBP1 signaling path-
way (Li et  al. 2020). Similarly, mangiferin also protects 
podocytes by enhancing the AMPK-mTOR-ULK1 signal-
ing pathway of autophagy, thus delaying the progression 
of DKD (Wang et al. 2018). In addition, the Jiedu Tongluo 
Baoshen formula (JTBF) also enhances DKD podocyte 
autophagy and reduces the production of proteinuria by 
inhibiting the PI3K/Akt/mTOR signaling pathway (Jin 
et al. 2022). More and more evidence suggests that actin 
cytoskeleton disturbance in podocyte injury is related 
to the PI3K signaling pathway. Huang et  al. found that 
PI3K/Akt pathway is inactivated after podocyte injury, 
and Notoginsenoside R1 (NR1) treatment reactivates this 
pathway and further improves DKD (Huang et al. 2017). 
As multiple pathways are involved in the occurrence of 
autophagy, the ULK1 signaling pathway has attracted 
more and more attention. Geniposide improves DKD by 
enhancing ULK1-mediated autophagy in DKD mouse 
models, which indicates that geniposide is a promising 
treatment for DKD (Dusabimana et al. 2021). Therefore, 
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maintaining the basal autophagy level of podocytes is 
essential for the effective treatment of DKD.

Endoplasmic reticulum (ER) stress
The ER is an organelle necessary for protein synthesis, 
folding and maturation in eukaryotic cells. Disruption 
of ER homeostasis leads to accumulation of unfolded or 
misfolded proteins, which in turn leads to ER stress and 
triggers the unfolded protein response (UPR) (Kaufman 
2002). UPR mainly consists of three signaling pathways, 
which are activated by three protein sensors, includ-
ing activating transcription factor 6 (ATF6), inositol 
requirement enzyme 1α (IRE1α), and PRKR-like ER 
kinase (PERK) (Fig.  4). In resting cells, these sensors 
bind glucose regulatory protein 78 (GRP78/BiP) in an 
inactive state. But when misfolded proteins accumulate 
in the ER, BiP separates from the sensor and binds to 
the unfolded protein, activating the sensor (Hetz 2012). 
Activation of UPR maintains ER function, promotes 

stress recovery, and has a protective effect against addi-
tional stress (adaptive UPR). In contrast, sustained or 
prolonged ER stress may be cytotoxic and eventually 
lead to cell death (Fig. 4) (Cunard and Sharma 2011).

Because the ER of podocytes has a high protein fold-
ing capacity and a high level of anabolic or catabolic 
activity, podocytes are very sensitive to ER stress. HG 
can induce ER stress of podocytes, which leads to the 
occurrence and development of DKD (Cao et al. 2014). 
Relevant studies have shown that compared with nor-
mal controls, DKD patients have up-regulated expres-
sion of related UPR genes, such as ER-companion 
GRP78 (Lindenmeyer et  al. 2008). Upregulation of 
MicroRNA-27a (miR-27a) induces ER stress and dam-
age in podocytes, leading to DKD. MicroRNAs can be 
regulated by changes in the activity of long non-coding 
RNAs (lncRNAs). Relevant experiments have shown 
that LINC01619, as a competing endogenous RNA 

Fig. 3 Autophagy-related pathway. Insulin or other growth factors can activate Class I phosphatidylinositol-3 kinase (PI3K)-AKT, thereby activating 
the mTOR pathway, and AMPK can negatively regulate the mTOR pathway. When activated, AMPK negatively regulates mTOR and activates 
the UNC-51-like kinase 1 (ULK1) complex, which includes ULK1, autophagy associated protein (ATG) 101, ATG13, and focal adhesion kinase 
interacting protein of 200 kDa (FIP200). Subsequently, ULK1 phosphorylates ATG14L, promoting the binding of Beclin1 to vacuolar protein 
sorter 34 (VPS34) to form the Beclin1 complex, which can promote the production of phosphatidylinositol-3-phosphate (PI3P), and thus 
promote the nucleation of autophagosome membrane. At the same time, the extension of autophagosomes also requires the participation 
of microtubule-associated protein 1 light chain 3 (LC3). The precursor form of LC3 is cleaved by the protease ATG4B to produce LC3-1. ATG7 
and ATG3 are involved in the conversion of LC3-I (free form) to LC3-II (pe conjugated form). After the autophagosome is formed, it fuses 
with lysosomes to form autophagolysosomes, which eventually participate in autophagy
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(ceRNA), can regulate miR-27a/FOX01-mediated ER 
stress and podocellular injury in DKD (Bai et al. 2018).

HG can cause ER stress in podocytes, and related ER 
stress inhibitors can alleviate ER stress in podocytes. 
Fan et  al. found that TUDCA, an ER stress inhibitor, 
improved diabetic kidney damage in a mouse model of 
progressive DKD. TUDCA treatment not only reduced 
proteinuria and renal histological changes in diabetic 
mice, but also improved podocyte and glomerular dam-
age. The therapeutic mechanism may be related to the 
inhibition of ER stress markers in glomerular podo-
cytes (Fan et al. 2017a, b). Meanwhile, Tian et al. found 
that emodin can improve kidney damage in DKD mice. 

Emodin mainly inhibits the upregulation of phosphoryl-
ated PERK, phosphorylated eIF2α, ATF4 and CHOP, and 
then inhibits HG-induced ER stress in podocytes, and 
finally improves DKD (Tian et al. 2018). Therefore, HG-
induced ER stress and oxidative stress may be the cause 
of DKD. Oleanolic acid (OA) is found naturally in fruits 
and vegetables, and it has anti-inflammatory, lipid-low-
ering and antioxidant effects. N-acetylcysteine (NAC) is 
a precursor of glutathione and has a strong antioxidant 
effect in the body. Studies have found that OA and NAC 
can inhibit ER stress and antioxidant effects, so they have 
therapeutic effects on DKD (Lee et  al. 2016). Finally, 
saturated free fatty acids can also induce ER stress, and 

Fig. 4 ER Stress-related pathway. ER stress mainly consists of three signaling pathways activated by three protein sensors, including activating 
transcription factor 6 (ATF6), inositol requirement enzyme 1α (IRE1α), and PRKR-like ER kinase (PERK). First, ATF6 moves to the Golgi apparatus, 
where it is sequentially cut by S1P and S2P. Subsequently activated ATF6 fragments mediate the expression of CHOP and several components 
of ER-associated degradation (ERAD). Second, IRE1α activation mediates the unconventional splicing of XBP1 mRNA. Spliced XBP1 (XBP1s) 
is involved in glucose metabolism, lipid biosynthesis, and DNA damage. Finally, activated PERK phosphorylates eIF2α, which is involved in ATP 
depletion, oxidative stress, and apoptosis
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researchers found that increasing dietary unsaturated 
free fatty acids can reduce ER stress and DKD related 
manifestations (Sieber et  al. 2010). In recent years, the 
study of podocyte ER stress in DKD and its therapeutic 
agents have aroused great interest.

Pyroptosis
Pyroptosis is a type of programmed cell death induced 
by the activation of caspase-1 by certain immunoreac-
tive cells under the stimulation of pathogens and danger 
signals (Miao et  al. 2010). Pyroptosis has the morpho-
logical characteristics of both apoptosis and necrosis, 
including nuclear contraction, DNA breakage, positive 
staining, cell swelling and rupture, and an inflammatory 
reaction (Cao et al. 2022). Pyroptosis is characterized by 
pore formation, cell lysis, the release of pro-inflammatory 
cytokines and cell contents, and the activation of the 
inflammasome. The inflammasome is a molecular plat-
form that causes caspase-1 activation and interleukin-1β 
and IL-18 secretion during cell infection or stress (Fan-
tuzzi and Dinarello 1999). Activation of the nucleo-
tide-bound oligomeric domain-like receptor protein 3 
(NLRP3) inflammasome, a key component of pyropto-
sis, induces Caspase-1 activation. Activated caspase-1 

cleaves gasdermin D (GSDMD) to generate an n-terminal 
GSDMD fragment, leading to the formation of mem-
brane pores and the subsequent inflammatory responses 
(Fig. 5) (Lee et al. 2019; Zhaolin et al. 2019).

It has been reported that pyroptosis is related to the 
loss of podocytes (Haque et al. 2016). Podocyte pyropto-
sis has been observed in both db/db mouse models and 
STZ-treated mice, and podocytes are one of the promot-
ers of IL-1β under many pathological conditions (Niemir 
et  al. 1997). NADPH oxidase in podocytes mainly leads 
to the upregulation of the activated NLRP3 inflamma-
some, the recruitment of a large number of immune 
cells, and ultimately to glomerular injury (Gao et al. 2015; 
Wu et  al. 2021). NLRP3, as a key component of pyrop-
tosis, has attracted increasing attention, and targeting 
NLRP3 activation and formation has great potential in 
the treatment of DKD. For example, gene therapy involv-
ing IL-22 plays a large role in inhibiting the activation 
of the NLRP3 inflammasome during podocyte pyrop-
tosis, thereby reducing renal fibrosis and DKD progres-
sion (Wang et al. 2017). The inhibition of MiR-21-5p in 
macrophage-derived extracellular vesicles and the sub-
sequent regulation of A20 reduces the levels of pyropto-
sis-related inflammasome NLRP3, caspase-1, and IL-1β, 

Fig. 5 Pyroptosis-related pathway. Bacteria and viruses stimulate LPS, which in turn activates caspase-4/5/11, resulting in the formation 
of GSDMD, which is then involved in pyroptosis. In addition, harmful substances can also stimulate the formation of inflammasome and NLRP3, 
and subsequently activate caspase-1 to lead to the formation of GSDMD, thus triggering pyroptosis. In addition to the regulation of caspase-1, 
caspase-4/5/11 and GSDMD, pyroptosis is also regulated by several inflammatory mediators such as IL-1β and IL-18
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reducing the production of ROS and alleviating podocyte 
injury (Ding et al. 2021). Meanwhile, Cheng et al. found 
that Caspase-11/4 and GSDMD-dependent podocyte 
pyroptosis were related to the development of DKD, and 
both caspase-11 and GSDMD knockout mice signifi-
cantly improved the deterioration of renal function and 
the morphological changes in the glomerulus and podo-
cyte (Cheng et al. 2021).

In addition, there are currently several drug therapies 
that target NLRP3. For example, solasonine (SS) alle-
viates HG-induced podocyte pyroptosis and oxidative 
damage by modulating the Nrf2/NLRP3 signaling path-
way (Zhang et  al. 2022). The total flavones of Abelmos-
chus manihot (TFA) (the medicinal parts are the corolla 
with stamens and style) improve podocyte pyroptosis and 
injury in HG by targeting N6-methyladenosine  (m6A) 
modification-mediated NLRP3 inflammasome activa-
tion and the PTEN/PI3K/Akt signaling pathway (Liu 
et al. 2021; Zhang et al. 2014; Lu et al. 2021). Moreover, 
Fucoidan (FPS) inhibits NLRP3 inflammasome-medi-
ated podocyte pyroptosis by modulating the AMPK/
mTORC3/NLRP1 signaling axis in DKD, thereby alle-
viating DKD (Wang et  al. 2022a, b, c). These findings 
provide insight into targeted therapies for DKD. In addi-
tion, carnosine, a dipeptide composed of β-alanine and 
L-histidine, has shown great potential in targeting cas-
pase-1 to inhibit DKD podocyte pyroptosis. MPC5 cells 
cultured in HG and STZ-induced diabetic mouse models 
were used. Zhu et  al. found that carnosine significantly 
reversed albuminuria and histopathological changes in 
STZ-induced diabetic mice, and alleviated kidney inflam-
mation and pyroptosis (Zhu et  al. 2021). These findings 
confirm the unique role of pyroptosis in DKD and sug-
gest that inhibition of the pyroptosis signaling pathway 
can expand the potential therapeutic targets for DKD 
treatment.

Necroptosis
Necroptosis is another type of programmed death that 
has the characteristics of both apoptosis and necrosis 
(Tang et al. 2019). Its morphological features are simi-
lar to necrosis, with organelle swelling and nuclear 
membrane fragmentation (Liu et  al. 2018). In addi-
tion, the integrity of the plasma membrane is compro-
mised, leading to rupture of the plasma membrane and 
cell content leakage, which ultimately leads to inflam-
mation (Dhuriya and Sharma 2018). Necroptosis is 
triggered by interleukin-1β (IL-1β), TNF, certain viral 
infections, and other factors (Yu et  al. 2021). When 
necroptosis occurs, cell contents are released through 
the ruptured plasma membrane, driven by a signal-
ing cascade of receptor-interacting protein kinase 1 

(RIPK1), receptor-interacting protein kinase 3 (RIPK3), 
and mixed lineage kinase-like domains (MLKL) to acti-
vate the inflammatory response (Fig.  6) (Zhang et  al. 
2018; Yoshida 2017; Grootjans et al. 2017). In the con-
text of HG, the necrosis activation pathway is mediated 
by death receptor ligands, such as tumor necrosis fac-
tor receptor 1 (TNFR1) and Fas receptor. Tnfr1-medi-
ated necrosis is the most thoroughly studied pathway. 
After TNF-α binds to TNFR1, different signaling com-
plexes, namely, pro-survival complex I, pro-apoptotic 
complex IIa, and necrotic complex IIb, initiate various 
functions, namely cell survival, apoptosis, or necrosis 
(Galluzzi et al. 2018).

Necroptosis plays an important role in podocyte 
injury, so it may be involved in the pathogenesis of 
DKD (Sosna et  al. 2013). Studies have shown that 
podocyte necroptosis is closely related to ubiquitin 
C-terminal hydrolase L1 (UCHL1), which regulates the 
ubiquitination state of RIPK1/RIPK3 pathway. Abnor-
mal overexpression of UCHL1 in podocytes leads to 
dysubiquitination of RIPK1/RIPK3 pathway, which 
stimulates necroptosis and injury of podocytes, and 
ultimately produces DKD (Erekat 2022a, b). Xu et  al. 
found that UCHL1, as a member of the deubiquitina-
tion enzyme group, was overexpressed in the podo-
cytes of DKD patients. Under DKD conditions, HG 
stimulation induces podocyte necroptosis by activating 
RIPK1 and RIPK3 pathways, which is accompanied by 
increased UCHL1 expression. Incremental UCHL1 fur-
ther enhances the activation of the RIPK3/MLKL path-
way and promotes podocyte necroptosis. Therefore, 
UCHL1 promotes HG-induced podocyte necroptosis 
by regulating the ubiquitination state of the RIPK1/
RIPK3 pathway. The above studies demonstrate that the 
RIPK1/RIPK3 pathway provides a new idea for target-
ing DKD podocyte necroptosis. For example, deletion 
of the UCHL1 gene shortens the half-life of RIPK1 and 
RIPK3 proteins and thus reduces their expression (Xu 
et al. 2019).

Meanwhile, necrostatin 1 (Nec1) reduces DKD 
podocyte necroptosis and the subsequent damage by 
decreasing the expression levels of RIPK1 and RIPK3 
(Xu et  al. 2019).In addition, paeoniflorin (PF) directly 
binds and promotes the degradation of TNFR1 in podo-
cytes in an STZ-induced mouse diabetes model and an 
HG-induced podocyte injury model. It regulates the 
RIPK1/RIPK3 signaling pathway to affect necroptosis, 
thereby preventing DKD podocyte injury (Wang et  al. 
2022a, b, c). Moreover, curcumin therapy prevents HG-
induced podocyte necroptosis by inhibiting ROS pro-
duction and the abnormal expression of RIPK3 (Chung 
et al. 2022). These findings demonstrate that necropto-
sis is a viable cellular target for DKD treatment.
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Ferroptosis
Dixon first proposed the concept of ferroptosis in 2012, 
which is an iron-dependent, non-apoptotic mode of cell 
death characterized by the accumulation of lipid ROS 
(Dixon et al. 2012). Ferroptosis occurs primarily in cells 
and is characterized by a reduction in mitochondrial 
volume, an increase in the density of the bilayer mem-
brane, and a reduction or disappearance of the mito-
chondrial crest, but the cell membrane remains intact, 
the nucleus is normal in size, and chromatin is not con-
centrated (Dixon et  al. 2012; Yang and Stockwell 2008). 
When intracellular glutathione (GSH) is depleted and 
glutathione peroxidase 4 (GPX4) activity is reduced, 
lipid peroxides cannot be metabolized through a GPX4-
catalyzed reduction reaction, and  Fe2+ oxidizes lipids in 
a Fenton and Haber Weis-like manner, producing large 
amounts of ROS and promoting ferroptosis (Fig. 7) (Yang 
and Stockwell 2008; Friedmann Angeli et  al. 2014). Fer-
roptosis can be activated by degenerative processes or 
induced by anticancer therapy (Dixon et al. 2012).

Related studies have found that ferroptosis is involved 
in kidney injury in STZ-induced type I diabetic mice 
and db/db mice, and the expression levels of SLC7A11 

and GPX4 are significantly down-regulated in kid-
ney biopsy samples from diabetic patients. The related 
mechanism may be that HG induces the production of 
ROS and MDA in podocytes, and inhibits the synthe-
sis and accumulation of SOD and GSH. Due to the high 
sensitivity of podocytes to ROS, excessive ROS can 
cause irreversible changes in the structure and func-
tion of podocytes, leading to ferroptosis and the occur-
rence of DKD. Therefore, there is increasing evidence 
that ferroptosis promotes the development of DKD, 
and inhibiting ferroptosis may be a way to treat DKD 
(Wang et  al. 2023; Xiong et  al. 2023). The process of 
ferroptosis is accompanied by the excessive production 
of lipid ROS, which can lead to oxidative stress. Kidney 
cells are rich in mitochondria and thus are more vul-
nerable to oxidative stress damage. Oxidative stress is 
part of the pathogenesis of DKD, which indicates that 
ferroptosis may be related to DKD, and oxidative stress 
is expected to be one of the potential targets for the 
treatment of ferroptosis in DKD podocytes. For exam-
ple, the upregulation of peroxidoreductin 6 (Prdx6) 
prevents podocyte damage in DKD by alleviating oxi-
dative stress and ferroptosis (Xiong et al. 2023).

Fig. 6 Necroptosis-related pathway. Necroptosis can be engaged by the ligation of TNF receptor family proteins (including TNFR, FAS, TRAILR, 
and DR6) through RIPK1–RIPK3 when Caspase-8 activity is blocked. Necroptosis can be also triggered by the activation of TLR3 and TLR4 by double 
stranded RNA (dsRNA) and LPS in macrophages, respectively, through TRIF-dependent activation of RIPK3. Viral RNA and the released DNA/RNA 
from damaged mitochondria can induce necroptosis by ZBP1-dependent activation of RIPK3. Activated RIPK3 phosphorylates MLKL and leads 
to the subsequent oligomerization of MLKL. The oligomerized MLKL translocates to the plasma membrane and engages ion channels and mediates 
plasma membrane rupture
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Also, the ACSL4 inhibitor rosiglitazone mitigates kid-
ney pathological damage in DKD mice by reducing lipid 
peroxidation (Xiong et al. 2023). In addition, ginkgolide B 
(GB), the active ingredient of ginkgo biloba extract, effec-
tively reduces total cholesterol, triglyceride concentra-
tions, and lipid accumulation in podocytes by in vivo and 
in vitro experiments, and its mechanism mainly involves 
reducing oxidative stress and ferroptosis by inhibiting 
GPX4 ubiquitination, thereby improving DKD (Chen 
et  al. 2022). Oxidative stress is controlled by multiple 
pathways and is associated with ferroptosis-related regu-
lators. Mangiferin monosodium salt (MGM) up-regulates 
the mevalonate-mediated antioxidant capacity (GPX4 
and ferroptosis suppressor 1/CoQ10 axis) and impairs 
the production of ACSL4-mediated lipid drivers in the 
kidney. It improves renal ferroptosis in DKD rats induced 
by STZ (Zhao et al. 2023).

Mitotic catastrophe
Mitotic catastrophe (MC) is a delayed mitosis-related 
cell death mechanism resulting from the premature or 

inappropriate entry of cells into mitosis and the loss of 
cell cycle checkpoints. Morphological features include 
multiple centrosomes, chromosomal dislocation, abnor-
mal mitotic spindle, micronucleus, or irregularly shaped 
nucleus. MC is usually triggered by chemical or physical 
stress (Castedo et al. 2004; Vitale et al. 2011). A variety of 
molecules are involved in the regulation of MC, especially 
cell cycle-specific kinases (such as cyclin B1-dependent 
kinases CDK1 and aurora kinases), cell cycle checkpoint 
proteins, survivin, p53, caspases, and the Bcl-2 family 
(Fig. 8) (Castedo et al. 2004).

Related studies found mitotic podocytes in the podo-
cytes of DKD patients, which were characterized by 
binucleation, chromatin concentration, and loss of foot 
process, suggesting the possibility of MC in podocytes 
(Liapis et al. 2013). Mature podocytes are considered to 
be G0 phase quiescent cells that lack the ability to pro-
liferate (Liapis et  al. 2013). Although podocytes can-
not divide after damage, they can re-enter the cell cycle 
(Hagen et al. 2016). However, due to the lack of auroral 
kinase B expression, mature podiocytes cannot form 

Fig. 7 Ferroptosis-related pathway. Glutamate inhibits cystine uptake by the cystine-glutamate antitransporter (system  Xc−), which subsequently 
leads to glutathione (GSH) depletion and the inactivation of the phospholipid peroxidase glutathione peroxidase 4 (GPX4), which promotes 
the accumulation of  H2O2, and NOX4, which also promotes the accumulation of  H2O2. Both eventually lead to ferroptosis. In addition, dysfunction 
of iron metabolism in cells can also lead to ferroptosis. The intracellular iron level is mainly regulated by transferrin receptor (TFR), and the increase 
of TFR expression will cause more  Fe3+ to enter the cell, and  Fe3+ will be reduced to  Fe2+ by iron reductase, and the production of ROS will be 
promoted through Fenton reaction, which ultimately leads to ferroptosis
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effective mitotic spindles (Lasagni et  al. 2010, 2013). 
Therefore, differentiated podocytes are inherently resist-
ant to mitosis, and their proliferative response does not 
promote damage recovery, but instead accelerates cell 
loss, leading to MC and eventually DKD in podocytes 
(Liapis et al. 2013).

Currently, there are few relevant targeted therapy 
studies on MC in DKD podocytes, and there is a lack of 
relevant effective data and clinical trials, but its impor-
tant role in DKD has become increasingly impossi-
ble to ignore. For example, Wang et  al. found that long 
non-coding RNA (lncRNA) MIAT was significantly 
upregulated in the plasma and kidney tissue of patients 
with DKD, and inhibition of lncRNA MIAT prevented 
podocyte injury and MC in DKD (Wang et al. 2022a, b, 
c). Myeloid-derived growth factor (MYDGF) promotes 
the production of glucagon-like peptide-1 and improves 
glucose/lipid metabolism in diabetic mouse models. 
MYDGF alleviates podocyte injury and proteinuria 
by activating the Akt/BAD signaling pathway in STZ-
induced diabetic mice and HG-cultured podocyte mod-
els. MYDGF deficiency, on the other hand, exacerbates 
MC in podocytes in DKD, suggesting that MYDGF may 

be an attractive therapeutic target for DKD (He et  al. 
2020; Zhan et  al. 2022). As a new model of podocyte 
death, MC is expected to be the focus of future research.

Other types of podocytes death in DKD
Anoikis is a cell defect caused by loss of attachment or 
improper adhesion of extracellular matrix. The foot pro-
cess connects the podocytes to GBM through integrins 
and dystroglycans. When anoikis occurs, the foot pro-
cess is completely detached from GBM, resulting in the 
disappearance of podocytes (Reddy et al. 2008). In DKD 
patients and STZ-induced diabetic rats, the expression of 
α3β1 integrin is reduced, resulting in focal detachment of 
GBM from podocytes, suggesting that anoikis is involved 
in the pathogenesis of DKD (Sawada et al. 2016).

Podoptosis is a type of cell death associated with 
over-activation of p53. Maintaining the balance of p53 
is known to be essential for the survival of podocytes, 
which are rich in many proteins that interact with the 
p53 pathway, such as WT-1, MDM2, and RARRES1. 
MDM2 could promote podocyte loss by overriding cell 
cycle G2/M restriction and entering mitosis through 
degradation of p53 or by retaining p53 in the cytosol 

Fig. 8 Mitotic catastrophe-related pathway. The rad3-associated protein (ATR)-chk1 signaling pathway is activated in the absence of G2 
checkpoints, and restoring S/G2 and G2/M cell cycle checkpoints can avoid mitosis disasters. DNA damage inhibits checkpoint kinase 1 (chk1) 
and cyclin-dependent kinase (CDK) 2, which in turn inhibits the recovery of cell cycle checkpoints and ultimately leads to mitotic catastrophe. 
In addition, PI3K-like kinase (PIKK)/mTOR inhibitors cause single-stranded deoxyribonucleic acid (ssDNA) accumulation, replication mutations, 
and mitotic failure, and eventually mitotic catastrophe as well
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(Thomasova et al. 2015). Morphologically, podoptosis is 
characterized by massive cytoplasmic vacuolization and 
signs of ER stress (Yin et al. 2021). However, there is lit-
tle evidence of a link between podoptosis and DKD. With 
the progress of research, more associations between the 
two may be found in the future, providing new ideas for 
the treatment of DKD.

Summary and outlook
DKD is the most important microvascular complication 
of diabetes mellitus, and its occurrence and development 
are closely related to the injury and loss of podocytes. 
Various cell death modes are involved in the occurrence 

and development of DKD (Fig.  9). This paper specifi-
cally reviewed the types and mechanisms of podocyte 
death in DKD, as well as the main targeted therapies and 
drugs (Table  2). However, the specific pathophysiologi-
cal mechanisms related to the cell death modes in podo-
cytes are still not completely clear, and relevant studies 
and available data are few. Thus, the relationship between 
various forms of cell death and DKD require further 
exploration, as many questions remain unanswered. We 
know that apoptosis is the most important form of cell 
death, which is mainly involved in the death of podocytes 
in DKD through exogenous and endogenous pathways. 
In addition, autophagy generally plays a beneficial role 

Fig. 9 Modes of podocyte death in DKD. Apoptosis is characterized by nuclear condensation and the formation of apoptotic bodies. Autophagy 
is characterized by extensive cytoplasmic vacuolization leading to the formation of an autophagosome, phagocytosis, and subsequent lysosomal 
degradation. ER stress is caused by excessively prolonged unfolded protein response (UPR) UPR. Pyroptosis activates inflammatory factors 
to aggravate podocyte injuries. Necroptosis drives signaling cascades, such as receptor-interacting protein kinases 1 and 3 and mixed lineage kinase 
domain-like, ultimately promoting the death of podocytes. Ferroptosis is an iron- and lipotoxicity-dependent form of regulated cell death (RCD), 
and MC mediates a faulty mitotic process
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in cells and in some cases mediates podocyte damage. 
However, studies on podocyte autophagy in DKD remain 
scarce, and direct evidence of the role of autophagy in the 
development of DKD is still lacking. ER stress is caused 
by excessively prolonged unfolded protein response 
(UPR) UPR. Pyroptosis has been identified as a unique 
mode of cell death and is closely related to the activa-
tion of the inflammasome. However, how it promotes 
the development of DKD remains to be clarified. In addi-
tion, necroptosis is driven by a cascade of signals, such 
as RIPK1, RIPK3, and MLKL. Moreover, during ferrop-
tosis ROS accumulation causes cellular damage due to 
oxidative stress, and finally, mitotic catastrophe causes 
abnormal podocyte division and accelerates their loss. 
However, there are few animal models on necroptosis, 
ferroptosis, and mitotic catastrophe in podocytes related 
to DKD. Thus, more data is needed to draw strong mean-
ingful conclusions.

Importantly, this review suggests that any type of 
cell death is a promising therapeutic target that may, 
in the future, correct poor outcomes in podocytes and 
the development of DKD. In addition, understanding 
whether different types of cell death interfere with each 
other during DKD is crucial for the precise treatment 
of the disease. The various forms of cell death are likely 
to overlap at the same stage but have varying contribu-
tions to DKD at different stages. This is another direc-
tion worth studying in the future. For example, p53 is 
involved in a variety of cell death processes. Under cell 
stress, p53 promotes endogenous apoptosis by activat-
ing the expression of pro-apoptotic genes, such as BAX, 
APAF-1, PUMA, NOXA, and p53AIP13, or by inhibiting 
the expressions of the anti-apoptotic genes BCL-2 and 
BCL-xL (Speidel 2010; Bieging et al. 2014). At the same 
time, p53 has a dual effect on autophagy, because it can 
induce or inhibit autophagy, depending on its location in 
the cell (Maiuri et al. 2010). Many genes and proteins are 
involved in the regulation of ferroptosis, including GPX4, 
SLC7A11, and p53 (Dixon et al. 2012). In addition, p53 is 
also associated with a variety of cell death modes, such 
as pyroptosis and mitotic catastrophe (Ranjan and Iwa-
kuma 2016). Diabetes is considered an oxidative stress 
and a chronic inflammatory disease. ROS is regarded as 
an important pathogenesis of DKD. ROS also plays an 
important role to activate programmed cell death path-
ways, including apoptosis, autophagy and Ferroptosis 
(Jha et al. 2016). Regulated cell death includes pyroptosis, 
necroptosis and ferroptosis can trigger a strong inflam-
matory immune response (Wei and Szeto 2019; Li et al. 
2023). Clearly, our search for DKD podocellular death 
is still in its early stages, and our understanding of this 
issue is far from comprehensive and in-depth. There-
fore, future directions in this area of research include 

elucidating the specific pathophysiological mechanisms 
of the various cell death types in the occurrence and 
development of DKD and whether the different types of 
cell death interfere with each other during DKD.
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