
Chen et al. Molecular Medicine          (2023) 29:159  
https://doi.org/10.1186/s10020-023-00760-0

RESEARCH ARTICLE

Role of DCLK1/Hippo pathway in type II 
alveolar epithelial cells differentiation in acute 
respiratory distress syndrome
Xiao‑Yue Chen1,2,3†, Ching Kao2†, Syue‑Wei Peng2, Jer‑Hwa Chang2,4*, Yueh‑Lun Lee5*, 
Vincent Laiman6,7, Kian Fan Chung3, Pankaj K. Bhavsar3, Didik Setyo Heriyanto7, Kai‑Jen Chuang8,9 and 
Hsiao‑Chi Chuang1,2,3,10,11,12*   

Abstract 

Background Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality 
in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin‑like 
kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS‑associated AECII differentiation remains unclear. Therefore, 
the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation 
in ARDS.

Materials and methods AECII MLE‑12 cells were exposed to 0, 0.1, or 1 μg/mL of lipopolysaccharide (LPS) for 6 
and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS 
and were euthanized for lung collection on days 3 and 7.

Results We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) 
and p53 while increasing T1α (podoplanin) and E‑cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation 
and increased TAZ levels were observed in LPS‑exposed AECII within 12 h. Inhibition of YAP consistently decreased 
cell levels of SPC, claudin 4 (CLDN‑4), galectin 3 (LGALS‑3), and p53 while increasing transepithelial electrical 
resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consist‑
ent with the results in LPS‑exposed AECII at 6 h and mouse SPC‑positive  (SPC+) cells after 3‑day LPS exposure. We 
observed that downregulated DCLK1 increased p‑YAP/YAP, while DCLK1 overexpression slightly reduced p‑YAP/YAP, 
indicating an association between DCLK1 and Hippo‑YAP pathway.

Conclusions We conclude that DCLK1‑mediated Hippo signaling components of YAP/TAZ regulated markers 
of AECII‑to‑AECI differentiation in an LPS‑induced ARDS model.
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Introduction
Acute respiratory distress syndrome (ARDS) causes het-
erogeneous pulmonary destruction and deoxygenation 
(Auriemma et al. 2020), which can result in an increased 
mortality rate of 30–40% in patients with ARDS due to a 
resulting inability to repair the lungs (Bime et al. 2019). 
Unresolved lung injury could also progress to pulmo-
nary fibrosis with chronic hypoxemia, ultimately reduc-
ing the 6-min walking distance in ARDS patients (Gao 
et al. 2021). In the pathogenesis of ARDS, gram-negative 
bacteria are the predominant cause (Bos and Ware 2022; 
Umbrello et  al. 2016), with bacterial lipopolysaccha-
ride (LPS) interacting with Toll-like receptor 4 to induce 
the production of interleukin (IL)-1β and tumor necro-
sis factor (TNF)-α (Domscheit et  al. 2020; Zhou et  al. 
2018). These proinflammatory cytokines activate alveo-
lar macrophages and neutrophils, leading to pulmonary 
capillary leakage and alveolar epithelial integrity loss by 
reducing transepithelial electrical resistance (TEER) in 
the human alveolar epithelium (Metz et al. 2020) during 
the early phase of ARDS (Potey et  al. 2019; Zhou et  al. 
2018). During the late phase of ARDS, Type II alveolar 
epithelial cells (AECII) become resistant to lung injury 

and differentiate to repair the damaged Type I alveolar 
epithelial cells (AECI) due to their high progenitor capac-
ity (Kasper and Barth 2017; Zeng et al. 2016). It has been 
observed that the increased TEER was associated with 
the restoration of barrier integrity during AECII-to-
AECI differentiation (Ishii et al. 2021). Additionally, it is 
important to note that surfactant protein C (SPC) serves 
as a specific marker for AECII detection (LaCanna et al. 
2019). Furthermore, during the differentiation process, 
AECII transiently expresses claudin 4 (CLDN-4) and 
galectin 3 (LGALS-3), transitioning into the pre-alveolar 
type-1 transitional cell state (PATS), which eventually dif-
ferentiates into AECI (Kobayashi et al. 2020). Also, T1α 
(podoplanin) levels can be employed as a specific marker 
expressed on AECI (LaCanna et al. 2019; Ramirez et al. 
2003). However, persistent inflammation can impede the 
differentiating function of AECII. Chronic elevation of 
IL-1β, for example, interferes with AECII-to-AECI dif-
ferentiation after bleomycin-induced murine lung injury 
(Choi et  al. 2020). Moreover, interferon (IFN)-γ causes 
immune-mediated lung damage and delays resolution of 
ARDS (Mock et al. 2020). Dysfunction of AECII can lead 
to severe ARDS and pulmonary fibrosis (Auriemma et al. 
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2020; Kobayashi et  al. 2020). Therefore, understanding 
the repair mechanism of AECII differentiation is crucial 
in order to improve the poor outcomes of ARDS patients.

The Hippo pathway plays a critical role in embryologi-
cal lung development and the maintenance of AECII sur-
vival (Hu et  al. 2019; Lange et  al. 2015). Yes-associated 
protein (YAP) and its transcriptional co-activator with 
PDZ-binding motif (TAZ), the essential proteins regu-
lated in the Hippo pathway, and the dephosphorylation 
of cytoplasmic YAP/TAZ induce their translocation into 
the nucleus, with activation of downstream signals for 
cell development (Boopathy and Hong 2019). We have 
previously demonstrated that umbilical cord-derived 
stem cells dynamically regulated YAP to mediate AECII-
to-AECI differentiation with an acceleration of inflamma-
tory resolution in mice with LPS-induced ARDS (Chen 
et  al. 2023). This suggests that YAP may be involved in 
the repair process of ARDS. Similarly, TAZ was found to 
cause AECII-to-AECI differentiation after bleomycin-
induced lung injury in mice (Sun et  al. 2019). However, 
overexpression of YAP/TAZ has been shown to enhance 
the epithelial-mesenchymal transition in cancer (Chen 
et  al. 2016; Yuan et  al. 2016), and increased epithelial 
YAP activity has been reported in the lungs of patients 
with idiopathic pulmonary fibrosis (IPF) (Gokey et  al. 
2018). Therefore, it is crucial to fine-tune the regulation 
of the Hippo pathway because any dysregulation can lead 
to pathological lung reconstruction (Gokey et  al. 2021). 
However, the pathophysiological regulation of the Hippo 
pathway in AECII differentiation remains unclear, and 
the upstream mediators regulating the Hippo pathway 
are not known in ARDS.

Doublecortin-like kinase 1 (DCLK1) has been reported 
to enhance cell regeneration and proliferation (Chan-
drakesan et al. 2017; Westphalen et al. 2017) and is highly 
expressed in cancer, progenitor cells, and type 2 mac-
rophages (Panneerselvam et  al. 2020; Undi et  al. 2022; 
Westphalen et al. 2016). Increased inflammatory signals 
and tissue damage activate DCLK1 expression (Nguyen 
et  al. 2016; Undi et  al. 2022). Furthermore, the upregu-
lated DCLK1 gene was found in the lungs of patients 
with IPF (Higo et  al. 2022). DCLK1 has been shown to 
elongate microtubules for cell growth, but excessive elon-
gation can increase cancer cell development (Chhetri 
et  al. 2022). Another potential role of DCLK1 is associ-
ated with lung regeneration, as previous studies have 
shown an increased expression of DCLK1-positive cells 
during dysplastic lung repair in influenza and bleomycin-
induced lung injury (Barr et  al. 2022; Rane et  al. 2019). 
However, the expression of DCLK1 in AECII after lung 
injury has not been fully addressed, and the interac-
tion between DCLK1 and the Hippo pathway in ARDS 
is unclear. A greater understanding of the underlying 

process of alveolar regeneration could provide impor-
tant information for developing new drugs to treat ARDS 
patients. Therefore, this study aims to explore the roles 
of the DCLK1-modulated Hippo pathway in AECII-to-
AECI differentiation after LPS-induced ARDS.

Materials and methods
Gene Expression Omnibus (GEO) dataset
RNA-sequencing data from human lung tissue was 
obtained from the GEO dataset (Fang et al. 2015). Briefly, 
human AECII were isolated and collected from 5 healthy 
male subjects. AECII was exposed to a cytokine mixture 
with interleukin (IL)-1β, tumor necrosis factor (TNF)-α, 
and interferon (IFN)-γ at 50 ng/mL to establish an ARDS 
in vitro model. DCLK1 expression in control and ARDS 
groups was collected from the dataset.

LPS‑exposed AECII
Mouse AECII MLE-12 cells were obtained from ATCC 
(American Type Culture Collection, Manassas, Virginia, 
USA). These cells display gene expression profiles that 
include SPC, a characteristic specific to AECII (LaCanna 
et  al. 2019). Furthermore, previous studies have com-
monly utilized MLE-12 cells in  vitro to model AECII 
behavior, thereby facilitating investigations into the 
underlying mechanisms of AECII related to pulmonary 
diseases (Bueno et al. 2023; Li et al. 2019; Lu et al. 2023). 
MLE-12 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM)/Hams F-12 50/50 mix (Corn-
ing, Corning, NY, USA) at 37  °C under 5%  CO2. The 
medium contained 10% fetal bovine serum (Corning), 
5 μg/mL insulin (Sigma-Aldrich, St. Louis, USA), 10 μg/
mL transferrin (Sigma-Aldrich), 30  nM sodium selenite 
(Sigma-Aldrich), 10 nM hydrocortisone (Sigma-Aldrich), 
10  nM β-estradiol (Sigma-Aldrich), and 1% penicillin/
streptomycin (Corning). Cells were treated with LPS 
(Escherichia coli O111:B4; Sigma-Aldrich) at 0 (control), 
0.1 (LPS/L), or 1 μg/mL (LPS/H) for 6 and 12 h. The time 
points of 6 and 12 h were chosen to respectively delineate 
the early and late phases of infection-induced AECII cell 
injury.

Transfection of YAP or DCLK1 in AECII
The MLE-12 cells were transfected with MISSION® 
esiRNA (Sigma-Aldrich) to knockdown the expression 
of YAP1 or DCLK1, according to the manufacturer’s 
instructions. The cells were transfected with 50  nM of 
small interfering RNAs (siRNA) targeting YAP (Si-YAP), 
DCLK1 (Si-DCLK1), or negative control (Si-Control) 
(GAU CAU ACG UGC GAU CAG A/UCU GAU CGC ACG 
UAU GAU C) using Lipofectamine 3000 transfection rea-
gent (Invitrogen, Carlsbad, CA, USA) for 48 h.
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DCLK1 overexpressed in AECII
DCLK1 overexpression was conducted by the DCLK1 
(Myc-DDK-tagged) open reading frame (ORF) clone 
(OriGene Technologies, Rockville, MD, USA). The plas-
mid was subsequently amplified by BIOTOOLS, New 
Taipei City, Taiwan. The MLE-12 cells were transfected 
with DCLK1 cDNA (OE-DCLK1) or the negative con-
trol with empty vector (OE-Control) (GAC GGA TCG 
GGA GAT CTC CCG ATC CCC TAT GGT GCA CTC CAG 
TAC AAT CTG CTC TGATG) by Lipofectamine 3000 and 
p3000 transfection reagents (Invitrogen) at a final con-
centration of 5 μg/μL for 24 h.

Cytoplasmic and nuclear protein extraction
The cytoplasmic and nuclear proteins of YAP/TAZ and 
DCLK1 in MLE-12 cells were extracted using a cyto-
plasmic and nuclear protein extraction kit (BIOTOOLS, 
New Taipei City, Taiwan) according to the manufactur-
er’s instructions. Briefly, cytoplasmic extraction reagents 
(BIOTOOLS) in the kit were added to cell pellets and 
incubated on ice. Cells were centrifuged at 16,000×g for 
5 min to collect supernatants. After cytoplasmic protein 
extraction, a nuclear extraction reagent (BIOTOOLS) 
was added to the nuclei-containing insoluble cell debris, 
followed by centrifugation at 16,000×g for 5 min. Addi-
tionally, whole cell lysates were obtained by subjecting 
the cells to lysis using cell lysis reagent (Sigma-Aldrich, 
St. Louis, MO, USA) supplemented with 5  μL of pro-
tease inhibitor (G-Biosciences, St. Louis, MO, USA) 
and 5  μL of ethylenediaminetetraacetic acid (EDTA; 
G-Biosciences) for detecting E-cadherin, SPC, CLDN-4, 
LGALS-3, T1α, and p53 levels.

Western blot
Protein concentrations of cell lysates were determined 
using a bicinchoninic acid (BCA) protein assay (Bio-Rad, 
Hercules, CA, USA). Cell protein extracts were separated 
on SDS–polyacrylamide gels and transferred to polyvi-
nylidene difluoride membranes (Millipore, Darmstadt, 
Germany). The protein expressions in the same replicates 
were blotted on separate parallel gels and membranes. 
Membranes were incubated overnight at 4  °C probed 
with primary antibodies of E-cadherin (1:1000) (Abcam 
plc., Cambridge, UK), surfactant protein C (SPC; 1:5000) 
(Signalway Antibody, Greenbelt, MD, USA), claudin 4 
(CLDN-4; 1:200) (Santa Cruz Biotechnology, Dallas, TX, 
USA), galectin 3 (LGALS-3; 1:1000) (Cell Signaling, Dan-
vers, MA, USA), podoplanin (T1α; 1:1000) (Abcam), p53 
(1:1000) (Proteintech, Rosemont, IL, USA), phosphoryl-
ated form (p-) of YAP (p-YAP; 1:1000) (Abcam), YAP 
(1:1000) (Proteintech), p-TAZ (1:1000) (Cell Signaling), 
TAZ (1:1000) (Cell Signaling), DCLK1 (1:1000) (Gene-
Tex, Irvine, CA, USA), β-actin (1:1000) (Proteintech), and 

Lamine A+C (1:500) (GeneTex). The mouse and rabbit 
secondary antibodies (1:5000) (Jackson Immunoresearch, 
West Grove, PA, USA) with enhanced chemilumines-
cence (PerkinElmer, Waltham, MA, USA) were used. 
Images were taken with the ChemiDoc™ MP Imaging 
System (Bio-Rad). All proteins in the images were semi-
quantified using Image-Pro version 4 (Media Cybernet-
ics, Rockville, MD, USA). The expression of cytoplasmic 
proteins was normalized by the internal control (β-actin) 
within the same repetition, while the nuclear levels of 
YAP, TAZ, and DCLK1 were normalized by their nuclear 
Lamin A+C expression.

Transepithelial electrical resistance (TEER)
MLE-12 cultured on 0.4-μm transwell (SPL®, Gyeonggi-
do, Korea) were treated with 0.16 μg/mL or 0.33 μg/mL 
of YAP inhibitor verteporfin (MedChemExpress LLC, 
New Jersey, USA) for 2, 4, and 6  h. The concentrated 
verteporfin was diluted in the pure MLE-12 cell medium. 
The cells treated with the medium alone served as con-
trol. TEER was measured between the inner and outer 
chambers of the transwell by an Epithelial Volt/Ohm 
Meter (World Precision Instruments, Sarasota, FL, USA).

LPS‑induced ARDS mouse model
Male C57BL/6JNarl mice (8  weeks old, 20–25  g), 
obtained from the National Laboratory Animal Center 
(Taipei, Taiwan), were intratracheally instilled (i.t.) with 
0 (control) and 5  mg/kg LPS (Escherichia coli O111:B4; 
Sigma-Aldrich) to establish ARDS model. Mice were 
euthanized on days 3 and 7 after LPS administration. 
Days 3 and 7 corresponded to the early and late phases 
of ARDS, as previously demonstrated in our study (Chen 
et al. 2023). Lungs were collected and preserved in 10% 
neutral buffered formalin.

Immunofluorescence (IF)
Paraffin-embedded lung tissues were sectioned and per-
meabilized using 0.25% Triton X-100 (BIONOVAS Bio-
technology, Ontario, Toronto, Canada). The 5% of bovine 
serum albumin (BSA) was used to block lung tissues, 
followed by incubating with primary antibodies of SPC 
(1:200) (Abcam) and DCLK1 (1:500) (Abcam). The rab-
bit and goat secondary antibodies (1:200) (Abcam) were 
used to conjugate with the primary antibodies. DCLK1 
was detected using Alexa Fluor 488 (Abcam), while SPC 
was detected using Alexa Fluor 555 (Abcam). Nuclear 
counterstaining was performed with 4ʹ,6-diamidino-
2-phenylindole (DAPI) (Abcam). Fluorescent images 
were captured using a confocal fluorescence microscope 
(TCS SP5, Leica, UK). The mean fluorescence intensity 
of DCLK1  (DCLK1+) on SPC positive  (SPC+) cells was 
quantified using Image J software (National Institutes of 
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Health, Bethesda, MD, USA) based on a previous report 
(Shihan et al. 2021).

Statistical analysis
Data are presented as the mean ± standard deviation 
(SD). Student’s t-test was used to compare two continu-
ous variables. For comparisons among multiple variables, 
one-way analysis of variance (ANOVA) with Dunnett’s 
post hoc test was used. Statistical analyses were per-
formed using GraphPad vers. 7 (San Diego, CA, USA). 
p-value < 0.05 was considered as statistical significance.

Results
AECII‑to‑AECI differentiation by LPS
Figure  1 A and B show the effect of LPS exposure on 
AECII-to-AECI differentiation for 6 and 12 h. We found 
a significant decrease in E-cadherin and SPC but an 
increase in p53 expression by LPS after 6 h exposure to 
MLE-12 cells (p < 0.05). Next, we demonstrated that LPS 
significantly decreased SPC and p53; however, levels of 
E-cadherin (by LPS/H) and T1α (by LPS/L) were signifi-
cantly increased by LPS after 12  h exposure (p < 0.05). 
There was no significant difference in CLDN-4 and 
LGALS-3 expression by LPS for 6 or 12 h.

AECII‑to‑AECI differentiation through Hippo pathway after 
LPS exposure
As shown in Fig.  2A, we found that the cytoplasmic 
p-YAP/YAP ratio in MLE-12 cells was significantly 

increased at 6 and 12  h by LPS/L and LPS/H (p < 0.05), 
respectively. There was a significant decrease in the cyto-
plasmic p-TAZ/TAZ ratio by LPS/L at 6 h and the sub-
sequent increase in the p-TAZ/TAZ ratio at 12  h after 
LPS/H exposure (p < 0.05). At the nuclear level, we found 
YAP and TAZ expression were significantly increased at 
6 h (p < 0.05), whereas a decrease in YAP and an increase 
in TAZ were observed at 12 h by LPS (p < 0.05; Fig. 2B). 
To assess the barrier integrity during AECII-to-AECI 
differentiation, we measured the TEER in MLE-12 cells 
after inhibiting YAP with verteporfin. Decreased epithe-
lial resistance (TEER) at 4 h but increased at 6 h in MLE-
12 cells were observed by YAP inhibition (Fig. 2C). Levels 
of YAP, SPC, CLDN-4, LGALS-3, and p53 were signifi-
cantly decreased after YAP knockdown (p < 0.05; Fig. 2D).

DCLK1 regulation on AECII of ARDS
We observed a significant decrease in the RNA level 
of DCLK1 on AECII of ARDS (by the GEO dataset) 
(p < 0.05; Fig. 3A). In the LPS-exposed AECII cell model, 
we found that DCLK1 was significantly decreased 
in MLE-12 cells at 6  h by LPS, whereas DCLK1 was 
increased at 12 h after LPS/H exposure (p < 0.05; Fig. 3B). 
The LPS-induced ARDS mouse model consistently 
showed a significant decrease in DCLK1 expression 
with  SPC+ cells on day 3 and an increase in DCLK1 with 
 SPC+ cells on day 7 (p < 0.05; Fig. 3C). On the contrary, 
the nuclear level of DCLK1 on MLE-12 cells showed that 

Fig. 1 Lipopolysaccharide (LPS) induced type II alveolar epithelial cells (AECII)‑to‑type I alveolar epithelial cells (AECI) markers of differentiation. 
Semi‑quantification of E‑cadherin, surfactant protein C (SPC), claudin 4 (CLDN‑4), galectin 3 (LGALS‑3), podoplanin (T1α), and p53 in MLE‑12 
cells by western blot after 0 μg/mL (control), 0.1 μg/mL (LPS/L), or 1 μg/mL (LPS/H) of LPS exposure for A 6 h and B 12 h. All data are presented 
as mean ± SD with a minimum of three independent experiments. An ANOVA with Dunnett’s post hoc test was used. ** p < 0.01, *** p < 0.001, **** 
p < 0.0001
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LPS significantly increased DCLK1 expression at 6 h and 
reduced DCLK1 expression at 12 h (p < 0.05; Fig. 3D).

DCLK1 modulated AECII‑to‑AECI differentiation by Hippo 
pathway
We observed that the DCLK1, LGALS-3, and p53 sig-
nificantly decreased, whereas the p-YAP/YAP ratio 

significantly increased after the DCLK1 knockdown on 
MLE-12 cells (p < 0.05; Fig. 4A). On the other hand, the 
overexpression of DCLK1 in MLE-12 cells led to a sig-
nificant increase in both DCLK1 and T1α expression 
while showing a trend toward decreasing the p-YAP/
YAP ratio (Fig. 4B). Furthermore, we did not observe a 
significant difference in the level of DCLK1 after YAP 
knockdown on MLE-12 cells (Fig. 4C).

Fig. 2 Type II alveolar epithelial cells (AECII) differentiated through the Hippo pathway after exposure to lipopolysaccharide (LPS). A Cytoplasmic 
levels of phosphorylated (p‑) YAP‑to‑YAP (p‑YAP/YAP) and p‑TAZ/TAZ ratio (B) and the nuclear YAP and TAZ expressed in MLE‑12 cells by western 
blot after exposed to 0 μg/mL (control), 0.1 μg/mL (LPS/L), or 1 μg/mL (LPS/H) of LPS for 6 h and 12 h. C The epithelial permeability of MLE‑12 cells 
was assessed by transepithelial electrical resistance (TEER) while treated with verteporfin (0 μM, 0.16 μM, or 0.33 μM) at 2 h, 4 h, and 6 h. D Protein 
expression of YAP, surfactant protein C (SPC), claudin 4 (CLDN‑4), galectin 3 (LGALS‑3), podoplanin (T1α), and p53 in MLE‑12 cells after transfected 
with small interfering RNA (Si‑) of YAP (Si‑YAP) or Si‑Control at 50 nM for 48 h. All data are presented as mean ± SD with a minimum of three 
independent experiments in A, B, D and one experiment in C. An ANOVA with Dunnett’s post hoc test was employed for (A) and (B), while (D) 
was analyzed using a Student’s t‑test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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Fig. 3 Doublecortin‑like kinase 1 (DCLK1) regulation in type II alveolar epithelial cells (AECII) with acute respiratory distress syndrome (ARDS). A 
The DCLK1 mRNA expression in human AECII of ARDS was collected from the Gene Expression Omnibus (GEO) dataset. B Western blot showed 
the cytoplasmic DCLK1 expression in MLE‑12 cells after 0 μg/mL (control), 0.1 μg/mL (LPS/L), or 1 μg/mL (LPS/H) LPS exposure for 6 h and 12 h. C 
Immunofluorescent staining of DCLK1 expression  (DCLK1+) on SPC‑positive  (SPC+) cells in ARDS mouse lungs on days 3 and 7 after exposure to LPS. 
D The nuclear levels of DCLK1 were determined in LPS‑exposed MLE‑12 cells (0 μg/mL, 0.1 μg/mL, or 1 μg/mL) by Western blot at 6 h and 12 h. All 
data are presented as mean ± SD with a minimum of four independent experiments in A, B, and D and three experiments in C. A Student’s t‑test 
was utilized for (A) and (C), whereas an ANOVA with Dunnett’s post hoc test was employed for (B) and (D). * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001
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Discussion
We have demonstrated that LPS-induced differentiation 
markers transitioned from AECII into AECI by regu-
lating the Hippo pathway. These results were observed 
from the alteration in the nuclear levels of YAP/TAZ in 
LPS-exposed AECII during cell differentiation. The sig-
nificance of this work is that we observed a shift from 
reduced cytoplasmic DCLK1 levels during the early 
phase of ARDS to increased levels in the late phase. These 
observations suggest dynamic regulation of DCLK1 in 
AECII during different phases of ARDS, indicating that 
DCLK1 may have an association with the Hippo path-
way to regulate AECII differentiation. We elucidate the 
underlying mechanisms of alveolar regeneration and dif-
ferentiation of AECII into AECI by DCLK1/YAP/TAZ 
pathways, which could aid in the development of thera-
pies that promote tissue repair and regeneration in the 
lungs of ARDS patients.

We initially investigated the differentiation markers of 
AECII into AECI following exposure to LPS. We found 
that at 6 h, LPS caused a decrease in SPC but an increase 
in p53. The loss of SPC in alveoli due to dysfunctional 
AECII has been previously reported in gram-negative 
bacteria-induced ARDS (Wu et al. 2021). It is likely that 
bacteria target AECII, leading to DNA damage in the 
cells (Augusto et  al. 2003; D’Agnillo et  al. 2021), which 
activates the check-point inhibitor, p53, causing cell 
cycle arrest (Williams and Schumacher 2016) and initiat-
ing a self-repairing process (Liu et al. 2009; Uddin et al. 
2020). This process temporarily ceases SPC production in 
AECII (Glasser et  al. 2013). Moreover, bacteria-infected 
AECII impedes cell differentiation, which was observed 
in our model of LPS-exposed AECII at 6 h, as evidenced 
by a reduction in E-cadherin. Interestingly, AECII pro-
genitor cells have a higher self-repairing capacity (Desai 
et al. 2014). Previous studies showed that AECII exhibit 
increased self-renewal after ablation in mice (Barkaus-
kas et al. 2013) and can be activated to differentiate into 
AECI after bacterial pneumonia (Liu et  al. 2015), fur-
ther supporting our observations of increasing T1α and 
E-cadherin in AECII after 12 h of LPS exposure. This sug-
gests the restoration of differentiating function in AECII. 
The subsequent reduction of p53 in our cell model 
at 12  h further indicates the end of cell cycle arrest for 

self-repairing in LPS-injured AECII. Together, our find-
ings suggest that LPS induces markers of AECII differen-
tiation into AECI in the late phase of cell injury.

Next, we investigated the involvement of Hippo signal-
ing components in the markers of AECII-to-AECI differ-
entiation by LPS. Our findings revealed that LPS elevated 
nuclear YAP levels at 6  h but decreased nuclear YAP 
expression while consistently increasing nuclear TAZ lev-
els at 12 h. Previous studies have reported the activation 
of YAP in AECII by increasing their nuclear expression 
after applying mechanical tension in mice with pneu-
monectomy (Liu et al. 2016) and increased TAZ nuclear 
translocation during the late stage of AECII-to-AECI dif-
ferentiation (Strunz et  al. 2020; Sun et  al. 2019). These 
findings indicate that YAP/TAZ activation is beneficial 
for lung epithelial regeneration and the resolution of bac-
terial pneumonia. However, persistent activation of YAP 
can lead to adverse effects, such as AECII cell senescence 
and impaired terminal differentiation to AECI (Chen 
et al. 2019; Yamada et al. 2022). Accordingly, we discov-
ered that LPS dynamically modulated the expression of 
the nuclear YAP. It initially increased YAP expression 
in the early phase of AECII cell injury but subsequently 
inhibited it in the late phase. The late-phase inhibition 
of YAP might be beneficial in preventing cell senescence 
in AECII (Xu et  al. 2021). In addition, the presence of 
nuclear TAZ in the late phase of AECII cell injury may 
facilitate the terminal differentiation of AECII into AECI 
(DiGiovanni et al. 2023).

To further clarify the role of YAP in the markers of 
AECII-to-AECI differentiation, we downregulated YAP 
in AECII. Our observations revealed a reduction in SPC 
and PATS markers (CLDN-4 and LGALS-3) in AECII 
while a slight increase in AECI marker (T1α), suggest-
ing the progress of cell differentiating markers into AECI 
by YAP inhibition (Chen et  al. 2023; Kondo et  al. 2015; 
Laiman et  al. 2022). Furthermore, the reduction of p53 
in AECII due to YAP inhibition might lead to a reduc-
tion in cell cycle arrest associated with cell senescence 
(Chung et  al. 2021; Gu et  al. 2017), thereby promot-
ing the late-stage of AECII-to-AECI differentiation 
(Kusko et  al. 2016; Strunz et  al. 2020). In addition, we 
observed a decrease in TEER in AECII at 4  h, followed 
by an increase at 6  h after YAP inhibition. The initial 

(See figure on next page.)
Fig. 4 Doublecortin‑like kinase 1 (DCLK1) involved in type II alveolar epithelial cells (AECII)‑to‑type I alveolar epithelial cells (AECI) differentiation 
via the Hippo pathway. A Protein levels of DCLK1, phosphorylated (p‑) YAP‑to‑YAP (p‑YAP/YAP) ratio, surfactant protein C (SPC), claudin 4 
(CLDN‑4), galectin 3 (LGALS‑3), podoplanin (T1α), and p53 in MLE‑12 cells by 50 nM small interfering RNA (Si‑) of DCLK1 (Si‑DCLK1) or Si‑Control 
for 48 h. B DCLK1, p‑YAP/YAP, SPC, CLDN‑4, LGALS‑3, and T1α were semi‑quantified by western blot in MLE‑12 cells after DCLK1 overexpression 
(OE‑DCLK1). C Expression of DCLK1 in MLE‑12 cells after transfection with 50 nM of Si‑YAP or Si‑Control for 48 h. All data are presented as mean ± SD 
with a minimum of three independent experiments. A Student’s t‑test was applied to analyze the results. * p < 0.05, *** p < 0.001, **** p < 0.0001
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Fig. 4 (See legend on previous page.)
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reduction in TEER indicated increased cell permeability 
due to AECII destruction (Metz et al. 2020). The subse-
quent increase in TEER could be due to the restoration 
of intercellular junctions among the cells, arising from 
an extended period of YAP inhibition and facilitating 
AECII-to-AECI differentiation (Ishii et  al. 2021). These 
findings were consistent with our observations in experi-
ments involving LPS-exposed AECII and YAP inhibition, 
implying that the inhibition of YAP in the late phase of 
AECII cell injury might stimulate AECII-to-AECI marker 
differentiation. Together, we suggest that LPS modulated 
the Hippo pathway of YAP/TAZ to progress the markers 
of AECII-to-AECI differentiation.

Previous studies have reported that DCLK1 is 
expressed in progenitor cells (Westphalen et  al. 2016) 
and regulates cell survival and self-renewal (Chandrake-
san et  al. 2017). In this study, we aimed to determine 
DCLK1 expression in progenitor AECII and found that 
DCLK1 expression was decreased in isolated AECII 
of ARDS. These findings were consistent with our cell 
culture results of LPS-exposed MLE-12 at 6  h and our 
mouse model treated with LPS for 3 days, which showed 
decreased cytoplasmic levels of DCLK1 on AECII. The 
reduction of DCLK1 has been shown to inhibit cancer 
stemness and reduce the regenerative capacity of pan-
creatic cells (Kim et  al. 2022; Westphalen et  al. 2016; 
Weygant et al. 2014). Additionally, DCLK1 is known as a 
microtubule-associated protein (Agulto et al. 2021), and 
the process of cell differentiation depends on microtu-
bule reorganization (Lacroix and Maddox 2014). There-
fore, the transitionally reduced cytoplasmic DCLK1 
observed in our ARDS models might be associated with 
impaired self-regenerative capacity in AECII. Notably, 
it has been reported that a DCLK subtype translocated 
to the nucleus protects kidney fibroblast-like cells from 
osmotic stress (Nagamine et  al. 2014). In our study, we 
consistently observed increasing nuclear DCLK1 expres-
sion in AECII at 6 h in response to LPS. This upregula-
tion of nuclear DCLK1 in the early phase of AECII cell 
injury may activate the downstream signaling pathways, 
promoting proinflammatory cytokine production in 
response to virus infection (Undi et al. 2022) and causing 
neutrophil activation in LPS-induced murine colitis to 
eliminate microbial invasion (Roy et al. 2021). However, 
further studies are needed to address the nuclear func-
tion of DCLK1.

Previous studies have shown that DCLK1 is involved 
in regulating cell survival, self-renewal, and stemness 
(Panneerselvam et  al. 2020; Westphalen et  al. 2016). It 
has also been reported to promote cell proliferation and 
activate tissue repair in the gut and pancreas (Westpha-
len et al. 2016; Yi et al. 2019). Given its crucial role in cel-
lular repair, we investigated the potential involvement 

of DCLK1 in AECII regeneration. First, we observed 
increased cytoplasmic DCLK1 levels alongside an eleva-
tion in the presence of  SPC+ cells in the lungs of ARDS 
mice on day 7. During the process of AECII differentia-
tion, initial AECII proliferation is crucial to maintain an 
adequate AECII cell population, which can differentiate 
into AECI following lung injury (Bhaskaran et  al. 2007; 
Jia et  al. 2021). Therefore, the results suggest that cyto-
plasmic DCLK1 in the late phase of ARDS might also 
play a role in the AECII proliferation before their subse-
quent differentiation into AECI. Additionally, we found 
that overexpression of DCLK1 in AECII enhanced mark-
ers of differentiation into AECI by increasing T1α.

On the contrary, the knockdown of DCLK1 resulted in 
decreased expression of LGALS-3 and p53, suggesting 
that DCLK1 is essential for maintaining the regenera-
tive capacity of AECII and facilitating their marker dif-
ferentiating into AECI through the PATS cell (LGALS-3) 
transition. Notably, we found that DCLK1 regulates the 
markers of AECII differentiation through the Hippo 
pathway. Suppression of DCLK1 resulted in an eleva-
tion of the p-YAP/YAP ratio, whereas the overexpres-
sion of DCLK1 exhibited a non-significant reduction in 
this ratio. These findings suggest a potential association 
between DCLK1 and the Hippo-YAP pathway in AECII. 
Our results are consistent with previous reports of the 
role of DCLK1 in regulating the Hippo pathway in asth-
matic AECI and airway epithelial cells through RhoA 
activation (Yuliani et  al. 2022). These observations sug-
gest that DCLK1 might rely on intermediary molecules, 
such as RhoA, to inhibit the action of large tumor sup-
pressor kinase 1/2 (LATS1/2), resulting in YAP activation 
through dephosphorylation (Plouffe et  al. 2016; Yuliani 
et  al. 2022). However, the intermediary molecules link-
ing DCLK1 and YAP in AECII of ARDS warrant further 
exploration in future research. Additionally, to further 
understand the interaction between DCLK1 and YAP, we 
downregulated YAP in AECII. We did not observe a sig-
nificant difference in DCLK1 expression, suggesting that 
DCLK1 regulates YAP expression by affecting upstream 
components of the Hippo pathway to mediate the mark-
ers of AECII-to-AECI differentiation.

The present study provides valuable insights into the 
role of DCLK1 and the Hippo pathway in AECII regen-
eration in LPS-induced cell injury and murine ARDS. 
However, future research is needed to determine the 
long-term effects of DCLK1 on AECII differentiation and 
how it interacts with other cells, such as immune cells 
and lung fibroblasts, to promote alveolar regeneration 
after injury. While we identified differentiation mark-
ers in AECII, it is necessary to conduct RNA expression 
analysis and immunofluorescent tracking for a direct 
assessment of AECII-to-AECI differentiation in future 
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works. Furthermore, additional studies are needed to 
explore the functions of DCLK1-regulated Hippo-YAP/
TAZ pathway activation, particularly regarding dephos-
phorylation and nuclear translocation in ARDS. Under-
standing these mechanisms could help identify potential 
therapeutic targets for the treatment of ARDS and other 
lung diseases.

Conclusions
We have shown that DCLK1 plays a crucial role in the 
pathophysiological repairing mechanism of AECII in 
LPS-induced cell injury and murine ARDS. Our study 
revealed decreased cytoplasmic DCLK1 expression, 
accompanied by increased nuclear DCLK1 and YAP lev-
els in AECII during the early phase of ARDS. Conversely, 
in the late phase of ARDS, we observed increased cyto-
plasmic DCLK1 levels while reduced nuclear DCLK1 and 
YAP expression in AECII. These dynamic effects could 
facilitate the transition of differentiation markers from 
AECII to AECI. The DCLK1/Hippo pathway could be a 
potential therapeutic target for the treatment of ARDS in 
the future.
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