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Abstract 

Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it 
has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnor-
mal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological altera-
tions of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects 
on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochon-
dria originated from microorganisms and share comparable biological characteristics with the microbiota found 
in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial func-
tion in the occurrence and development of metabolic disorders. The gut microbiome’s metabolites may play a vital 
role in this communication. However, the relationship between the gut microbiome and mitochondrial function 
in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent 
studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabo-
lites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing 
DKD based on this biological axis in the future.
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Introduction
The prevalence of diabetic patients has been rising in 
recent decades, leading to an increase in cases of DKD, 
a severe microvascular complication of diabetes mellitus 
(DM) characterized by thickening of the basement mem-
brane, glomerular and tubular hypertrophy, mesangial 
matrix expansion, and eventual loss of kidney function 

(Hoshino et  al. 2015; Ritz, and Orth 1999). The Inter-
national Diabetes Federation has released data predict-
ing that the number of individuals with diabetes will 
reach 700 million by 2045 (Saeedi et  al. 2019). After an 
initial diagnosis, approximately 40% of diabetic patients 
may develop DKD within 10–20 years (Lim 2014). DKD 
accounts for 44.5% of newly diagnosed ESRD patients 
and has become the main cause of ESRD (Collins et  al. 
2011; Sharma et  al. 2017). As kidney damage pro-
gresses, DKD patients have a higher risk of mortality and 
decreased quality of life (Afkarian et  al. 2013). Despite 
the impact of this, the current comprehension of the 
pathogenic mechanisms of DKD remains intricate and 
ambiguous. Currently, although more and more trials 
showed that the SGLT2 inhibitors have certain renopro-
tection (Garofalo et al. 2019; Mosenzon et al. 2019; Leslie 
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and Gerwin 2019; Heerspink et al. 2020), effective treat-
ments for DKD are still deficient (Hostetter 2001). There-
fore, new prospective treatment strategies for DKD need 
to be explored urgently.

Accumulating evidence has emphasized a significant 
association between the microbiome of the digestive 
system and metabolic disorders like obesity, polycystic 
ovary syndrome, and diabetes (Tilg, and Moschen 2014; 
Wu et  al. 2021). Emerging research suggests that an 
imbalance in gut bacteria can impact the advancement of 
CKD by generating uremic toxins and controlling inflam-
mation and the immune system (Lee et al. 2011). Several 
studies have shown that the alteration of gut microbiota 
play a crucial part in the onset and development of DKD 
(Vaziri et al. 2016; Fernandes et al. 2019). However, a key 
question is to answer how gut microbiota results in renal 
damage in DM patients. As we know, gut microbiota dys-
biosis is characterized by a disruption of the homeostatic 
balance and abnormal production of bacterial metabo-
lites. Although some gut microbiota metabolites, which 
can be either beneficial or harmful, were found partici-
pated in the pathological progression of DKD (Fang et al. 
2021a), there are still numerous challenges to uncover the 
underlying pathological mechanism.

The fact that the renal system has a high resting meta-
bolic rate is well-known, which leads to an abundance of 
mitochondria. High energy produced by mitochondria 
must meet the high energy requirements of the kidney 
for glomerular filtration, urine reabsorption and forma-
tion (Bhargava, and Schnellmann 2017). To maintain 
a healthy and optimally functioning kidney, it is crucial 
to have mitochondrial homeostasis as kidney cells like 
proximal tubular cells and podocytes require adenosine 
triphosphate (ATP) and reactive oxygen species (ROS) 
that are released by mitochondria to perform their physi-
ological functions (Müller-Deile and Schiffer 2014; Gil-
bert 2017; Brinkkoetter et  al. 2019). Extensive research 
has been conducted in recent years on the possible con-
tribution of mitochondrial malfunction to the onset and 
advancement of DKD. Sufficient research indicates that 
changes in mitochondria, such as their shape, creation, 
energy production, and excessive production of ROS, 
play a role in the advancement of DKD (Bhargava and 
Schnellmann 2017; Galvan et al. 2017, 2021).

Considering the comprehensive crosstalk between the 
microbiome and mitochondria is an intriguing perspec-
tive, as previously stated, due to the connection between 
dysbiosis of gut microbiota and changes in mitochon-
dria in the pathogenesis of DKD. Host mitochondria can 
import certain bacterial proteins because their targeting 
sequences are similar to those of mitochondria (Lucat-
tini et al. 2004). The biological processes of mitochondria 
(Franco-Obregón and Gilbert 2017; Lobet et  al. 2015; 

Neish, and Jones 2014) can be directly regulated by the 
gut microbiota through key transcription factors, coacti-
vators, and enzymes. Our hypothesis is that communica-
tion between mitochondria and the human microbiome 
can impact the metabolic health of the host. It is note-
worthy that multiple researches highlight the depend-
ability of the inter-action between the microbiome and 
mitochondria of the host (Lobet et al. 2015; Walker et al. 
2014; Zorov et al. 2014). A significant role in communi-
cation between bacteria and mitochondria is thought to 
be played by metabolite molecules from gut microbiota, 
including short-chain fatty acids (SCFA), lipopolysac-
charides (LPS), and hydrogen sulfide (H2S) (Mafra et al. 
2019). Therefore, this article aims to investigate the pos-
sible mechanism of the gut microbiota-microbial metab-
olites-mitochondrial axis in the advancement of DKD by 
analyzing existing literature and propose potential thera-
peutic strategies for managing DKD.

Gut microbiota dysbiosis in DM and DKD
Alteration of gut microbiome in type 1 and 2 DM 
individuals
While a direct link between gut microbiota dysbiosis and 
T1DM development has not been confirmed, an imbal-
ance in gut microbiota has been found at different stages 
of diabetes, which includes T1 and T2 DM. In patients 
with prediabetes or diabetes, the gut microbiota changes 
characterized by a decrease in the ratio of Gram-positive 
firmicutes to Gram-negative Bacteroidetes (Demirci et al. 
2020; Giongo et al. 2011), absence of butyrate producing 
bacteria, reduced bacterial diversity and community sta-
bility, which is significantly distinct from that of healthy 
individuals (Knip, and Siljander 2016; Brown et al. 2011; 
De Goffau et al. 2013; Kostic et al. 2015). Bacteroides are 
associated with increased interleukin (IL)-6, poor blood 
glucose control, increased toll-like receptor levels and 
anti-islet cell autoantibodies (Demirci et  al. 2020; Higu-
chi et  al. 2018; Huang et  al. 2018) in T1DM patients. 
Decreased Faecalibacterium levels was also observed 
in MODY2 patients, which is negatively related with 
HbA1c (Huang et  al. 2018). Under germ-free (GF) con-
ditions, the persistent deterioration of insulitis in T1DM 
patients suggests a possible signaling crosstalk between 
the immune system and the microbiota (Alam et  al. 
2011). Autoimmunity of β cell in islet has been shown to 
be associated with changes in specific symbiotic bacteria, 
including reduction of clostridium leptin in non-obese 
diabetic rats and increase of bacteroidetes in late T1DM 
patients (Sysi-Aho et  al. 2011; Davis-Richardson et  al. 
2014).

New research in both humans and animals has revealed 
that the gut microbiota of individuals with T2DM has 
undergone significant alterations. In T2DM patients, 



Page 3 of 17Ma et al. Molecular Medicine          (2023) 29:148  

the hyperglycemia and metabolic disorder were demon-
strated to be positively correlated with a higher ratio of 
Firmicutes/Bacteroidetes (Remely et  al. 2016; Wu et  al. 
2019).

Compared to healthy controls, T2DM patients exhibit 
a greater percentage of Enterobacteriaceae, Collinsella, 
Streptococcus, Lactobacillus and Lachnospiraceae/Rumi-
nococcus, which was important in activating lower lev-
els of inflammation and exacerbating insulin resistance 
(Candela et al. 2016). In addition, the probiotics that pro-
duce SCFAs including the bacteroidesis prevotellais lach-
nospirag roseburia and faecali bacteria were significantly 
depleted in patients with diabetic (Ma et al. 2020). Com-
pared with healthy subjects, the abundance of Blautia, a 
producer of SCFAs, is reduced in T2DM patients, which 
was like some other butyric acid-producing bacteria and 
may be one of the causes of dysglycemia (Song et al. 2020; 
Inoue et  al. 2017). To sum up, current evidence shows 
that altered gut microbiome are significantly related to 
the pathogenesis of type 1 DM or type 2 DM (Vatanen 
et  al. 2016; Brown et  al. 2016). Altered gut microbiome 
may promote the onset of type 1 diabetes by changing 
the immune system. In addition, Dysbiosis of gut micro-
biome may cause blood glucose regulation disorder 
by aggravating oxidative stress damage, promoting the 
expression of pro-inflammatory factors and increasing 
insulin resistance, which contribute to the development 
of metabolic disorders such as pre-diabetes and type 2 
diabetes (Palacios et al. 2017; Peng et al. 2014).

Changes of gut microbiota in DKD
Abnormal gut microbiota has been observed in both ani-
mal and human studies about DKD. The DKD animal 
model exhibited a reduction in α-diversity and SCFAs 
producing bacteria, along with an increase in Bacillota 
and Actinobacteria (Li et al. 2020b). In the deterioration 
of DKD, the metabolic disorders were mainly caused by 
g_Eubacterium_nodatum_group, g_Lactobacillus, and 
g_Faecalibaculum as concluded by Zhang et al. (2022). A 
study in rats explored the pathophysiological mechanism 
between early DKD and changes in gut microbiota. The 
findings indicated that DKD rats, induced by intraperi-
toneal injection of streptozotocin, exhibited abnormal 
gut microbiota and an elevated level of plasma acetate. 
Elevated acetate levels hastened the onset of renal dam-
age, including thickening of the glomerular basement 
membrane, fusion of podocyte feet, and hypertrophy of 
the mesangial matrix (Lu et al. 2020). The abundance of 
certain bacteria is associated with the severity of protein-
uria. In DKD mice model with severe proteinuria (24  h 
urinary protein ≥ 300 mg/24 h), the enrichment of Allo-
baculum and Lottis was significantly increased, and was 
positively correlated with body weight, blood glucose and 

24  h urinary protein, while Blautia was negatively cor-
related with 24 h urinary protein in the mild proteinuria 
group (24 h urine protein < 300 mg/24 h) (Li et al. 2020a).

He et  al. discovered that the gut microbiota of DKD 
patients differed significantly from T2DM patients, and 
that the abundance of certain Citrobacter farmeri and 
Syndromus schinkii was positively associated with the the 
urinary albumin/urine creatinine ratios (UACRs) of DKD 
patients (He et  al. 2022). A study from China analyzed 
the variation in gut microbiota among healthy individu-
als, DKD patients who were diagnosed by renal biopsy 
and T2DM patients without kidney injury. The result 
exhibited notable variations in the abundance and variety 
of intestinal microorganisms among patients with DKD 
and T2DM. Compared to T2DM patients, DKD group 
had a higher abundance of Proteobacteria and Escher-
icha-Shigella, but a lower abundance of Prevotella_9 
(Tao et  al. 2019). Firmicutes, which produce butyrate 
and regulate the inflammatory response, were found to 
be more abundant in Control and T2DM groups than in 
DKD patients (Wong et  al. 2014; Furusawa et  al. 2013). 
Du et al. (2021) observed dysbiosis and reduced richness 
and diversity of gut bacteria from phylum to genus lev-
els in DKD patients, which could potentially serve as new 
microbial biomarkers for DKD. In addition, a systematic 
review and meta-analysis found that DKD patients had 
lower levels of intestinal bacteria, decreased diversity 
index, and significant changes in β diversity compared to 
healthy controls. The most significant changes were an 
increase in Escherichia, Citrobacter, and Klebsiella, and a 
reduction in Roseburia (Wang et al. 2022).

To summarize, although an intimate relationship 
between alterations of composition and function in gut 
microbiota and the progression of DKD has been con-
firmed, it is essential to clarify the specific mechanism of 
intestinal flora promoting the onset and advancement of 
DKD. Gut microbiota metabolites, as important messen-
gers of communication between bacteria and host, may 
have a significant impact on regulating host immunity 
and inflammation (Uchimura et al. 2018). In this regard, 
we speculate that the change of metabolites derived from 
gut microbial may be a major bridge to further under-
stand the ‘inter-talk’ between gut microbiome and DKD.

The potential mechanisms of gut microbial 
metabolites in DKD
Upon consumption of macronutrients, the microbiome 
in the human gut has the ability to generate a range of 
metabolites including SCFAs, TMAO, bile acids (BAs), 
protein-bound uremic toxins (PBUTs), branched-chain 
amino acids (BCAAs), and some other unknown metab-
olites. The metabolites derived from gut microbial are 
considered to be the medium of communication between 
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microbes and the host, which have significant effects on 
the biological activities and metabolism of the human 
body (Schroeder and Bäckhed 2016). In recent years, 
an increasing number of studies have investigated the 
changes in the diversity and function of gut microbiota 
in patients with metabolic diseases such as diabetes, obe-
sity, and metabolic syndrome. Studies have found that 
these patients have significant changes in the gut micro-
bial community, leading to dysbiosis of gut microbiota 
and/or leaky gut syndrome, increased intestinal perme-
ability, dysfunction of intestinal barrier. Subsequently, a 
variety of gut microbiota metabolites are released into 
the blood, such as SCFAs, TMAO, LPS, and uremic tox-
ins, are released into the blood, which further causes 
changes in disease phenotypes through a variety of sign-
aling pathways (Koppe et al. 2018; Sharma and Tripathi 
2019; Sharma et al. 2019; Jaworska et al. 2022).

Increasing evidence supports the crucial role of gut 
microbiota metabolites in the pathogenesis of DKD 
(Table 1). The major metabolites of microbiota-mediated 
fermentation of non-digestible carbohydrates in the gut 
are SCFAs, which are primarily produced by Bacteroi-
detes and Firmicutes (Levy et  al. 2016). Research has 
demonstrated that SCFAs have a significant impact on 
combatting inflammation, controlling immune response, 
and exerting anti-oxidant and anti-fibrotic effects in 
kidneys. Furthermore, SCFAs play a role in regulat-
ing blood pressure and human metabolism by activat-
ing G protein-coupled receptors and inhibiting histone 
acetylation (Huang et al. 2017b; Li et al. 2019, 2021). In 
comparison to T2DM individuals without kidney disease 
and normal controls, Zhong and colleagues found that 
patients with DKD had decreased levels of SCFAs in both 
their serum and feces. SCFAs are negatively correlated 
with renal function (Zhong et al. 2021). The pathological 
damage and deterioration of renal function in DKD can 
be improved by exogenous SCFAs, particularly butyric 
acid, through the inhibition of oxidative stress and NF-kB 
signaling mediated by GPR43 (Huang et al. 2020). Con-
suming dietary fiber can safeguard against DKD by pro-
moting the growth of SCFA-producing microorganisms 
in the gut and elevating SCFA levels in fecal matter and 
blood serum, which can slow down the advancement of 
DKD by stimulating GPR43 and GPR109A receptors (Li 
et al. 2020b). Butyrate (NaBu) has been demonstrated to 
enhance renal pathological injury in diabetic rats induced 
by streptozocin(STZ) in  vivo and alleviate apoptosis of 
NRK-52E cells induced by high glucose through inhib-
iting HDAC2 in vitro (Khan, and Jena 2014; Dong et al. 
2017; Du et  al. 2020). Conversely, there are disagree-
ments regarding the function of acetate in DKD. Huang 
et  al. Demonstrated that acetate has the ability to pro-
tect Mesangium cells against inflammation and oxidative 

harm caused by high glucose and Lipopolysaccharide 
(Huang et al. 2017a). While some research has indicated 
that acetate may have a negative impact on the progres-
sion of DKD. According to Lu et al.’s findings, the levels of 
plasma acetate was positive correlated with angiotensin 
II protein in the kidney, which is believed to be a poten-
tial cause of DKD (Li et al. 2020a). Additionally, another 
study indicated that acetate can lead to tubulointersti-
tial injury in DKD by disrupting cholesterol homeostasis 
through the activation of GPR43 (Hu et al. 2020).

The degradation of l-carnitine and choline found 
in foods like red meat, eggs, and cheese (Wang et  al. 
2011) results in the production of TMAO. Numerous 
researches have demonstrated that TMAO plays a role 
in controlling lipid metabolism and glucose balance, 
and is a factor in the development of some diseases 
such as atherosclerosis (Wang et  al. 2011), heart fail-
ure (Tang et  al. 2015b), diabetes (Zhuang et  al. 2019), 
Alzheimer’s disease (Vogt et  al. 2018), and chronic 
kidney disease (Tang et  al. 2015a). A clinical Study 
have verified that T1DM individuals with higher levels 
of plasma TMAO are more likely to experience poor 
renal outcome (Winther et al. 2019). Increased levels of 
TMAO in the bloodstream are also linked to both car-
diovascular disease events and mortality. TMAO can 
activate the NF-KB pathway in DKD patients, further 
aggravating the microinflammation in vivo and leading 
to DKD (Al-Obaide et  al. 2017). DKD patients exhib-
ited a higher concentration of TMAO in comparison 
to T2DM patients without kidney disease and healthy 
individuals, which was positively correlated with 
UACRs (Yang et al. 2022). In animal studies, DKD rats 
fed with TMAO showed more severe renal function 
decline and renal fibrosis. Further study has shown that 
TMAO can speed up kidney inflammation by activat-
ing the NLRP3 inflammasome and ultimately resulting 
in the discharge of IL-1β and IL-18 (Fang et al. 2021b).

The liver produces primary bile acids (BAs) which are 
later converted into secondary BAs by the gut microbi-
ome (Matsubara et  al. 2013). BAs regulates metabolism 
mainly by activating two primary receptors, namely the 
nuclear farnesoid X receptor (FXR) and the membrane-
bound Takeda G protein-coupled receptor 5 (TGR5) 
(Chiang and Ferrell 2019), which have been demonstrated 
to exert renoprotective effects in diabetes and obesity 
(Wang et  al. 2018). Ursodeoxycholic Acid (UDCA), one 
of the secondary BAs, has been discovered to alleviate 
renal dysfunction, podocyte apoptosis, and oxidative 
stress caused by renal ER stress in DKD rats (Cao et al. 
2016a, b). Administering Tauroursodeoxycholic acid 
(TUDCA) can attenuate glomerular and tubular damage 
in diabetic rats, which is partly mediated by inhibiting 
ER. (Marquardt et al. 2017; Zhang et al. 2016).
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PBUTs, including phenyl sulfate (PS), pcresyl sul-
fate (pCS), p-cresyl glucuronide (pCG) and indoxyl sul-
fate (IS), are generated by intestinal microorganism 
through the breakdown of aromatic amino acids and 
can’t be effectively eliminated by traditional hemodialy-
sis method due to their protein-binding properties. Both 
in  vitro and in  vivo studies, indoxyl sulfate exposure 
caused renal tubulointerstitial and vascular injury and 
decreased expression of podocyte characteristic markers. 
Further studie showed that the above injury was induced 
by IS through activating aryl-hydrocarbon receptor 
(AhR) (Ichii et al. 2014). In DKD patients and rats (Van 
Der Kloet et al. 2012; Atoh et al. 2009; Zhao et al. 2012), 
there is a strong correlation between elevated intrare-
nal IS levels and 24-h urinary protein levels, estimated 
glomerular filtration rate (eGFR), and tubulointerstitial 
injury index. Another research has shown that elevated 
pCS levels are linked to the advancement of DKD (Niew-
czas et al. 2014). It has recently been found that the high 
level of plasma PS can cause reduction of mitochondrial 
function in podocyte, foot process disappearance, glo-
merular basement membrane (GBM) thickening and 
perivascular fibrosis, and the plasma PS level is not only 

significantly correlated with proteinuria/creatinine and 
eGFR in diabetic patients, but also can predict the dete-
rioration of ACR in DKD patients in 2  years (Kikuchi 
et al. 2019). Therefore, PS can be used as a predictor for 
the risk of renal damage progression, a marker for early 
diagnosis, and a possible therapeutic target of DKD.

There is mounting evidence indicating that gut micro-
biota metabolites can serve as pathological and physi-
ological characteristics or biomarkers of DKD, but there 
is still much uncertainty regarding this issue at present. 
Firstly, more research is needed to elucidate the causal 
relationship between microbial metabolites and DKD. 
Secondly, further exploration of the targets and recep-
tors of these microbial metabolites in the human body is 
needed. Ultimately, we need to determine whether sup-
plementation of beneficial microbial metabolites can alle-
viate or delay the progression of DKD.

The interaction between gut microbial metabolites 
and mitochondria
Existing research has confirmed that there are some 
similarities in physiological characteristics and struc-
ture between gut microbiome and mitochondria, both 

Fig. 1 The interaction between metabolites produced by gut bacteria and mitochondria in chronic disease, as shown in this figure. With 
the imbalance of intestinal flora, the intestinal tract undergoes a number of structural and functional changes including leaky gut syndrome, 
increased intestinal permeability, dysfunction of intestinal barrier. Various microbial metabolites are released into the bloodstream. Many microbial 
metabolites were found to cause human diseases by affecting normal mitochondrial function. SCFAs short-chain fatty acids, TMAO trimethylamine 
N-oxide, IS indoxyl sulfate, PS  phenyl sulfate, AD Alzheimer’s disease, MS multiple sclerosis, PD Parkinson’s disease, CVD cardiovascular diseases, DKD 
diabetic kidney disease
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of which jointly regulate host metabolism and longev-
ity (Tomtheelnganbee et  al. 2022; Ghosh et  al. 2022). 
We hypothesize that there may be a potential cross-talk 
within the gut microbiome and the host mitochondria 
because existing studies have provided ample support-
ing evidence for this interaction mechanism. The origin 
of mitochondria can be traced back to methanogenic 
archaea in accordance with the prevailing endosymbiotic 
theory (Sagan 1967). Numerous studies have shown that 
rickettsia bacteria are ancestors of mitochondria. This 
origin theory indicates that mitochondria have similar 
biological properties with gut microbiota (Andersson 
et al. 1998; Fitzpatrick et al. 2006; Wang, and Wu 2015). 
Structurally and functionally, there are similarities as 
well. The inner membrane of mitochondria is similar to 
bacterial membrane, and the outer membrane is simi-
lar to eukaryotic biofilm. Mitochondrial DNA are simi-
lar to DNA from some bacteria (Wang, and Wu 2014). 
Mitochondria also share common autophagic systems as 
bacteria for membrane degradation (Degli Esposti et  al. 
2014). Recent research has started to uncover the inti-
mate connection between the gut microbiota and mito-
chondria in the pathophysiology of different diseases 
(Gruber, and Kennedy 2017), while the gut microbiome 
metabolites may be a key medium responsible for this 
cross-talk.

Short-chain fatty acids (SCFAs) have the ability to hin-
der the inflammatory response and promote the advan-
tageous outcomes of physical activity by stimulating 
important agents in mitochondrial biogenesis through 
transcriptional co-activators like peroxisome prolifera-
tor-activated receptor-γ coactivator-1α(PGC-1α), silent 
information regulator 1(SIRT1) and the enzyme AMPK 
(Clark, and Mach 2017). Butyrate can alter mitochon-
drial function, efficiency, and dynamics by improving 
respiratory capacity and fatty acid oxidation, activating 
the AMPK-acetyl-CoA carboxylase pathway, and pro-
moting inefficient metabolism (Mollica et al. 2017). In a 
lymphoblastoid cell line isolated from boys with autism 
spectrum disorders, butyrate has the ability to improve 
mitochondrial function during physiological stress and/
or mitochondrial dysfunction (Rose et al. 2018). PA levels 
in serum and stool are reduced in individuals with MS in 
comparison to controls. Positive outcomes were observed 
after three years of PA intake, such as a decrease in yearly 
relapse rate, stabilization of disability, and a reduction in 
brain atrophy, which were closely linked to the normal-
ized Treg cell mitochondrial function and morphology in 
MS patients (Duscha et al. 2020).

Videja et  al. showed that increased levels of TMAO 
can preserve fatty acid oxidation and reduce pyruvate 
metabolism, which can prevent monocrotaline-induced 
impairment of mitochondrial energy metabolism, 

despite the fact that high intake of TMAO and its pre-
cursor has been linked to worsening of atherosclerosis 
and CVD (Videja et  al. 2021). Indole-3-propionic acids 
(IPA), which is mainly produced by Clostridium sporo-
genes, was reported to affect mitochondrial respiration 
in cardiomyocytes in an experimental model of right 
ventricular heart failure (Gesper et al. 2021). UDCA was 
considered to be a new approach for Parkinson’s disease 
(PD) due to its ability to improve mitochondrial function 
and protect mitochondrial integrity (Abdelkader et  al. 
2016). The up-regulation of mitophagy by TUDCA in 
human neuroblastoma cells can prevent mitochondrial 
dysfunction and cell death, offering new perspectives for 
the prevention of neurodegenerative diseases (Fonseca 
et al. 2017). Delta-valerobetaine is an intestinal microbial 
metabolite that regulates the oxidation of mitochondrial 
fatty acids, which can result in increased lipid storage in 
adipose tissue and the liver, and further leading to obe-
sity and hepatic steatosis (Liu et al. 2021). Administration 
of Urolithin A (UroA), a major metabolite of ellagic acid 
produced by the gut microbiome, can improve obesity 
and insulin resistance by attenuating triglyceride accu-
mulation and elevating mitochondrial biogenesis in the 
liver (Toney et al. 2019). According to another research, 
UroA has the potential to trigger mitophagy, extend the 
lifespan of C. elegans, and enhance muscle performance 
in rodents (Ryu et  al. 2016). Herpes simplex virus type 
1 (HSV-1) can activate microglia by increasing mito-
chondrial damage through defective mitophagy, while 
the microbial metabolite NAMO can inhibit microglia 
activation and HSV-1 induced herpes simplex encepha-
litis (HSE) progress by restoring NAD+ dependent 
mitophagy (Li et  al. 2022, 2023). Trimethyl-5-amino-
valeric acid produced by gut microbiota can accelerate 
myocardial hypertrophy by altering mitochondrial ultra-
structure, inhibiting carnitine metabolism and reducing 
fatty acid oxidation (Zhao et al. 2022). A harmful metab-
olite N6 carboxymethyl lysine (an advanced glycosylation 
end product) from the gut can cross the intestinal bar-
rier and enter the body. It can damage microglia in the 
brain by increasing the reactive oxygen species (ROS), 
inhibiting mitochondrial activity and ATP accumula-
tion. This suggests that enhancing the intestinal barrier 
function can reduce the translocation of harmful intesti-
nal metabolites into the brain, which may be an effective 
means of promoting brain health in the elderly (Mossad 
et al. 2022). PS administration induces podocyte damage 
by decreasing mitochondrial basal respiration, ATP pro-
duction, H+ leaking and maximum respiration capacity, 
which contributes to albuminuria and the progression of 
DKD (Kikuchi et al. 2019).

To summarize, the interaction between intestinal 
microorganisms and mitochondria is fascinating and 
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associated with pathogenic state in different systemic 
diseases (Fig.  1). By targeting the dialogue between gut 
microbiota and mitochondria, a series of chronic diseases 
related to mitochondrial disorders and metabolic disor-
ders can be more precisely treated (Franco-Obregón and 
Gilbert 2017). Gut microbiota strengthens its association 
with mitochondria by regulating the production of ROS 
and mitochondrial activity through the release of metab-
olites, proteins, or toxins. Establishing a chemical com-
munication mode between bacteria and mitochondria is 
crucial for comprehending the intricate and ever-chang-
ing interactions between the environment, microbiome, 

and host, ultimately leading to a better understanding 
of their effects on health and diseases (Han et al. 2019). 
Such knowledge may allow clinician to treat mitochon-
drial and metabolic diseases by fine-tuning the quality 
and diversity of microbiota using treatment strategies 
such as probiotics administration, diet control or fecal 
transplantation. Such treatment strategy may avoid major 
research efforts required to demonstrate safety and effec-
tiveness associated with direct application of large num-
ber of microbiota metabolites and microbiota related 
factors.

Fig. 2 A potential biological function of the gut microbiota-microbial metabolites-mitochondria axis in the pathogenesis of DKD. In this 
hypothetical biological axis, with the deterioration of DM and digestion, degradation, and absorption of food by gut microbiota in the intestinal 
tract, the diversity and abundance of gut microbiota changed manifested by increased phylum Proteobacteria, Actinobacteria, Bacteroidetes 
and decreased phylum Firmicutes. Subsequently, various gut microbial metabolites are produced under the action of the gut microbiota 
and then released into the blood. These gut microbial metabolites, such as SCFAS, TMAO, PS and others, are transported to the kidney flowing 
the blood stream and interact with the mitochondria of kidney intrinsic cells. Metabolites of gut microbiota may lead to changes in mitochondrial 
function or disorder of mitochondrial quality control, thereby alleviating or accelerating the progression of DKD. SCFAs  short-chain fatty acids, 
TMAO trimethylamine N-oxide, IS indoxyl sulfate, PS  phenyl sulfate, Bas bile acids, K–W kimmelstiel–wilson, Scr serum creatinine, eGFR estimated 
glomerular filtration rate, ESRD end stage renal disease



Page 10 of 17Ma et al. Molecular Medicine          (2023) 29:148 

Mitochondrial damage in DKD
Multiple pathological mechanisms are involved in the 
pathogenesis of DKD, including abnormal RAS system, 
excessive ROS production, increased AGEs, microinflam-
mation, and oxidative stress. Nonetheless, an increas-
ing amount of proof suggests that DKD’s pathogenesis 
is significantly influenced by mitochondrial impairment 
(Saxena et al. 2019; Wei, and Szeto 2019). Mitochondrial 
damages mainly include abnormal mitochondrial biosyn-
thesis (Popov 2020), mitochondrial dynamic imbalance 
(Tur et al. 2020; Sabouny and Shutt 2020), mitochondrial 
dysfunction (Detmer and Chan 2007), and mitophagy 
disorder (Westermann 2010). The process of mitochon-
drial biosynthesis enables the nucleus and mitochondrial 
genome to work together closely in order to synthesize 
and replace damaged or dysfunctional mitochondria, 
which helps to maintain the stability of mitochondria and 
regulate their normal metabolic processes in cells (Wein-
berg 2011). Mitochondrial biosynthesis is regulated by 
PGC-1α, which plays a significant role in the develop-
ment of DKD by enhancing mitochondrial production, 
revitalizing mitochondrial membrane potential, elimi-
nating ROS, and preventing oxidative stress (Cai et  al. 
2016; Lu et  al. 2017; Pettersson-Klein et  al. 2018; Xue 
et al. 2019). Numerous researches indicate that the onset 
and progression of DKD (Guo et al. 2015; Lee et al. 2017, 
2021; Lynch et al. 2018) are characterized by significant 
reduction in mitochondrial biogenesis and decreased 
expression of PGC1α. In animal models of DKD (Yuan 
et  al. 2012), podocytes and mesangial cells can suffer 
damage due to decreased levels of PGC-1α and mito-
chondrial synthesis. However, some studies found that 
in a DKD mouse model, specific induction of podocyte 
overexpression of PGC1α failed to protect the kidney, 
instead causing podocyte damage and increasing uri-
nary protein (Li et al. 2017). To conclude, DKD’s patho-
genesis is directly related to mitochondrial biosynthetic 
dysfunction.

Mitochondrial dynamics refers to the fact that mito-
chondria are in the Dynamic equilibrium of fusion and 
fission. This dynamic change of mitochondria can be 
manifested in morphological heterogeneity, such as 
punctate, fragmented, strip or linear in the cytoplasm. 
Changes in the cellular environment can affect mito-
chondrial fusion and fission by triggering changes in 
the function or activity of mitochondrial fusion or fis-
sion related proteins. Mitochondrial fission is mainly 
mediated by dynamic related protein 1 (DRP1), mito-
chondrial fission protein 1 (Fis1) and mitochondrial fis-
sion factor (MFF). The fusion process is divided into 
the fusion of outer mitochondrial membrane (OMM) 
and inner mitochondrial membrane (IMM), which are 
respectively mediated by mitochondrial fusion protein 

(MFN) and optic atrophy protein 1 (OPA1). Knockout 
of Drp1 can significantly reduce mitochondrial fission, 
decrease albuminuria and improve podocyte morphol-
ogy, while the activation of Mfn1/2 can alleviate lesions 
of DKD (Audzeyenka et  al. 2022). In animal models of 
DKD, enhanced mitochondrial fission in several types 
of renal cells has been reported to result in diminished 
energy production and accumulation of ROS, which fur-
ther accelerate the progression of DKD (Sun et al. 2008; 
Ayanga et  al. 2016). Not only mitochondrial fission has 
been recognized as a significant morphological sign of 
renal injury in DKD in numerous studies, but also exces-
sive mitochondrial fusion participated in the pathogen-
esis of DKD (Kim and Lee 2021). Excessive fusion of 
mitochondria results in elongation and enlargement of 
mitochondria, leading to an increase in ROS production 
and a decrease in mitochondrial membrane potential 
(Woo et al. 2020; Yoon et al. 2006). In summary, imbal-
ance of mitochondrial dynamics are closely related to 
the tissue damage of DKD by affecting mitochondrial 
function.

Mitochondrial dysfunction is altered by the production 
of superfluous ROS, accumulation of damaged mtDNA, 
and gradual dysfunction of the respiratory chain. It is 
known that excessive ROS production induced by high 
glucose is the predominant initiating damage mecha-
nism in DKD (Lindblom et al. 2015). Overproduction of 
ROS may lead to oxidative stress and persistent harm to 
cellular constituents and glomerular podocyte, thereby 
leading to inflammation, interstitial fibrosis, and apop-
tosis in DKD (Fakhruddin et al. 2017; Badal, and Danesh 
2014). Evidence suggests that the progressive accumula-
tion of damaged mtDNA triggers an overproduction of 
ROS, subsequently causing mitochondrial dysfunction 
and subsequent DKD (Ježek et al. 2018). Simultaneously, 
mitochondrial damage leads to malfunction of the mito-
chondrial respiratory chain, leading to an inadequate 
intracellular ATP synthesis (Su et al. 2013), which further 
contributes to podocyte injury in DKD.

Under physiological conditions, cells can remove senes-
cent or damaged mitochondria through mitophagy to 
maintain intracellular homeostasis (Galluzzi et al. 2017). 
Mitophagy disorders have also been confirmed to be 
involved in the pathogenesis of DKD (Zhang et al. 2021). 
The marker proteins of autophagy such as LC3, PINK1, 
Parkin, and Beclin1 are decreased while P62 is increased 
in renal cells and DKD models (Feng et  al. 2018; Han 
et  al. 2021; Wen et  al. 2020; Sun et  al. 2019; Guo et  al. 
2020; Palikaras et  al. 2018). In kidney cells, the level of 
mitophagy in podocytes was higher compared tothat in 
renal tubular epithelial cells (Kitada et  al. 2016; Hartle-
ben et  al. 2010). Enhanced mtophagy activity was dem-
onstrated to have a renoprotective effect in rat models 
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of DKD (Tagawa et al. 2016; Yang et al. 2019b). Supple-
ment with MitoQ, a mitochondrial antioxidant, has been 
shown to protect from DKD by enhancing mitophagy 
levels (Xiao et al. 2017). Another study showed that inhi-
bition of mitophagy in renal intrinsic cells significantly 
increased the number of damaged mitochondria whereas 
some factors such as PGRN, FoxO1, BNIP3 and FBW7 
can alleviate renal inflammation and glomerular injury by 
activating the mTOR/Pink1/Parkin pathway to increase 
the level of mitophagy (Huang et al. 2016).

The gut microbiota‑microbial 
metabolites‑mitochondrial axis in DKD
In 2011, Meijers and Evenepoel (2011) first put forward 
the theory of the gut-kidney axis. Later, Pahl and Vaziri 
(2015) proposed the “chronic kidney disease-colon axis” 
proposing that there may be mutual influence and inter-
action between human intestinal flora disorder and CKD 
progression. However, as the central medium of the ‘the 
gut-kidney axis’, the specific mechanism of gut microbi-
ota between the intestine and the kidney is still unclear. 
There are still many unknown areas in the pathological 
process from intestinal flora disorder to chronic kidney 
damage that warrants further exploration. As previ-
ously summarized, although mitochondrial dysfunction 
and alteration of gut microbiota are both involved in 
the onset of DKD, it is not sure that whether the gut 
microbes send signals to host mitochondria to result in 
kidney damage.

More and more evidence have identified the criti-
cal function of microbial metabolites in the crosstalk of 
gut microbes and host mitochondria (Bajpai et al. 2018; 
Vezza et al. 2020). Therefore, based on the results of the 
current studies, we propose a potential biological axis 
including the gut microbiota-microbial metabolites-
mitochondria in the pathogenesis of DKD. Therefore, 
we propose a potential biological axis including the gut 
microbiota-microbial metabolites-mitochondria in 
the pathogenesis of DKD based on the current studies 
(Fig. 2). In this hypothetical biological axis, the diversity 
and abundance of gut microbiota occurred in DM stage. 
With the deterioration of DM and degradation, digestion 
and absorption of food by gut microbiota in the intesti-
nal tract, various gut microbial metabolites are produced 
under the action of the gut microbiota and then released 
into the blood. These gut microbial metabolites, such as 
SCFAS, TMAO, PS and others, are transported to the 
kidney flowing the blood stream and interact with the 
mitochondria of kidney intrinsic cells. Metabolites of gut 
microbiota may lead to changes in mitochondrial func-
tion or disorder of mitochondrial quality control, thereby 
alleviating or accelerating the progression of DKD. The 

emerging knowledge of the gut microbiota-microbial 
metabolites-mitochondrial axis may be of great impor-
tance to find new therapeutic options for DKD.

Therapeutic strategies and future perspectives
The etiology of DKD involves multiple factors and 
pathways. In this review, we highlighted the potential 
mechanism of gut microbiota-microbial metabolites-
mitochondrial axis in progression of DKD. As of yet, 
some therapeutic strategies including administration 
of probiotics, dietary intervention, and drugs have been 
used to delay acceleration of DKD. In the future, we 
should continue to explore the potential treatment for 
DKD based on the gut microbiota-microbial metabolites-
mitochondrial axis.

Probiotics primarily aid in decreasing inflammation 
and oxidative stress, as well as slowing down the decline 
of kidney function in individuals with DKD (Vlachou 
et  al. 2020). Several research studies have shown that 
probiotics can maintain intestinal permeability and 
enhance the integrity of cytoskeleton and tight junction 
proteins (Guo et  al. 2017; Resta-Lenert 2003). He et  al. 
reported that adding probiotics to the diet can improve 
the levels of blood glucose, lipids, and renal function in 
individuals with DKD by increasing the beneficial bacte-
ria and reducing the bacteria released entheogenic endo-
toxins (He and Shi 2017). Taking soy milk containing 
Lactiplantibacillus plantarum A7 can significantly reduce 
Albuminuria, serum creatinine, IL-18 and Sialic acid 
in type 2 DKD patients (Abbasi et  al. 2017). Jiang et  al. 
illustrated that supplementation of probiotics (including 
bifidobacteria, Lactobacillus acidophilus, Streptococcus 
thermophilus) exerted beneficial effects on balancing the 
gut microbiota, reducing blood sugar and mAlb/Cr in 
DKD patients (Jiang et al. 2021). A systematic evaluation 
and meta-analysis revealed that probiotics can improve 
renal function, glucose and lipid metabolism disorders, 
oxidative stress and inflammation in DKD patients. This 
benefit is related to the intervention time, dosage, and 
consumption mode of probiotics (Dai et al. 2022).

Dietary fiber has been proved to modulate intestinal 
microbiota by promoting the enrichment of Prevotella 
and Bifidobacterium, which can produce SCFAs. In addi-
tion, dietary fiber can reduce not only the expression of 
profibrotic proteins but also genes encoding inflamma-
tory cytokines and chemokines in diabetic kidneys (Li 
et  al. 2020b). A potential non-pharmacological thera-
peutic strategy for DKD was fecal microbiota transplan-
tation (FMT), which can modulate the gut microbiota 
through transplanting fecal bacteria obtained from fecal 
donors. Bastos et  al. assessed the advantages of FMT 
on functional and morphological parameters in BTBR 
ob/ob  mice, which mimic the pathogenesis of DKD in 
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humans. The authors found that FMT inhibited body 
weight gain, decreased albuminuria and the levels of 
TNF-α in ileum and ascending colon (Bastos et al. 2022). 
Hu et al. (2020) proved that FMT could effectively reduce 
serum glycolic acid level in DN model rats and reduce 
cholesterol homeostasis disorder mediated by GPR43 
activation, thereby diminishing renal tubulointerstitial 
damage and protecting the kidney.

Mitochondrial impairment has already been described 
in the process of DKD, thus, preventing mitochondrial 
damage and improving mitochondrial dysfunction could 
be a promising therapeutic approach for DKD. In fact, 
some studies have already demonstrated the feasibil-
ity of mitochondrial-targeted treatment for DKD. It has 
been reported that metformin can mitigate renal oxida-
tive stress and tubulointerstitial fibrosis in DKD mice by 
enhancing the level of mitophagy through Pink1/Parkin 
pathway (Han et  al. 2021). Ipragliflozin preserved renal 
tubular cells from  high glucose or palmitate by up-reg-
ulating Mfn2 and OPA1, which are critical membrane 
GTPases for regulating mitochondrial biogenesis (Takagi 
et al. 2018). Empagliflozin, another SGLT2 inhibitor, has 
the ability to safeguard human renal proximal tubular 
cells against high-glucose damage by enhancing mito-
chondrial biogenesis, balancing fusion-fission protein, 
and triggering autophagy (Lee et al. 2019). Mitochondria-
targeted antioxidant peptide SS-31can attenuate renal 
structural damages in DKD rat model and inhibit the 
production of ROS and mesangial cells apoptosis stimu-
lated by high-glucose (Hou et al. 2016). Likewise, another 
study demonstrated that peptide SS31 can also alleviate 
renal tubulointerstitial injury through reducing frag-
mentation of mitochondria via inhibiting Drp1 and acti-
vating Mfn1 no matter in vivo and in vitro experiments 
(Yang et al. 2019a). Imeglimin, a new hypoglycemic drug 
targeting mitochondrial bioenergetics, was reported to 
enhance glucose tolerance and insulin sensitivity by pro-
tecting mitochondrial function against oxidative stress. 
Additionally, it can prevent the death of human endothe-
lial cells caused by hyperglycemia through inhibiting the 
opening of permeability transition pores (PTP). There-
fore, Imeglimin maybe a potential drug for treatment of 
microvascular complications in diabetic individuals (Vial 
et  al. 2015; Detaille et  al. 2016). Although many stud-
ies have confirmed that targeted mitochondrial therapy 
may delay the progress of DKD, they are all focused on 
animals and cells. In the future, more clinical studies are 
needed to clarify the prospect and effectiveness of mito-
chondria-targeted drugs for DKD.

As previously stated, the gut microbiota-microbial 
metabolites-mitochondrial axis is significant in the 
development of DKD, thereby, we propose a potential 
treatment approach based on the presence of such axis 

for DKD. SCFAs have been demonstrated to induce 
mitochondria genesis by activating AMP kinase (Cerdá 
et  al. 2016). Acetate can be used as energy source by 
mitochondria (Lumeng and Davis 1973) and butyrate 
can stimulate mitochondrial biogenesis by inhibiting 
histone deacetylase (Galmozzi et  al. 2013). Urolithin A 
was proved to enhance the oxidation capacity and mito-
chondrial function of skeletal muscle (Ryu et  al. 2016). 
Therefore, the gut microbiota-microbial metabolites-
mitochondrial axis may represent a promising perspec-
tive for exploring novel treatment for DKD. However, 
it is regrettable that no specific targeted drug has been 
found in clinical research that can regulate this axis. Sup-
plementation of selected probiotics such as lactobacillus 
plantarum can increase the level of SCFA in colon (Molin 
2001), which may exert potent effects in treatment for 
DKD by communicating with mitochondria. Whether we 
can infer that the benefits of dietary fiber, probiotics and 
prebiotics for treating DKD are related with intervening 
the gut microbiota-microbial metabolites-mitochondrial 
axis. In the future, more studies need to be implement to 
explore the specific mechanism of gut microbiota-micro-
bial metabolites-mitochondrial axis in progression of 
DKD and application to new therapeutic strategies based 
on this axis.

Conclusion
Although we have made a lot of efforts to explore the 
pathogenesis of DKD, we must be clear that we still lack 
effective treatment strategies to delay the continuous 
deterioration DKD. Thus it is necessary and urgent to 
find the new promising treatment schedule for DKD. 
With the development of metabonomics and metagen-
omics technology, the studies related to the gut-kidney 
axis have  initiated a new promising perspective for 
exploring potential intervention strategies for DKD. 
Increasing evidence has demonstrated that mitochon-
drial dysfunction and alteration of gut microbiota and 
are both involved in the development of DKD. Micro-
bial metabolites are supposed to be an important 
‘bridge’ between gut microbiota and mitochondria in 
DKD. This article focused on the potential mechanism 
of gut microbiota-microbial metabolites-mitochon-
drial axis in progression of DKD. However, there are 
still some fundamental issues concerning the function 
of this biological axis in DKD unsolved so far. Firstly, 
which specific gut bacterium or microbial metabolites 
can specifically regulate mitochondrial function. Sec-
ondly, whether supplementation of different probiot-
ics, prebiotics or microbial metabolites can slow down 
the advancement of DKD by alleviating mitochondrial 
damages. Finally, the target and molecular mecha-
nism of microbial metabolites to improve or damage 
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mitochondria are still unclear. Considering these ques-
tions, we anticipate more fundamental and clinical 
studies will be done to clarify the mechanism of gut 
microbiota-microbial metabolites-mitochondrial axis 
in DKD, which would shed great light on improving or 
delaying deterioration of DKD.
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