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Abstract 

Background Disulfidptosis is a recently discovered programmed cell death pathway. However, the exact molecular 
mechanism of disulfidptosis in cutaneous melanoma remains unclear.

Methods In this study, clustering analysis was performed using data from public databases to construct a prognostic 
model, which was subsequently externally validated. The biological functions of the model genes were then inves-
tigated through various experimental techniques, including qRT-PCR, Western blotting, CCK-8 assay, wound healing 
assay, and Transwell assay.

Results We constructed a signature using cutaneous melanoma (CM) data, which accurately predicts the overall 
survival (OS) of patients. The predictive value of this signature for prognosis and immune therapy response was vali-
dated using multiple external datasets. High-risk CM subgroups may exhibit decreased survival rates, alterations 
in the tumor microenvironment (TME), and increased tumor mutation burden. We initially verified the expression 
levels of five optimum disulfidptosis-related genes (ODRGs) in normal tissues and CM. The expression levels of these 
genes were further confirmed in HaCaT cells and three melanoma cell lines using qPCR and protein blotting analysis. 
HLA-DQA1 emerged as the gene with the highest regression coefficient in our risk model, highlighting its role in CM. 
Mechanistically, HLA-DQA1 demonstrated the ability to suppress CM cell growth, proliferation, and migration.

Conclusion In this study, a novel signature related to disulfidptosis was constructed, which accurately predicts 
the survival rate and treatment sensitivity of CM patients. Additionally, HLA-DQA1 is expected to be a feasible thera-
peutic target for effective clinical treatment of CM.
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Introduction
Cutaneous melanoma arises from the malignant transfor-
mation of melanocytes. Despite representing only about 
1% of skin cancer cases, it is the most lethal form (Guo 
et al. 2021). CM incidence is influenced by race, lifestyle, 
and genetics, with acral and mucosal subtypes being pre-
dominant in Asian populations (Mao et  al. 2021). The 
high degree of immunogenicity in CM has rendered 
immunotherapy an indispensable component in its treat-
ment. However, despite the advancements in targeted 
therapy and immunotherapy, the inherent immune resist-
ance and high metastasis rates of CM result in significant 
heterogeneity in treatment outcomes among patients. In 
 BRAFv600-mutated CM, commonly used treatment meth-
ods for this condition include PD-1 (ProgrammedDeath-
1)-based immunotherapy and targeted agents. However, 
although these treatment methods result in an improve-
ment in survival rates to some extent, typically the 5-year 
overall survival rate of metastatic CM remains in the 
range of 40–50%. Additionally, even with the use of these 
treatment methods, patients who have a high tumor 
burden, brain metastases, and elevated levels of lactate 
dehydrogenase (LDH) still generally have a poor progno-
sis, with a 3-year survival rate below 10%. Consequently, 
when dealing with CM, there is still a need to investigate 
more effective treatment methods (Liu et al. 2020). Thus, 
the identification of effective markers is imperative for 
enhancing the clinical management of CM and optimiz-
ing the rational utilization of medical resources.

Disulfidptosis is a newly discovered form of pro-
grammed cell death, first reported by Xiaoguang Liu et al. 
(2020, 2023). Under conditions of glucose starvation, 
SLC7A11 (Solute Carrier Family 7 Member 11)-high cells 
experience reduced intracellular levels of NADPH and 
accumulated cystine, resulting in aberrant bonding of 
disulfide that target the actin cytoskeleton and lead to cell 
collapse. The study also demonstrates that glucose trans-
port protein inhibitors can induce disulfidptosis in tumor 
cells, inhibiting tumor progression. Overall, this study 
illustrated the role of disulfidptosis in controlling tumor 
growth. Cancer cells that have metastasized and exhibit 
high expression of SLC7A11 are especially vulnerable to 
oxidative stress. This observation suggests that targeting 
the cystine apoptosis-related gene could be an effective 
approach for treating CM.

In this study, we utilized CM data from the TCGA 
(The Cancer Genome Atlas, https:// portal. gdc. cancer. 
gov/) database to develop and validate a predictive model 
related to disulfidptosis-related genes (DRGs) for accu-
rately predicting the survival of CM patients. The model 
demonstrated a significant reduction in the survival rate 
of the high-risk group in both the training and validation 
datasets, which exhibits high accuracy in the diagnosis 

of CM, tumor microenvironment, and the efficacy of 
immunotherapy.

Materials and methods
Data resources
Based on the DRG, this study constructed a signature in 
CM and downloaded multiple CM cohorts from pub-
lic databases, as well as immunotherapy cohorts from 
other cancers. The CM data for this study were obtained 
from the TCGA database, GTEx (The Genotype-Tissue 
Expression, https:// gtexp ortal. org/ home/) database, GEO 
(Gene Expression Omnibus, https:// www. ncbi. nlm. nih. 
gov/ geo/) database, and TIGER (Tumor Immunother-
apy Gene Expression Resource, http:// tiger. cance romics. 
org/#/ home) database.

We obtained RNA sequencing (RNA-seq) data, as 
well as survival data, gender, age, clinical stage, and sin-
gle nucleotide polymorphism (SNP) data of 473 SKCM 
patients from the TCGA database. In the GTEx database, 
we selected RNA-seq data from normal skin tissues. In 
the GEO database, GSE65904 includes RNA-seq data, 
survival data, gender, age, and other information of 214 
CM patients. GSE54467 includes RNA-seq data, survival 
data, gender, age, clinical stage, and other information of 
79 CM patients. GSE46517 includes RNA-seq data from 
104 CM samples and 17 normal samples (including nor-
mal skin tissues, nevus tissues, and epithelial melano-
cytes). In the TIGER database, Melanoma-PRJEB23709 
includes RNA-seq data, survival data, immune therapy 
response data, gender, age, and other information of 91 
CM patients. STAD-PRJEB25780 includes RNA-seq data, 
survival data, immune therapy response data, and other 
information of 78 gastric cancer patients. In addition, we 
identified 18 disulfidptosis-related genes from the litera-
ture (Liu et al. 2020, 2023) on disulfidptosis.

Genetic roles and expression analysis of DRGs in CM
For the 18 identified DRGs obtained from the 
literature(Liu et  al. 2020, 2023), we analyzed their roles 
in CM, including protein–protein interaction (PPI) and 
enrichment analysis, tumor somatic mutations and copy 
number variations, as well as differential expression in 
CM and normal skin tissues.

First, we used the online tool GeneMANIA (https:// 
genem ania. org/) for PPI network analysis and data visu-
alization of the 18 DRGs, and performed gene enrich-
ment analysis. Additionally, SNP data were obtained 
from TCGA (Blum and Wang 2018). The R package 
“maftools” (Mayakonda et al. 2018) was used to process 
and analyze the SNP data, counting the occurrences of 
missense mutations, nonsense mutations, silent muta-
tions, and frameshift/inframe insertions and dele-
tions. Moreover, Tumor Mutational Burden (TMB) was 
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calculated using tumor somatic mutation data. Finally, 
we selected samples with DRG-associated somatic muta-
tions or copy number variations in CM for analysis and 
created a waterfall plot.

Lastly, we validated the expression differences of the 
DRGs in tumor and normal tissues through TCGA-
SKCM and GTEx data, as well as the GSE46517 dataset.

Identifying novel DRGs via unsupervised clustering
We cleaned the missing values in the RNA-seq data 
and clinical data. Based on the expression of 18 DRGs, 
we performed cluster analysis on the gene expression 
data of TCGA-SKCM, GSE65904, and GSE54467 using 
the R package “ConsensusClusterPlus”. First, we read 
the expression data file and survival data file. Then, we 
removed normal samples and preprocessed the data 
according to the selected grouping criteria, including 
operations such as transposition, mean subtraction, and 
logarithmic transformation. These steps ensure the uni-
formity and comparability of the data. Next, we merged 
the expression data with the survival data, which helps 
establish a joint analysis model based on expression data 
and patient survival time. Then, we conducted univariate 
COX regression analysis. COX regression models were 
applied to each gene, and their impact on patient survival 
was evaluated by calculating p-values, resulting in the 
selection of significant genes. We then proceeded with 
cluster analysis. Initially, the maximum number of clus-
ters (maxK) was set to 10, and 50 clustering operations 
were performed to ensure the stability of the results. We 
adopted a widely used clustering algorithm (pam) and 
used Euclidean distance as the clustering metric. The 
optimal value of K, which provided the highest within-
group correlation and lowest between-group correla-
tion, was determined through analysis. Subsequently, 
the R packages “survival” and “survminer” were used for 
Kaplan–Meier (KM) analysis of clusters associated with 
disulfidptosis to compare differences in overall survival 
(OS). Additionally, we analyzed differences in clinical 
data and immune cell infiltration levels associated with 
disulfidptosis clusters. Clinical data included age, gender, 
staging, T-stage, N-stage, and M-stage, while immune 
cell infiltration abundance data were obtained through 
the ssGSEA algorithm, TIMER database, CIBERSORT 
algorithm, and ESTIMATE algorithm. Differential analy-
sis using the R package “limma” was then performed to 
identify genes with significant differences between the 
two groups. The analysis results generated new DRGs.

Construction and validation of the disulfidptosis‑related 
signature
Based on survival data, a “coxph” function was used to 
conduct Cox regression analysis on DRGs to identify 

DRGs significantly associated with survival (P < 0.05). 
Five machine learning algorithms, including Decision 
Tree, LASSO, Random Forest, GBDT, and XGBoost, 
were used to build models and calculate the importance 
of each DRG in relation to survival. Finally, the results of 
each model were combined for data fusion to calculate 
the comprehensive weight of survival correlation.

Subsequently, two R packages, “glmnet” and “survival,” 
were used to construct the lasso cox model. Firstly, the 
“cv.glmnet” function was used for ten-fold cross-vali-
dation to select the optimal penalty coefficient (λ) for 
model fitting and further analysis and prediction. Then, 
the “coef” function was used to extract DRGs associated 
with non-zero coefficients, and the sum of the product 
of the coefficients and expression levels of these DRGs 
represented the risk score. The median risk score of all 
samples in the training set was used as the cutoff value 
to divide all samples into high-risk and low-risk groups. 
KM analysis was performed on the high-risk and low-
risk groups, and the R package “timeROC” was used for 
receiver operating characteristic (ROC) curve analysis to 
calculate the corresponding area under the curve (AUC) 
and evaluate the accuracy of the model. Subsequently, 
external validation of the model was conducted using 
data from the GEO database and the TIGER cohort.

In addition, to evaluate the relationship between the 
risk score and clinical data, we analyzed the differences 
in T stage, N stage, gender, and age between the high-risk 
and low-risk groups. Furthermore, to better utilize the 
prognostic model, we constructed a positive determina-
tive graph by integrating the risk score and clinical data.

Evaluation of the tumor microenvironment in molecular 
subtypes
The tumor immune microenvironment (TME) plays a 
crucial role in the occurrence, development, and treat-
ment of cancer. In order to examine the differences in 
TME between risk subtypes, we obtained evaluations of 
tumor immune cell infiltration levels from various algo-
rithms based on RNA-seq data from TIMER2.0 (http:// 
timer. cistr ome. org/), including TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 
XCELL, EPIC. We analyzed the differences between 
the high and low-risk groups. Additionally, the ssGSEA 
evaluated the infiltration levels of 16 types of immune 
cells (aDCs, B cells, CD8 + T cells, DCs, iDCs, Mac-
rophages, Mast cells, Neutrophils, NK cells, pDCs, T 
helper cells, Tfh, Th1 cells, Th2 cells, TIL, Treg) using 
the R package “GSVA.” We obtained the expression lev-
els of immune checkpoint markers investigated in previ-
ous studies and analyzed whether there were differences 
between the high and low-risk groups. Furthermore, we 
used the ESTIMATE algorithm to assess the relationship 
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between tumor purity and risk scores, including ESTI-
MATE Score, Immune Score, and Stromal Score. We also 
analyzed the immune scores obtained from the TIDE 
(Tumor Immune Dysfunction and Exclusion, http:// tide. 
dfci. harva rd. edu/) online tool.

Functional enrichment analysis among molecular subtypes
GSEA and GSVA are both methods used to analyze the 
enrichment of gene sets in gene expression data. In this 
study, these two methods were used to analyze the path-
ways and functions associated with the risk model. The 
KEGG enrichment analysis was conducted using the 
GSEA software (version 4.2.3). Additionally, we analyzed 
the correlation between risk scoring and pathways related 
to disulfidptosis as well as tumor-related pathways.

The disulfidptosis-related pathways include: functions 
related to cytoskeletal organization, pentose phosphate 
pathway, lipid homeostasis, glutathione metabolism, tri-
carboxylic acid cycle, P53 signaling pathway, glutathione 
peroxidase activity, Nrf2 signaling pathway, cell response 
to glucose starvation, calcium binding involved in cell 
adhesion, cell adhesion molecule binding, and calcium 
binding. Important signaling pathways in tumors include 
Hippo, Wnt, MAPK, PI3K/AKT, TGF-β, NF-kB, Notch, 
AMPK, JAK-STAT, PD-1/PD-L1, mTOR, Ras, TNF, HIF-
1, and ErbB.

Antibodies and reagents
Five monoclonal antibodies anti-HLA-DQA1 anti-
body (1:10,000 dilution for WB, 1:200 dilution for IHC, 
ab128959), anti-GZMA antibody (1:1000 dilution, 
ab209205), anti-CD79A antibody (1:10,000 dilution, 
ab79414), anti-LTB antibody (1:1000 dilution, ab89568) 
and anti-HE5 antibody (1:1000 dilution, ab125071) were 
purchased from Abcam (Cambridge, UK). Monoclonal 
antibody anti-β-actin (1:20,000 dilution, 66009-1-Ig) was 
purchased from Proteintech (Wuhan, China).

Cell culture and transfection
The human immortalized keratinocyte HaCaT, the 
human malignant melanoma cell line A-375, A-875 and 
SK-MEL-1 was obtained from Haixing Biosciences, 
Suzhou, Jiangsu, China. Cells were cultured in Dulbec-
co’s Modified Eagle’s Medium (Gibco, Invitrogen, Pais-
ley, UK) supplemented with10% fetal bovine serum and 
1% streptomycin-penicillin (Gibco, Invitrogen, Paisley, 
UK) at 37  °C in a humified 5% CO2 incubator. Lipofac-
tamine3000 (Thermo Fisher Scientific, Waltham, MA, 
USA) was used to transfect cells with siRNAs (RiboBio, 
Guangzhou, China following the manufacturer’s guide-
lines. 5′-GAT GGA GAT GAG CAG TTC T′ (st-h-HLA-
DQA1_001), 5′-CTT GTG GTG TAA ACT TGT A-3′ 
st-h-HLA-DQA1_002), and 5′-CAA CTT GAA CAT CAT 

GAT T-3′ (st-h-HLA-DQA1_003) were the three target 
sequences for siRNA for HLA-DQA1.

Real‑time quantitative PCR assay
Total RNA was extracted from HaCaT and the three the 
human malignant melanoma cell lines, using NucleoZOL 
reagent (740404.200, Meilunbio). Total RNA was then 
reverse transcribed into cDNA using Evo M-MLV RT 
Kit with gDNA Clean for qPCR (AG11705, AG, Hunan, 
China). Real-time quantitative PCR (RT-qPCR) was per-
formed using the SYBR Green Premix Pro Taq HS qPCR 
Kit IV (AG11746, AG, Hunan, China). Relative quantifi-
cation was determined using the 2(−ΔΔCt) method.

Western blotting analysis
The cell precipitate was lysed with RIPA (C5029, Bioss) to 
extract the total protein. The protein concentration was 
measured using the BCA method. Around 25 μg of total 
protein underwent gel electrophoresis and was trans-
ferred to a PVDF membrane (Millipore, Kenilworth, NJ, 
USA). Afterwards, the membrane was blocked with Pro-
tein-Free Rapid Blocking Buffer (Yamei, Shanghai, China) 
at room temperature for 15 min. The membrane was then 
incubated overnight at 4  °C with the primary antibody. 
The next day, the membrane was washed three times 
with TBST for 5 min each, and then incubated with the 
secondary antibody and membrane at room temperature 
for 1 h. Detection was carried out using the Immobilon 
Western Chemilum HRP Substrate Kit (WBKL S0500, 
Millipore, Kenilworth, NJ, USA). Specific areas of the gel 
were scanned to acquire images, and Adobe Photoshop 
software (CS4, Adobe Systems, USA) and ImageLab soft-
ware (Bio-Rad, USA) were used for quantification.

Immunohistochemistry analysis
The tissue microarray chip (HMelC112CD01, Gongxie, 
Shandong, China) in the CM group underwent immu-
nohistochemistry (IHC) detection of anti-HLA-DQA1 
antibody following the standard labeled streptavidin 
biotin (LSAB) protocol (Dako, Carpinteria, CA). The 
immune reactive score (IRS) for each sample was calcu-
lated by multiplying the positive cell percentage score (0: 
no positive cells, 1: < 10%, 2: 10–50%, 3: 51–80%, 4: > 80%) 
with the staining intensity score (0: no color reaction, 1: 
mild reaction, 2: moderate reaction, 3: strong reaction). 
Immunohistochemical staining of tissue chips was per-
formed using a two-step method. When the HLA-DQA1 
score in cancer tissue was higher than that in non-tumor 
tissue, the expression level of GS in cancer tissue was 
considered upregulated (high); all other scores were con-
sidered down-regulated (low).

http://tide.dfci.harvard.edu/
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Cell proliferation assay
Cell proliferation was analyzed using the Cell Counting 
Kit-8 (BIOSS, Beijing, China) according to the manu-
facturer’s protocol. The melanoma cells transfected with 
siRNA expressing HLA-DQA1 and empty vector were 
diluted and seeded at a density of 1 ×  103 cells per well 
in a 96-well plate containing 0.1 mL of culture medium. 
After 24 h of incubation, each well was treated with 10 μl 
of CCK-8 solution at 37 °C. Subsequently, the absorbance 
at 450  nm was measured using the Multiskan SkyHigh 
(Thermo Fisher, Stony Creek, the US).

Clonogenic assay
Gather the a-375 and A-875 cell lines with downregu-
lated HLA-DQA1 and the control group cells, and seed 
600 cells per well in a 6-well plate. The plate was then 
incubated at 37 ℃ for a duration of 14  days. Each well 
was treated with 500  μl of paraformaldehyde and fixed 
at room temperature for 25  min. D The paraformalde-
hyde was then discarded and the wells were washed with 
PBS. Next, 400 μl of a 2.5% methanol-crystal violet stain-
ing solution was added to each well and stain for 15 min. 
Finally, the observed cells were inspected and the num-
ber of cell clones was counted under a microscope.

Cell migration and invasion assay
Corning’s 80  μm 24-well Transwell plates (Falcon) were 
coated with 30% Matrigel (300 μl/well) for use in migra-
tion and invasion assays. Each upper chamber of the 
Transwell plates received 1 ×  105 cells in 100 μl of serum-
free medium, while the lower chamber was filled with 
600  μl of medium containing 20% fetal bovine serum. 
After a 6-h incubation at 37 °C, non-migrating cells that 
remained in the upper chamber were gently removed 
from the upper surface of the Matrigel using a cotton 
swab. Subsequently, the cells were stained with 2.5% 
methanol-crystal violet solution for 15  min and subse-
quently enumerated. Five random microscopic fields 
(× 100 magnification) were assessed per well, and the 
mean was calculated.

Statistical analysis
In this study, a variety of statistical and bioinformatics 
analysis methodologies were employed. We initially con-
ducted Wilcoxon rank-sum tests to compare the differ-
ences between two groups of samples. This choice was 
based on the test’s suitability for analyzing non-normally 
distributed data. Furthermore, Pearson’s Chi-squared test 
was used to assess the association between categorical 
variables in the dataset.

Additionally, t-tests were employed to examine the sig-
nificance of differences between means in normally dis-
tributed data. For analyzing differences among sample 

groups containing more than two samples, the Kruskal–
Wallis test was utilized as a non-parametric alternative to 
one-way ANOVA.

The threshold for statistical significance throughout the 
analysis was set at P < 0.05, indicating that P-values less 
than 0.05 were considered statistically significant. All sta-
tistical analyses were conducted exclusively using the R 
programming language. R is well-suited for bioinformat-
ics data analysis due to its extensive ecosystem of pack-
ages and functions.

Results
Genetic characteristics and transcriptional changes 
of DRGs in CM
The specific procedure of this study is depicted in Fig. 1. 
First, we constructed a protein–protein interaction 
(PPI) analysis network of 18 DRGs using the online tool 
GeneMANIA to explore their interactions. The enriched 
functions mainly include regulation of lamellipodium 
assembly, actin cytoskeleton, actin polymerization or 
depolymerization, actin nucleation, immune response-
regulating cell surface receptor signaling pathway, 
involved in phagocytosis, and actin binding (Fig.  2A). 
Next, we analyzed somatic mutations and CNV (copy 
number variation) of CM using TCGA-SKCM SNP data. 
The somatic mutation patterns of the 18 DRGs were eval-
uated (Fig. 2B). The results showed that 94 out of 469 CM 
patients (20.04%) were regulated by DRG mutations. The 
predominant type of mutation was missense mutation, 
mainly occurring in MYH10, SLC7A11, LRPPRC, MYH9, 
NCKAP1, WASF2, and CYFIP1. Somatic mutations were 
predominantly concentrated in MYH10. Furthermore, 
we analyzed the expression levels of the 18 DRGs in CM 
samples and normal samples from the TCGA&GTEx and 
GSE46517 datasets (Fig.  2C, D). Key genes in disulfidp-
tosis, such as SLC7A11, were highly expressed in CM 
tissues. Additionally, MYH9, MYH10, GYS1, LRPPRC, 
SLC3A2, RPN1, and ACTR2 were highly expressed in 
CM, while NDUFS1, NUBPL, NCKAP1, and SLC2A1 
were downregulated in CM.

Identification of novel disulfidptosis‑related genes
In order to explore the expression characteristics of 
DRGs in CM, we clustered TCGA-SKCM based on the 
RNA-seq data of 18 DRGs using consensus cluster-
ing. The results showed that the stability was optimal 
when K = 2. We further investigated the clusters related 
to disulfidptosis and analyzed the expression levels and 
overall survival of the 18 DRGs. In TCGA-SKCM, there 
were differences in the expression levels of most DRGs 
between clusters (Fig.  3A). The expression of MYH10, 
GYS1, SLC3A2, SLC2A1, and NDUFA11 was higher in 
cluster 1 compared to cluster 2, while NDUFS1, NUBPL, 
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Acquisition of data from TCGA 

and GEO databases.

Regarding the bioinformatics analysis 

of the signature.

External validation of the signature.

Disulfidptosis-related genes was 

screened by unsupervised clustering.

Construction and validation of  DRG 

models.

Validation of the expression levels 

of ODRGs.

Fig. 1 The workflow of this study. The figure illustrates the process of constructing and subsequent analysis of the DRG model
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LRPPRC, NCKAP1, ACTR2, ACTR3, CYFIP1, and ABI2 
showed the opposite trend. In terms of survival, the over-
all survival of cluster 1 was lower than that of cluster 2, 
and there was a statistical difference (Fig. 3B).

In addition, we further studied the clusters related 
to disulfidptosis and analyzed the clinical characteris-
tics, immune scores, and immune cell infiltration abun-
dance between the two disulfidptosis-related clusters. In 
terms of clinical characteristics, there were differences 
in clinical stage and T stage between the two disulfidp-
tosis-related clusters. As for immune cell infiltration 
data, there were differences in CD8 + T cells, Tfh cells, 
T helper cells, Treg cells, aDCs, TIL, NK cells, B cells, 

Neutrophils, and pDCs in the ssGSEA algorithm; Mye-
loid dendritic cells, T cell CD8 +, T cell CD4 +, B cells, 
Neutrophils, and Macrophages in the TIMER algorithm; 
Mast cells resting, B cells naive, T cells CD4 memory 
resting, and T cells CD4 naive in the CIBERSORT algo-
rithm. Additionally, there were significant differences in 
ESTIMATE Score, Immune Score, and Stromal Score 
between the two disulfidptosis-related clusters through 
ESTIMATE analysis.

Through the above analysis, we have demonstrated 
the significance of our clustering of TCGA-SKCM. In 
order to screen for new DRGs, we conducted differ-
ential analysis of the clusters related to disulfidptosis 
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according to the criteria (|log2FC|≥ 1, P < 0.05). To 
further narrow down our selection, we performed 
consensus clustering of GSE65904 and GSE54467, and 
analyzed the differentially expressed genes. By taking 
the intersection of the differentially expressed genes 
in the three datasets, we obtained a total of 40 new 
DRGs.

The development of disulfidptosis‑related signature in CM
In order to construct a prognostic model, we used uni-
variate Cox analysis to select 38 DRGs associated 
with survival. The weights of the prognostic-related 
DRGs in terms of survival were evaluated using algo-
rithms such as Decision Tree, LASSO, Random Forest, 
GBDT, and XGBoost. The top ten genes (Table  1) were 
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Table 1 The quantified importance of prognostic disulfidptosis-related messenger genes by machin learning

The number in the parentheses represented the rankings of weight

Decision Tree LASSO Random Forest GBDT XGBoost AVG

GBP5 0.013827 0.373494 0.215771 0.165928 0.044820 0.162768 (1)

HLA-DQA1 0 0.229167 0.149802 0.112942 0.029389 0.10426 (2)

HLA-DRA 0.069321 0 0.217371 0.202672 0.021325 0.102138 (3)

CD79A 0.043209 0.08349 0.15570 0.074456 0.022523 0.075875 (4)

HE5 0.054514 0.280299 0.023088 0.015352 0.025615 0.070538 (5)

HLA-DMB 0.060051 0.023476 0.115609 0.083555 0.012552 0.059049 (6)

LTB 0.064557 0 0.026341 0.025064 0.027094 0.0286111 (7)

CD2 0.418228 0 0.035964 0.032222 0.025557 0.027113 (8)

GZMA 0.034531 0 0.041947 0.025454 0.030842 0.026555 (9)

CCL5 0.024580 0 0.02469 0.059022 0.012451 0.024148 (10)
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Fig. 4 Screening and model construction of ODRG. A The best λ value was selected through LASSO regression and LASSO coefficients were 
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selected to build the LASSO Cox model (Fig.  4A). The 
genes used in constructing the model displayed KM 
curves for high and low expression groups (Fig.  4B). 
The risk score is calculated as follows: (−  0.0787 ×  exp 
(CD79A)) + (0.3804  ×  exp (HE5)) + (−  0.15832  ×  exp 
(HLA-DQA1)) + (−  0.2650  ×  exp 
(GZMA)) + (− 0.0888 × exp (LTB)). Subsequently, based 
on the median of the risk score, patients with CM were 
divided into high and low-risk groups. The high-risk 
group has a higher probability of death compared to 
the low-risk group (Additional file  1: Figure S1A). PCA 
and t-SNE plots demonstrate the distinct distribution of 
high and low-risk groups (Additional file 1: Figure S1B). 
The Kaplan–Meier survival curve shows a significantly 
worse overall survival (OS) for high-risk CM patients 
compared to low-risk group (Fig. 4C, P < 0.001). The pre-
dictive performance of this prognosis model was evalu-
ated by ROC curve analysis, with an AUC value of 0.744. 
Furthermore, through univariate and multivariate Cox 
analysis, we demonstrated that age (HR = 1.011, 95% con-
fidence interval (CI) = 1.000–1.022, P = 0.047), T stage 
(HR = 1.457, 95% CI = 1.232–1.722, P < 0.001), N stage 
(HR = 1.590, 95% CI = 1.261–2.004, P < 0.001), and risk 
score (HR = 2.389, 95% CI = 1.679–3.400, P < 0.001) are 
independent prognostic factors for CM (Table 2).

Validation of signature and prediction of immunotherapy 
response
To validate the repeatability of disulfideptosis-associ-
ated signatures in CM and their application in immu-
notherapy, we conducted external validation using the 
GSE65904, GSE54467 datasets from the GEO data-
base, as well as the Melanoma-PRJEB23709 and STAD-
PRJEB25780 datasets from the TIGER database. The 
results of KM survival analysis showed that in GSE65904 
and GSE54467, patients with high-risk CM had signifi-
cantly lower overall survival (OS) than patients with low-
risk CM (Fig.  5A, C). The ROC curves performed well, 
with AUC values of 0.716, 0.760, and 0.706 for 1, 3, and 
5  years in GSE65904, and AUC values of 0.728, 0.747, 
and 0.754 for 1, 3, and 5 years in GSE54467 (Fig. 5B, D). 
In the immunotherapy data from TIGER, patients with 

high-risk CM in Melanoma-PRJEB23709 had lower OS 
than patients with low-risk CM (Fig. 5E). We also com-
pared the risk scores of patients in different states dur-
ing CM treatment. Patients with complete response (CR) 
had lower risk scores than patients with disease progres-
sion (PD) and disease stability (SD), while patients with 
partial response (PR) had lower risk scores than PD 
and SD patients (Fig.  5F). Moreover, the risk scores of 
patients who responded to immunotherapy were signifi-
cantly lower than those of patients who did not respond 
(Fig.  5G). In STAD-PRJEB25780, patients in the high-
risk group had significantly lower OS than those in the 
low-risk group (Fig.  5H). The risk scores of CR and PR 
patients were lower than those of PD and SD patients 
(Fig.  5I), and for patients who responded to immuno-
therapy, their risk scores were significantly lower, while 
for those who did not respond to immunotherapy, the 
risk scores were higher (Fig.  5J). Furthermore, we con-
structed a nomogram combining the risk score and 
clinical features (Fig.  5K). Patients with lower scores 
in the nomogram had significantly higher overall sur-
vival (OS) rates than those with higher scores (Fig.  5L). 
Moreover, the AUC values for 1-year, 3-year, and 5-year 
in the time-dependent ROC curve were 0.78, 0.854, and 
0.818(Fig. 5M), respectively, indicating a good predictive 
performance.

Analysis of the clinical features of risk subtypes
We analyzed the differences between risk scores and 
clinical data, and the results showed that there were dif-
ferences in clinical stage and T stage between the two 
groups (Fig.  6A). In addition, the risk scores obtained 
from the disulfidoptosis-related prognostic model were 
also associated with the expression of DRG. There were 
differences in the expression of ACTR2, MYH9, SLC3A2, 
ACTR3, NDUFS1, NCKAP1, SLC2A1, GYS1, and LRP-
PRC between the high-risk and low-risk groups (Fig. 6A).

Analysis of immune cell infiltration abundance 
and immune scores
This study analyzed the association between immune 
scores, immune checkpoints, immune cell infiltration 

Table 2 Independent analysis of training set patients

HR: hazard ratio; CI: confidence interval

Characteristics Univariate Multivariate

HR 95%CI P HR 95%CI P

Age 1.019 1.009–1.030 < 0.001 1.011 1.000–1.022 0.047

T stage 1.479 1.278–1.711 < 0.001 1.457 1.232–1.722 < 0.001

N stage 1.440 1.239–1.674 < 0.001 1.590 1.261–2.004 < 0.001

Risk score 2.807 1.958–4.023 < 0.001 2.389 1.679–3.400 < 0.001
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abundance, and the disulfidptosis-related prognostic 
model. The results showed differences in TMB and TIDE 
between the high and low-risk groups (Fig.  6A). The 
expression levels of 26 immune checkpoints, including 
CTLA4, CD274 (PD-L1), PDCD1 (PD1), PDCD1LG2 
(PD-L2), varied between the high and low-risk groups 
(Fig.  6A). In the ssGSEA algorithm, differences in infil-
tration abundances of iDCs, NK cells, Macrophages, T 
helper cells, aDCs, Treg, CD8 + T cells, Tfh, Th2 cells, 
Th1 cells, B cells, DCs, pDCs, Neutrophils, and TIL were 
observed between the high and low-risk groups (Fig. 6A). 
Additionally, the levels of immune cell infiltration that 
showed statistical differences between the high and low-
risk groups were demonstrated in the TIMER database 
data (Fig. 6B).

Pathway and functional analysis
Biological analysis using GSEA software showed that 
the citrate cycle tca cycle is active in the high-risk 
group, while apoptosis, B cell receptor signaling path-
way, chemokine signaling pathway, citrate cycle tca 
cycle, intestinal immune network for IGA production, 
JAK STATsignaling pathway, MAPK signaling path-
way, melanoma, natural killer cell mediated cytotoxicity, 
pathways in cancer, primary immunodeficiency, regula-
tion of actin cytoskeleton, T cell receptor signaling path-
way, VEGF signaling pathway are active in the low-risk 

group (Fig. 7A). The results of GSVA enrichment analy-
sis showed that DNA replication, aminoacyl tRNA 
biosynthesis, and other functions are enriched in the 
high-risk population, while antigen processing and pres-
entation, intestinal immune network for IGA production, 
cell adhesion molecules cams, natural killer cell medi-
ated cytotoxicity, primary immunodeficiency, cytokine 
cytokine receptor interaction, T cell receptor signal-
ing pathway, leukocyte transendothelial migration, nod 
like receptor signaling pathway, B cell receptor signaling 
pathway, complement and coagulation cascades, arachi-
donic acid metabolism, ether lipid metabolism, linoleic 
acid metabolism, phenylalanine metabolism, ECM recep-
tor interaction are active in the low-risk group (Fig. 7B). 
In addition, important tumor pathways such as Wnt, 
MAPK, PI3K/AKT, TGF-beta, NF-kB, Notch, AMPK, 
JAK-STAT, PD-1/PD-L1, mTOR, Ras, TNF, HIF-1, ErbB 
are also associated with the risk score, and pathways and 
functions are correlated as well. The factors associated 
with disulfidptosis are also correlated with risk scoring 
(Fig. 7C).

Validates the role of the key gene HLA‑DQA1 in melanoma 
cell lines in vitro
Using patient data from the TCGA database, we initially 
validated the expression levels of 5 ODRGs in both nor-
mal tissues and melanoma (Fig.  8A). We then validated 
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the expression levels of these genes in HaCaT cells and 
three melanoma cell lines through q-PCR and Western 
Blot analysis (Fig. 8B, C). HLA-DQA1 showed the high-
est regression coefficient among the genes analyzed in 
our risk model. Consequently, we chose HLA-DQA1 
as a candidate gene and examined its functional role 
in CM. A-375 and A-875 cells were transfected with 
siRNA that targeted HLA-DQA1. Figure  9A shows a 
significant reduction in the expression of HLA-DQA1 
in A-375 and A-875 cell lines compared to HaCaT cells. 
Subsequent experiments were conducted to evaluate the 
effects of inhibiting HLA-DQA1 expression on mela-
noma cell proliferation, invasion, and migration. The 
results showed that knocking down HLA-DQA1 sub-
stantially improved the survival of melanoma cells com-
pared to the control group, as illustrated in Fig. 9B and 
C. Moreover, the downregulation of HLA-DQA1 signifi-
cantly enhanced melanoma cell invasion, as illustrated in 

Fig. 9D. In addition, the scratch closure rate of melanoma 
cells transfected with siHLA-DQA1 was significantly 
higher than that of the control group after 24 h of plat-
ing, suggesting a significant enhancement in their migra-
tory ability (Fig.  9E). These findings indicate differential 
expression of HLA-DQA1 in both HaCaT and melanoma 
cell lines, and its regulation of melanoma cell prolifera-
tion, invasion, and migration.

Discussion
CM is a highly invasive and deadly skin cancer. In recent 
years, emerging technologies such as targeted therapy 
and immune checkpoint inhibitors have brought new 
hope to the treatment of CM. Clinical trials play a cru-
cial role in evaluating efficacy and safety. However, we 
still face many challenges. Firstly, our understanding 
of the etiology and pathogenesis of CM is insufficient, 
necessitating further research to uncover its underlying 
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causes in order to better formulate treatment strategies. 
Additionally, due to the complexity and heterogeneity 
of CM, it is crucial to identify new biomarkers to guide 
clinical treatment (Guo et  al. 2021; Berk-Krauss et  al. 
2020; Luke et al. 2017). Our goal is to conduct in-depth 
research to seek new treatment methods and biomarkers 
for more accurate diagnosis and prediction of treatment 
response in CM, thereby achieving more personalized 
treatment. Despite some progress, further research is still 
needed for a comprehensive understanding of CM and 
to provide more effective guidance for clinical treatment. 
Recent studies have recently discovered a novel form of 
cell death, known as disulfidptosis (Liu et al. 2023), which 
may hold potential therapeutic value and possibilities 
for targeted cancer treatment. Consequently, biosigna-
tures based on genes associated with disulfidptosis could 
potentially open up a new research field.

In this study, unsupervised clustering was conducted 
on TCGA-SKCM to identify clusters related to disulfidp-
tosis. The reliability of this grouping was confirmed from 
multiple perspectives, including the expression of DRG, 

overall survival (OS), clinical characteristics, and levels of 
immune cell infiltration. In order to select more accurate 
DRGs, we also incorporated GSE54467 and GSE65904. 
Subsequently, we used univariate COX and multivari-
ate COX analysis to screen for prognosis-related genes 
and used lasso to identify 5 ODRGs for constructing 
proportional hazard regression models. This signature 
accurately predicted the survival and immunotherapy 
response of patients with cutaneous CM. Compared to 
the high-risk group, the low-risk group had higher sur-
vival and immunotherapy sensitivity. In addition, the 
nomogram constructed by combining the risk score 
and clinical characteristics showed good accuracy and 
stability.

In 5 ODRGs, CD79A (CD79a molecule) is a protein 
closely related to the development and function of B 
cells. Studies have found that CD79A plays an important 
role in oral squamous cell carcinoma (OSCC) and may 
serve as a potential biomarker for treatment and prog-
nosis (Yao et  al. 2023). Through gene expression analy-
sis and clinical data, researchers have found that high 
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Fig. 9 Validates the role of the key gene HLA-DQA1 in melanoma cell lines in vitro. A Representative IHC images of HLA-DQA1 protein expression 
in CM and benign nevus tissues. B Knockdown of HLA-DQA significantly reduced its expression in A-375 and A-875 cell lines (**P < 0.01, 
****P < 0.0001). C After HLA-DQA1 knockdown in A-375 and A-875 cell lines, the increase of cell proliferation was markedly enhanced (***P < 0.01, 
****P < 0.0001). D Clonogenic assays showed a significant increase in the ability of A-375 and A-875 cell lines to form colonies after HLA-DQA1 
knockdown (***P < 0.001). E The si-NC group in the wound healing experiment of A-375 and A-875 cell lines showed weaker migration ability 
than the si-HLA-DQA1 group (**P < 0.01, ***P < 0.001). F The invasion ability of A-375 and A-875 cell lines significantly increased after HLA-DQA1 
knockdown (*P < 0.5, **P < 0.01)
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expression of CD79A is associated with better prognosis 
in oral squamous cell carcinoma patients. Further studies 
have shown that CD79A is enriched in the B cell receptor 
signaling pathway, and high levels of infiltration of imma-
ture B cells are associated with better prognosis, while 
high levels of infiltration of memory B cells are associated 
with poorer prognosis. These findings are of significant 
importance for the treatment and prognosis evaluation of 
oral squamous cell carcinoma.

GZMA (Granzyme A) is a protein produced by cyto-
toxic lymphocytes that plays an important role in 
immune reactions. Recent studies have shown that 
GZMA plays a significant role in hepatocellular carci-
noma (HCC) and breast cancer. In HCC patients, the 
expression level of GZMA is closely associated with 
tumor growth, metastasis, and prognosis. Patients with 
low GZMA expression usually have larger tumor burden 
and malignant cell characteristics, resulting in poorer 
prognosis (Gao et al. 2022). Further research has revealed 
that GZMA interacts with the F2R receptor on the sur-
face of tumor cells, activating the JAK2/STAT1 signaling 
pathway, inducing tumor cell apoptosis, and T cell-medi-
ated tumor killing. Similarly, the expression of GZMA in 
breast cancer is associated with malignant features, while 
low GZMA expression is related to higher tumor grade, 
lymph node metastasis, and worse prognosis (Huo et al. 
2023). In summary, GZMA plays an important role in 
hepatocellular carcinoma and breast cancer. Understand-
ing its mechanisms of action can contribute to the devel-
opment of novel immunotherapy strategies and improve 
patient prognosis.

According to the latest research, HE5 plays an impor-
tant role in the treatment of mantle cell lymphoma and 
breast cancer. Studies on mantle cell lymphoma have 
shown that the expression of HE5 increases in MCL 
cells when treated with ibrutinib (Fuhr et al. 2022). Co-
administration of HE5 monoclonal antibody (mAb) and 
ibrutinib enhances the toxic effect on ibrutinib-sensitive 
MCL cells. Treatment with HE5 mAb and human serum 
after pretreatment leads to a reduction and dissolution of 
MCL cells. In breast cancer research, HE5 has been found 
to be significantly increased in breast cancer patients and 
is associated with a better prognosis (Ma et  al. 2021). 
Particularly in early-stage breast cancer, HE5 expression 
is higher and correlates with immune cell infiltration, T 
cells, and M1 macrophages. HE5 may have an inhibitory 
effect on breast cancer and participate in the regulation 
of immune cell types and numbers.

HLA-DQA1 (MHC II HLA-DQ-Alpha-1) is a type of 
HLA-II gene located on human chromosome 6, which 
plays an important role in the immune system by pre-
senting antigen fragments of extracellular proteins to 
activate T cells and participate in immune responses. 

Studies have shown that HLA-DQA1 is closely associ-
ated with the development and prognosis of multiple 
tumors, having significant clinical value. For example, 
in lung adenocarcinoma, the DQA1*03 allele is closely 
related to the risk of developing lung adenocarcinoma, 
providing new clues for risk assessment and personalized 
treatment of lung adenocarcinoma (Kohno et al. 2010). In 
the case of esophageal cancer, high levels of HLA-DQA1 
expression are associated with clinical characteristics and 
prognosis of esophageal squamous cell carcinoma (Shen 
et al. 2019). In oral cancer and breast cancer, HLA-DQA1 
polymorphism is related to incidence, and high levels of 
expression are associated with better prognosis, offer-
ing potential biomarkers for prediction and treatment 
of oral cancer and breast cancer (Tsai et  al. 2011; Zhou 
et al. 2023; Mahmoodi et al. 2012). Furthermore, imaging 
models have shown promising predictive performance 
in predicting HLA-DQA1 expression levels, providing 
a basis for personalized prediction of HLA gene expres-
sion. Considering the limitations and potential off-target 
effects of siRNA, during the experimental validation pro-
cess, researchers screen for specific guide RNA (gRNA) 
during the initial selection process to address the limi-
tations of siRNA and reduce potential off-target effects. 
Additionally, eSpCas9 was utilized to increase delivery 
efficiency and minimize off-target effects. In summary, 
HLA-DQA1 plays an important role in various tumors, 
with clinical value in assessing the risk, predicting prog-
nosis, and personalized treatment of tumors. However, 
further research is still needed to validate these findings 
and elucidate the underlying mechanisms of HLA-DQA1 
in tumor development.

LTB (Lymphotoxin β) is a cell surface molecule that 
plays an important role in the immune system. Recent 
research has found that LTB has potential value in the 
treatment of various tumors. Studies have shown that 
in CM, activating LTB receptors can inhibit melanoma 
cell proliferation and induce the release of inflamma-
tory chemokines, potentially promoting the treatment 
of CM and triggering immune responses (Degli-Esposti 
et  al. 1997). In the case of liver cancer, activating LTB 
receptors can inhibit tumor cell proliferation and migra-
tion, induce cell apoptosis, and promote the activation of 
tumor anti-tumor immune responses, thereby improving 
the treatment efficacy of liver cancer (Subrata et al. 2005). 
In head and neck tumors, research has found that LTB 
can inhibit cell proliferation and invasion, and induce cell 
apoptosis (Das et  al. 2019). Furthermore, LTB can also 
suppress the growth and metastasis of head and neck 
tumors by activating the immune system. Finally, studies 
have found a close correlation between LTB and the loss 
of follicular dendritic cell (FDC) phenotype in lymphoma 
and the pattern of lymphoma dissemination and growth, 
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suggesting the important value of LTB in improving fol-
licular structure and restoring normal immune environ-
ment in lymphoma(Pepe et al. 2018). Although the above 
viewpoints are preliminary conclusions based on existing 
research findings, the role and potential applications of 
LTB may vary in different tumor types and individuals.

This study has some limitations. Firstly, our data is ret-
rospective, and prospective cohort studies are needed to 
validate the model and increase the reliability and gen-
eralizability of the results. Secondly, the model is solely 
based on gene expression data from skin tissues. To 
better suit clinical applications, it is recommended to 
develop biomarkers based on urine or blood samples. 
These non-invasive sample collection methods are con-
venient and can be widely implemented. Lastly, future 
research should include in  vivo and in  vitro experi-
ments to further validate the mechanisms of action of 
the cytokines in the study. Through these experiments, 
we can gain a more comprehensive understanding of the 
specific functions and interactions of each molecule in 
the cellular environment. Overcoming these limitations 
and continuously exploring will improve the credibility 
and effectiveness of the research in clinical applications.

Conclusion
Generally speaking, we attempted to develop a new scor-
ing system through the analysis of public database data, 
aiming to assess the risks associated with disulfidptosis 
and predict the prognosis of CM patients, thus influenc-
ing the selection of immunotherapy. This provides clini-
cians with a reliable basis for decision-making, enabling 
them to make personalized treatment choices. Addition-
ally, we conducted in vitro experiments to validate HLA-
DQA1 and found it to be a tumor-suppressing gene. 
Therefore, HLA-DQA1 may be considered a promising 
target for the treatment of CM patients.
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