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Abstract 

Background Clinical manifestation of prostate cancer (PCa) is highly variable. Aggressive tumors require radical treat‑
ment while clinically non‑significant ones may be suitable for active surveillance. We previously developed the prog‑
nostic ProstaTrend RNA signature based on transcriptome‐wide microarray and RNA‑sequencing (RNA‑Seq) analyses, 
primarily of prostatectomy specimens. An RNA‑Seq study of formalin‑fixed paraffin‑embedded (FFPE) tumor biopsies 
has now allowed us to use this test as a basis for the development of a novel test that is applicable to FFPE biopsies 
as a tool for early routine PCa diagnostics.

Methods All patients of the FFPE biopsy cohort were treated by radical prostatectomy and median follow‑up for bio‑
chemical recurrence (BCR) was 9 years. Based on the transcriptome data of 176 FFPE biopsies, we filtered ProstaTrend 
for genes susceptible to FFPE‑associated degradation via regression analysis. ProstaTrend was additionally restricted 
to genes with concordant prognostic effects in the RNA‑Seq TCGA prostate adenocarcinoma (PRAD) cohort to ensure 
robust and broad applicability. The prognostic relevance of the refined Transcriptomic Risk Score (TRS) was analyzed 
by Kaplan–Meier curves and Cox‑regression models in our FFPE‑biopsy cohort and 9 other public datasets from PCa 
patients with BCR as primary endpoint. In addition, we developed a prostate single‑cell atlas of 41 PCa patients from 5 
publicly available studies to analyze gene expression of ProstaTrend genes in different cell compartments.

Results Validation of the TRS using the original ProstaTrend signature in the cohort of FFPE biopsies revealed 
a relevant impact of FFPE‑associated degradation on gene expression and consequently no significant association 
with prognosis (Cox‑regression, p‑value > 0.05) in FFPE tissue. However, the TRS based on the new version of the Pros‑
taTrend‑ffpe signature, which included 204 genes (of originally 1396 genes), was significantly associated with BCR 
in the FFPE biopsy cohort (Cox‑regression p‑value < 0.001) and retained prognostic relevance when adjusted for Glea‑
son Grade Groups. We confirmed a significant association with BCR in 9 independent cohorts including 1109 patients. 
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Background
The clinical manifestation of prostate cancer (PCa) is 
highly variable. Aggressive types of PCa require radi-
cal treatment such as radical prostatectomy (RPx) or 
radiotherapy, while low-risk PCa may be suitable for 
active surveillance or organ-preserving focal therapies. 
In clinically localized PCa, risk stratification is based on 
prostate-specific antigen (PSA), Gleason score (GS) and 
clinical or imaging T stage (Mottet et  al. 2021). Multi-
parametric magnetic resonance imaging (mpMRI) is also 
preferred for local tumor staging, which may thereby 
serve as a basis for therapy (Park et  al. 2014; Abrams-
Pompe et al. 2021).These clinicopathologic variables have 
been used to develop nomograms such as MSKCC (Cagi-
annos et al. 2003), Briganti (Briganti et al. 2012) and Par-
tin (Makarov et al. 2007) tables, which are used to predict 
lymph node invasion. Other methods such as Stephenson 
nomogram or the Cancer of the Prostate Risk Assess-
ment Postsurgical (CAPRA-S) score are used in the 
post-surgical setting to predict the likelihood of recur-
rence after RPx (Stephenson et al. 2005; Cooperberg et al. 
2011). In addition, CT scan and mpMRI can evaluate the 
locoregional extension of the disease by detecting extra-
capsular extension and seminal vesicle invasion (Somford 
et al. 2013).

In localized PCa, these risk assessment tools are criti-
cal for the management of patients who can be treated 
with a wide range of strategies, including RPx, radiation, 
focal therapy or active surveillance (Mottet et  al. 2021). 
Although essential in daily clinical practice, stratification 
by clinical risk categories or available tests lacks suffi-
cient precision. For example, nomograms based on clini-
cal parameters do not allow the precise distinction of an 
non-aggressive instead of an aggressive disease (Wang 
et al. 2014), which may lead to substantial overtreatment 
of patients.

Prognostic biomarkers can help to distinguish non-sig-
nificant from aggressive cancers and could improve clini-
cal decision-making. For example, such markers should 
be able to discriminate between aggressive diseases to 
enable therapeutic/surgical interventions that would be 

unnecessary for non-aggressive cancers. In recent years, 
several blood, urine, and tissue-based biomarkers for PCa 
have been introduced. Commercially available tissue-
based mRNA gene expression classifiers include Deci-
pher (Erho et al. 2013), Prolaris (Cuzick et al. 2011), and 
Oncotype Dx (Cullen et al. 2015).

Combining prognostic biomarkers that predict the 
likelihood of an adverse outcome with already available 
clinicopathological variables might aid in the decision-
making process and result in a more individualized 
course of treatment for each patient (Fine et al. 2019). For 
example, the mRNA-based Prolaris signature assesses the 
expression of 31 genes related to the cell cycle and is rep-
resented as a cell cycle progression (CCP) score. In con-
junction with the CAPRA score (referred to as the CCR 
score), the concordance index (c-index) for predicting 
10-year PCa-specific mortality in 585 men with localized 
PCa was 0.74 for CAPRA and improved to 0.78 for CCR 
(Cuzick et al. 2015). This combined CCR score added sig-
nificant risk stratification to what is available from clin-
icopathological variables alone.

We previously developed the transcriptome-based 
prognostic ProstaTrend signature, the only test besides 
the commercially available Prolaris (Cuzick et  al. 2011, 
2015) classifier suitable for long-term prognosis because 
it predicts the time to death of disease (DoD) after RPx 
(Kreuz et  al. 2020). ProstaTrend comprises 1396 genes 
and predicts DoD and biochemical recurrence (BCR) in 
cohorts of PCa patients treated with RPx. The prognostic 
impact persisted after adjusting for the clinical risk fac-
tors Gleason Grade Group (GGG), resection status and 
pathological stage (pT).

To improve patient stratification and to assess risk of 
progression more accurately for clinical decision-mak-
ing, prognostic performance of signatures needs to be 
verified for application in clinical routine material. The 
development of the ProstaTrend signature was mainly 
based on tissue specimens from RPx. Only 16 (7%) sam-
ples were obtained from prostate biopsies in our previous 
study (Kreuz et  al. 2020). However, a prognostic signa-
ture is needed that can also be applied to biopsy cohorts 

Comparison of the prognostic performance of the TRS with 17 other prognostically relevant PCa panels revealed 
that ProstaTrend‑ffpe was among the best‑ranked panels. We generated a PCa cell atlas to associate ProstaTrend 
genes with cell lineages or cell types. Tumor‑specific luminal cells have a significantly higher TRS than normal luminal 
cells in all analyzed datasets. In addition, TRS of epithelial and luminal cells was correlated with increased Gleason 
score in 3 studies.

Conclusions We developed a prognostic gene‑expression signature for PCa that can be applied to FFPE biopsies 
and may be suitable to support clinical decision‑making.

Keywords Prognostic biomarker, Molecular diagnostic testing, Molecular pathology, Personalized medicine, Prostate 
cancer, Transcriptome
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eligible for active surveillance or focal therapy to assess 
the potential of the score to select patients for conserva-
tive therapy, focal therapy or radical treatment such as 
RPx or radiotherapy.

In addition, the majority of our training cohort com-
prised fresh-frozen (FF) specimens of optimal quality 
n = 204 (88%) and was restricted to samples with > 50% 
tumor cell content. For formalin-fixed paraffin-embed-
ded (FFPE) specimens, the fixation process usually causes 
degradation and fragmentation, which limits gene detec-
tion and introduces sequencing artifacts (Groelz et  al. 
2013; Adiconis et al. 2013). A prognostic signature veri-
fied using FFPE specimens would have significant added 
value for both prospective and retrospective archive-
based studies since FFPE preservation is common in clin-
ical routine.

Furthermore, the ProstaTrend signature was developed 
from tumor bulk transcriptomes. Since the bulk tran-
scriptome consists of multiple cell identities and biologi-
cal programs, it cannot explain PCa heterogeneity at the 
single-cell level.

To transfer and validate the genes included in the Pros-
taTrend signature for the application in clinical routine at 
the time point of PCa diagnosis and before treatment, we 
used a cohort of 176 specimens obtained from FFPE-con-
served prostate biopsies with varying tumor cell content 
and long clinical follow-up by transcriptome-wide total 
RNA-Seq. We developed a PCa single-cell atlas to analyze 
ProstaTrend genes in different cell compartments. Lastly, 
we validated the association of the transcriptomic risk 
score (TRS) with BCR in 9 publicly available cohorts and 
compared the prognostic performance of ProstaTrend 
with 17 other prognostically relevant PCa gene panels.

Methods
Data sources
Internal cohort (FFPE_Bx cohort)
We assessed tissue specimens with long term follow-up 
data (median follow-up 9 years) from FFPE biopsy speci-
mens by transcriptome-wide total RNA-Seq. We refer 
to this cohort as the FFPE_Bx cohort. This study was 
designed, conducted and reported in accordance with the 
Reporting Recommendations for tumor marker prognos-
tic studies (REMARK) guidelines (McShane et al. 2005).

From a cohort of biopsy specimens consisting of 543 
PCa patients who underwent RPx between 2007 and 
2013 at the Department of Urology of the University 
Hospital Dresden (Germany), we included 192 specimens 
in our study. We excluded 7 specimens after evaluation of 
RNA yield (RNA yield < 50 ng). None of the patients did 
receive neoadjuvant therapy prior to surgery. The Inter-
nal Review Board at the Technische Universität Dresden 
(EK194092004, EK59032007) approved the study, and all 

patients gave written informed consent. Clinicopatholog-
ical parameters were obtained by routine histopathologi-
cal examination of the surgical specimens. Serum levels 
of the prostate-specific antigen (PSA) were determined 
pre-biopsy and pre-RPx. The primary endpoint of this 
cohort was BCR and was defined as a PSA level ≥ 0.2 ng/
mL after RPx. Information on the course of the disease, 
survival of the patients and the cause of death were 
obtained from treating urologists or the general prac-
titioners or from records of the regional tumor registry. 
RNA isolation, quantification, cDNA library produc-
tion and RNA-Seq of FFPE specimens are described in 
Additional file 1. See Additional file 1: Tables S1, S2 and 
Additional file  2: Table  S19 for technical and clinico-
pathological characteristics.

Validation cohorts
To find appropriate transcriptome datasets of PCa 
cohorts for our analyses, we relied on the literature 
research of the study by Li et  al. (2021). Furthermore, 
we performed a literature screening on https:// pubmed. 
ncbi. nlm. nih. gov/ using the following keywords: “pros-
tate AND cancer AND (bcr OR biochemical recurrence) 
AND (transcriptomics OR transcriptome OR rna-seq 
OR rna sequencing OR microarray)” (2022/06). Datasets 
that met the following inclusion criteria for PCa data-
sets were incorporated in this study: (1) The patients in 
the cohorts were required to have a complete record of 
time to BCR or time to last follow-up. (2) Cohorts were 
rejected if BCR has not occurred with at least 10 events 
after quality filtering of the samples (see below). (3) 
Tumors had to be derived from the primary site. (4) Raw 
or pre-processed gene expression data must be available 
(microarray or RNA-Seq). In total, we analyzed 9 publicly 
available cohorts (Li et al. 2020; Fraser et al. 2017; Luca 
et  al. 2018; Long et  al. 2014; Gerhauser et  al. 2018; Jain 
et al. 2018; Ross-Adams et al. 2015; Taylor et al. 2010) to 
evaluate the prognostic performance of the ProstaTrend 
and ProstaTrend-ffpe signatures for predicting time to 
BCR. Additional file  1: Table  S1 provides an overview 
of the technical parameter of the datasets analyzed in 
this study. Samples were quality filtered as described in 
the original publication of the datasets [details are out-
lined in Additional file 1: Table S1 (see column “Notes”)]. 
Additional file 1: Table S3 contains the clinicopathologi-
cal parameters of patients fulfilling the above conditions.

In the case of Affymetrix array datasets, raw.CEL 
files including CPC_GENE_2017_Fraser (GSE84042), 
MSKCC_2010_Taylor (GSE21034) and Cancer-
Map_2017_Luca (GSE94767) were downloaded from 
NBCI’s Gene Expression Omnibus (GEO) (Edgar et  al. 
2002) using the R package GEOquery v2.58.0 (Davis and 
Meltzer 2007). For array datasets from other platforms, 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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the processed array data of cohorts CamCap_2016_
Ross_Adams (GSE70768), Stockholm_2016_Ross_Adams 
(GSE70769) and Belfast_2018_Jain (GSE116918) were 
obtained using GEOquery. Processed RNA-Seq data 
(FPKM normalized) from the cohort DKFZ_2018_Ger-
hauser were downloaded from cBioPortal (Gao et  al. 
2013). The RPKM normalized counts from the Chi-
nese Prostate Cancer Genome and Epigenome Atlas 
(CPGEA_2020_Li) were downloaded from http:// www. 
cpgea. com. Raw sequencing data in FASTQ format from 
the RNA-Seq project Atlanta_2014_Long (GSE54460) 
were obtained using the prefetch and fastq-dump com-
mands implemented in the SRA Toolkit v2.9.2 (https:// 
github. com/ ncbi/ srato olkit).

TCGA PRAD cohort
We used RNA-Seq data of the TCGA prostate adenocar-
cinoma (PRAD) cohort from the Cancer Genome Atlas 
(Abeshouse et al. 2015) for external gene filtering of Pros-
taTrend. See Additional file 1: Tables S1, S2 for technical 
and clinicopathological characteristics of TCGA PRAD. 
The Data source is described in Kreuz et al. (2020).

Pre‑processing
Internal FFPE_Bx cohort
To facilitate the multi-step analysis of the RNA-Seq data, 
we applied the workflow-manager uap v1.0.1 (Kämpf 
et al. 2019). A detailed description of all processing steps 
from FASTQ files to gene quantification can be found in 
Additional file  1. Gene counts were adjusted for library 
size and normalized with the variance-stabilizing trans-
formation (vst) as implemented in DESeq2 v1.30.1 (Love 
et  al. 2014). The vst method was run with the option 
“blind = TRUE” to compare samples in an unbiased man-
ner. We used the R package geneFilter (Gentleman et al. 
2018) to remove low expressed genes using the func-
tion varFilter() with parameters var.func = IQR and var.
cutoff = 0.25. Genes with an interquartile range (IQR) 
smaller than the 25th percentile of all IQR in the vst nor-
malized expression data were filtered out.

Overall, 6 samples were excluded after quality filter-
ing (see Additional file 1 for details). In addition, 3 sam-
ples were excluded because the time to BCR was not 
recorded.

Validation cohorts and TCGA PRAD
A detailed description of all processing steps for the 
validation cohorts is provided in Additional file  1. The 
pre-processing steps of the TCGA PRAD cohort are 
described in Kreuz et al. (2020).

Normalized expression values (within and between 
sample normalization) from all cohorts were trans-
formed to log or vst-space (Additional file  1: Table  S1). 

Each cohort was individually standardized by calculating 
gene-wise z-scores. The same gene expression filter as for 
FFPE_Bx was used for all cohorts.

Statistical analysis
Calculation of transcriptomic risk score (TRS) per sample
To validate the ProstaTrend signature, we applied the 
TRS as published previously (Kreuz et al. 2020). In short, 
the TRS of a sample k is the median over the weighted 
standardized expression values of all genes included in 
ProstaTrend. The weight for each significant gene was the 
estimated combined log hazard ratio (logHR) from a uni-
variate meta-analysis approach of the training cohorts. 
The logHR values were estimated using Cox proportional 
hazards models for each training cohort.

Impact of confounding factors and subsequent gene filtering 
to define the set of genes for ProstaTrend‑ffpe
To assess the impact of tumor cell content and the influ-
ence of RNA degradation that is associated with FFPE 
conservation over time, we applied linear regression 
models. For each gene, we fitted two linear regression 
models, one to estimate the impact of tumor cell content 
on gene expression and another to estimate the associa-
tion between the age of the FFPE specimens, i.e., the time 
of conservation, and gene expression. For genes associ-
ated with specimen age, we assumed that the prognostic 
information of these genes might by distorted by under-
lying differences in specimen age. Therefore, we filtered 
out ProstaTrend genes where linear regression indicated 
an association (linear regression p-value < 0.1). We did 
not filter out genes associated with tumor cell content 
of the samples or sequencing depth, as we did not find 
improved prognostic accuracy (see Additional file  1 for 
details). In addition, we restricted ProstaTrend to genes 
having a consistent prognostic effect between the train-
ing cohorts and TCGA PRAD (univariate Cox-regression 
with p-value < 0.1 in TCGA PRAD and consistent logHR).

In the study by Kreuz et  al. (2020), we identified 20 
putative new (unknown intergenic) prognostic genes out 
of a total of 1396. We did not include these genes in the 
downstream analyses because we could not identify them 
in arrays and RNA-Seq validation cohorts (due to una-
vailability of raw data for some cohorts). The novel Pros-
taTrend-ffpe gene signature contains 204 genes, of which 
one gene is putative novel.

Survival analyses
We performed survival analyses using the R survival 
package v3.1-12 (Therneau 2015) and rms v6.2-0. 
Kaplan–Meier plots for patients with TRS > 0 (increased 
risk) compared to patients with TRS ≤ 0 (reduced risk) 
were generated using the ggsurvplot function from the 

http://www.cpgea.com
http://www.cpgea.com
https://github.com/ncbi/sratoolkit
https://github.com/ncbi/sratoolkit
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survminer v0.4.9 R package. Primary survival endpoint 
of the cohort was time to BCR. Log-rank tests were per-
formed to compare probabilities of BCR-free survival 
between these two groups using the survdiff function 
implemented in the survival package. Cox proportional 
hazards models were performed on continuous TRS 
in a univariate regression model using the coxph func-
tion from the survival package. Since Gleason score is a 
major prognostic factor in PCa, we applied multivariable 
Cox-regression to assess the performance of TRS with 
adjustment for Gleason Grade Groups (GGG). Because a 
large proportion of patients in the FFPE_Bx cohort had 
a Gleason score of 7, we used GGG (Epstein et al. 2014) 
for adjustment of the regression model to achieve a more 
detailed breakdown of this group.

To compare the performance of the TRS with “non-
prognostic” random gene sets in the 9 validation cohorts 
(Fig.  4C), we formed for each validation cohort 1000 
random gene sets for ProstaTrend and ProstaTrend-
ffpe [hereinafter also referred to as ProstaTrend(-ffpe)], 
respectively. The random gene sets were drawn from all 
genes used in the meta-analysis of the ProstaTrend train-
ing cohort that were not part of the final ProstaTrend 
gene set [i.e., that had an false discovery rate (FDR) > 0.05 
(Kreuz et  al. 2020)]. Random gene sets had the size of 
the overlap for the corresponding gene set and respec-
tive cohort. In addition, the random gene sets had to have 
passed the gene expression filter (see “Pre-processing” 
section). For each random gene set and validation cohort, 
we applied the TRS to each sample and performed a Cox-
regression analysis for the TRS on a continuous scale. 
The weights for the included genes in random gene sets 
were the estimated logHRs from the ProstaTrend meta-
analysis of the training cohorts for the respective genes.

Comparison of ProstaTrend(‑ffpe) to other prognostic PCa 
signatures
To compare performance of the TRS with other prog-
nostic gene expression signatures, we relied on gene sig-
natures as reported in the study by Li et  al. (2022). We 
excluded signatures that were not designed for gene 
expression in human PCa tumor tissue or that were not 
specific for PCa. In addition, signatures that differenti-
ated tumors into more than two groups were excluded 
because a direct association of individual genes with 
prognosis has not been described in the original publi-
cation for these cases. Lastly, signatures were excluded 
for which the direction of the prognostic effect of the 
included genes was unknown. For the signature of Erho 
et  al. (2013) the direction of the prognostic effects was 
derived from Creed et  al. (2020), and intronic or non-
coding markers were excluded due to missing docu-
mentation of the genomic regions for these markers. An 

overview of all 17 included and excluded prognostic sig-
natures is provided in Additional file 1: Table S6.

Prognostic signatures were applied to cohort-wise 
standardized expression values. Since individual weights 
of the genes involved were not known for all signatures 
or these were optimized for different technical platforms, 
we simplified the calculation of the risk scores by tak-
ing only the reported directions of the gene-wise effects 
into account. To ensure comparability, we restricted the 
gene weights for ProstaTrend(-ffpe) in the same manner. 
Thus, the risk score for each signature was calculated by 
the median expression of signature genes associated with 
high risk (logHR > 0) minus the median expression of sig-
nature genes associated with reduced risk (logHR < 0). 
The binary classification of genes according to risk was, 
in our opinion, the fairest approach.

Characterizing the performance of ProstaTrend(‑ffpe) genes 
by a meta‑analysis
The following data sets were used for a meta-analysis 
to illustrate the performance of individual ProstaTrend 
genes: subsets of the training cohorts used to develop the 
ProstaTrend signature (Kreuz et  al. 2020), the FFPE_Bx 
cohort, the TCGA PRAD cohort, and the 9 validation 
cohorts. The training datasets included the cohorts FF_
array_RP and FF_seq_RP with DoD as the endpoint. The 
FF_array_RP cohort included 164 patients with 25 events 
and the FF_seq_RP cohort included 40 patients with 12 
events. For clinicopathological parameters, see Kreuz 
et  al. (2020). We did not include the FFPE_Seq_RP and 
FFPE_Seq_Bx training cohorts, which we initially used 
in Kreuz et  al. to develop the ProstaTrend signature in 
the meta-analysis. This is justified by the small number 
of patients and events (< 10 events per cohort) and the 
resulting large standard deviation for the estimated effect 
size of individual genes. This results in an unreliable esti-
mation of prognostic relevance in these cohorts and, 
ultimately a low impact on the estimate of the combined 
effect size. This filtering step is consistent with the inclu-
sion criteria for the validation cohorts described above.

We included all ProstaTrend genes annotated with 
an Ensembl ID and present in at least 2 cohorts in the 
meta-analysis. For each gene, a univariate Cox-regression 
model was applied to standardized expression values 
in log-space for each cohort individually. For the Pros-
taTrend training cohorts, it should be noted that due to 
a matched study design, patients from FF_seq_RP were 
included in FF_array_RP. Therefore, we used a weighted 
Cox-regression with weights 1/N, where N is the num-
ber of samples for the specific patient included across the 
two cohorts. Similarly, 40 patients are included in both 
the CancerMap_2017_Luca and CamCap_2016_Ross_
Adams cohorts. However, since these patients are not 
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identifiable, no adjustment could be made for these dupli-
cates. Given the small number of duplicate patients and 
the large number of cases (n = 1821), the effects of higher 
weights for matched samples are negligible. Using the 
logHR values and the respective standard errors calcu-
lated from the coxph function, we estimated a combined 
effect size for each gene. We used a random effects model 
because we did not assume that there is one true effect 
size, which is shared by all the included cohorts, but 
rather a range of true effect sizes with additional sources 
of variation, such as different platforms (RNA-Seq and 
microarray), clinical or demographic variables, etc. The 
model was fitted with the restricted maximum-likelihood 
estimator using the R package meta v4.19.0 (Schwarzer 
2007). We declared that a prognostic gene from the 
ProstaTrend(-ffpe) signature had a significant combined 
effect size when the FDR adjusted p-value (Benjamini–
Hochberg method) was < 0.05. For Fig. 5C, we calculated 
the log odds ratios derived from logistic regression model 
predicting GS > 7 vs. ≤ 7. The combined effect size for the 
log odds ratios was calculated as described above.

PCa cell atlas
Raw read counts from scRNA-Seq data of 5 studies were 
downloaded from NCBI GEO. This included the stud-
ies Chen et  al. (2021) (GSE141445), Dong et  al. (2020) 
(GSE137829), Ma et  al. (2020) (GSE157703) and Song 
et  al. (2022) (GSE176031). Read counts from the study 
Tuong et  al. (2021) were obtained from https:// www. 
prost atece llatl as. org. We excluded one sample from the 
study by Chen et al. because it was a biopsy of a lymph 
node metastasis that could not be directly compared with 
primary tumor. Pre-processing, integration, clustering, 
quality control, cell cluster annotation, estimation of copy 
number variations (CNVs) and differential gene expres-
sion analysis (DGEA) are described in Additional file 1.

Using the study-wise standardized, normalized expres-
sion values of the scRNA-Seq datasets, we applied for 
each cell a simplified ProstaTrend TRS, which was the 
mean of all genes at increased risk minus the mean of 
genes at reduced risk. The simplification of the score 
was necessary due to the low expression levels and high 
drop-out rate of individual genes in the scRNA-Seq data, 
which makes the weights inapplicable.

Spatial transcriptomics data analysis
To apply the TRS (using the same strategy as for the PCa 
cell atlas) to spots in spatial transcriptomics data, we re-
analyzed biopsies from human benign prostate tissue and 
from a human PCa stage III with GS7a. The biopsies were 
FFPE preserved and processed using the Visium spatial 
gene expression for FFPE workflow. The datasets are 
publicly available at 10× Genomics (https:// www. 10xge 

nomics. com/ resou rces/ datas ets). Pathological annota-
tions were done at an overview level and were performed 
by Agoko NV, Belgium. Pre-processing, integration and 
clustering are described in Additional file 1.

We calculated diagnostic odds ratios (DOR) for all sig-
nificantly differentially expressed (DE) genes from the 
DGEA of the PCa cell atlas. DOR values are based on a 
metric that evaluates the specificity of cell type mark-
ers (Adams et al. 2020) (see Additional file 1 for details). 
To define gene sets of cell type specific markers, we fil-
tered for significantly differentially expressed genes with 
a DOR > 2 and a log2 fold change > 1. For tumor-specific 
luminal (T-luminal) cell markers, we used a DOR > 1. 
Each spot was scored for enrichment of cell types and 
T-luminal markers using the function AddModuleS-
core implemented in Seurat (Hao et al. 2021). Since the 
spots are composed from a small number of cells but still 
reflect cell populations, we did not assign single spots to 
a specific cell type.

Results
For validation of the prognostic ProstaTrend signature, 
we followed a three-step approach, as shown in Fig.  1. 
First, we validated the genes included in the ProstaTrend 
signature (Kreuz et al. 2020) in the cohort of FFPE pros-
tate biopsies (n = 185 biopsy specimens), and formed a 
new subset of genes suitable for application in FFPE biop-
sies. Second, we developed a single-cell transcriptome 
atlas from cells of 41 PCa patients using publicly avail-
able scRNA-Seq data and analyzed gene expression of 
ProstaTrend genes in different cell compartments. Third, 
we confirmed the prognostic value of the ProstaTrend 
and ProstaTrend(-ffpe) signature in 9 publicly available 
cohorts with a total of 1109 patients.

Development of the new ProstaTrend‑ffpe signature 
utilizing the ProstaTrend gene set and an RNA‑Seq dataset 
from FFPE biopsies
We performed RNA-Seq of FFPE biopsy tissue from 185 
PCa patients (referred to as FFPE_Bx cohort). 179 sam-
ples passed the quality filter, three samples were excluded 
because time to BCR was not recorded. In total, we ana-
lyzed transcriptome data from 176 patients, 75 of whom 
had a BCR during follow-up. All patients were treated by 
RPx. The median follow-up for patients without event 
was 9  years. For clinicopathological characteristics, see 
Additional file 1: Table S2.

After filtering out low expressed genes (see “Meth-
ods”), we applied the ProstaTrend TRS to each sample 
of the FFPE_Bx cohort as previously reported (Kreuz 
et  al. 2020) (see “Methods”). Overall, there was no sig-
nificant difference in time to BCR between patients with 
TRS > 0 and patients with TRS ≤ 0 in the FFPE specimens 

https://www.prostatecellatlas.org
https://www.prostatecellatlas.org
https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
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(Fig.  2A; p-value = 0.143; 5-year BCR-free survival: 
66.1% [CI 56.2–77.6%] vs. 73.2% [CI 64.9–82.6%]). Cox-
regression analysis of ProstaTrend on a continuous scale 
did not result in a significant association with progno-
sis (p-value = 0.249). When adjusted for biopsy GGG > 2 
the model remained non-significant for ProstaTrend 
(p-value = 0.830) but resulted in a significant association 
of prognosis with GGG (p-value = 3.03 ×  10−7; Fig. 2C).

Various systematic differences between the cohorts 
studied in Kreuz et al. (2020) may explain the poor repro-
ducibility of the TRS in the FFPE_Bx cohort. In contrast 
to the training cohorts, FFPE_Bx included a substantial 
fraction of samples with low tumor cell content (median: 
40%; range: 5–100%). Further, for FFPE_Bx, we mul-
tiplexed 32 samples for the first and 51 samples for the 
other 3 flow cells, resulting in a lower sequencing depth 
per sample compared to the training cohort (Kreuz et al. 
2020). Thus sequencing depth is a potential confound-
ing factor, especially for the measurement of ProstaTrend 
genes with low expression levels. However, filtering out 
of genes or samples associated with tumor cell content 
or low sequencing depth did not result in a relevant 

improvement in the prognostic accuracy of the TRS in 
FFPE_Bx (see Additional file 1).

Moreover, FFPE_Bx comprised FFPE preserved biopsy 
specimens in contrast to the training cohorts (Kreuz et al. 
2020), which included mainly fresh-frozen specimens 
derived from radical surgeries. Thus, systematic differ-
ences in the degradation between FFPE and fresh-frozen 
conservation may affect the expression measurement of 
genes included in ProstaTrend, especially since the aver-
age age of the analyzed specimens was high for the FFPE_
Bx cohort (median: 9.4  years). Filtering out of genes 
associated with specimen age (541 genes retained, see 
“Methods”) resulted in strong prognostic relevance of the 
TRS, also in FFPE_Bx (Cox-regression: p-value = 0.0025, 
see Additional file 1: Fig. S3F).

Given that the majority of samples in the ProstaTrend 
training cohorts were measured by expression microar-
rays and the primary endpoint was DoD, we expected 
improved prognostic accuracy if we filtered out genes 
that showed no consistent prognostic effects in RNA-
Seq cohorts with BCR as primary endpoint. As we did 
not include the TCGA PRAD cohort (Abeshouse et  al. 

From ProstaTrend to
ProstaTrend-ffpe

176 Pa�ents with confirmed sequencing 
quality and record of �me to BCR (75 events)

Filtering out of ProstaTrend genes associated 
with specimen age and no prognos�c impact 

in TCGA PRAD cohort

ProstaTrend-ffpe

Analyzing of ProstaTrend-ffpe and 
ProstaTrend gene expression in single-cell 

data

We developed a PCa single-cell atlas of 41 
PCa pa�ents of publicly available datasets 

from 5 studies.

Valida�ng the associa�on of TRS with BCR 
using ProstaTrend(-ffpe) in independent 

valida�on cohorts

Survival analysis to assess prognos�c value in 
9 publicly available cohorts

Meta-analysis for ProstaTrend genes using 
Cox propor�onal hazards models from a total 

of 13 cohorts (n = 1832 pa�ents). 

A B C

1109 Pa�ents

We previously developed the prognos�c 
ProstaTrend signature that predicts DoD and 

BCR in cohorts of PCa pa�ents
treated with RP

This study

PCa (FFPE)

PCa CELL ATLAS

Transcriptomic Risk
Score (TRS)

Analyzing of ProstaTrend-ffpe and 
ProstaTrend gene expression in spa�al data

RNA-Seq samples from FFPE 
Biopsies of 185 PCa pa�ents

TRS

TRS

Fig. 1 Analysis workflow. A Overview of the included tissue samples we used to develop the ProstaTrend‑ffpe signature. Shown are the number 
of patients included in the study and reasons for exclusion. For 185 patients, we performed a strand‑specific transcriptome‑wide sequencing 
from FFPE biopsy tissue. A total of six samples did not meet the quality criteria for RNA‑Seq data. In addition, we excluded three samples due 
to missing clinical follow‑up data. The final cohort included 176 patients, for 75 of whom BCR was observed within the follow‑up time. FFPE 
formalin‑fixed paraffin‑embedded, PCa prostate cancer, DoD death of disease, BCR biochemical recurrence. B For the development of the PCa 
single‑cell atlas, we used scRNA‑Seq data of PCa patients from 5 publicly available studies (Chen et al. 2021; Dong et al. 2020; Ma et al. 2020; Song 
et al. 2022; Tuong et al. 2021). Spatial transcriptomics data of a human PCa biopsy (GS = 3 + 4) were downloaded from the 10× Genomics database. 
C The prognostic value of the Transcriptomic Risk Scores (TRS) using ProstaTrend(‑ffpe) was evaluated by survival analyses in 9 publicly available 
cohorts (Li et al. 2020; Fraser et al. 2017; Luca et al. 2018; Long et al. 2014; Gerhauser et al. 2018; Jain et al. 2018; Ross‑Adams et al. 2015; Taylor et al. 
2010) and a meta‑analysis with a total of 13 cohorts
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2015) in the training we wondered whether the prognos-
tic association of the TRS would be strengthened when 
we restricted ProstaTrend to genes that also showed a 
consistent effect in TCGA PRAD. Removing genes show-
ing inconsistent effects in TCGA PRAD (Cox-regression 
with p-value ≥ 0.1 or inconsistent logHRs) without con-
sidering the FFPE degradation effect also improved TRS, 
but to a lesser extent compared to filtering for FFPE deg-
radation (Cox-regression: p-value = 0.013, see Additional 
file 1: Fig. S4).

When we applied both filters and restricted Pros-
taTrend to genes not associated with specimen age and 
with a consistent prognostic effect between the training 
cohorts and TCGA PRAD, the difference in time to BCR 
between patients with high and low TRS became even 
more pronounced (Fig.  2B). This new ProstaTrend-ffpe 
TRS encompassed 204 genes. Patients with high TRS 
had a significantly adverse clinical outcome compared to 
patients with low TRS (log-rank test: p-value = 0.00034; 
5-year BCR-free survival: 56% [CI 46.2–68.1%] vs 
81.9% [CI 74.4–90.1%]). Cox-regression analysis of the 
ProstaTrend-ffpe TRS revealed statistical significance 
(p-value = 1.60 ×  10–05). In addition, the score remained 
an independent prognostic factor when adjusted for 
biopsy GGG > 2 (Fig. 2D, p-value = 0.045).

In conclusion, we removed genes from the ProstaTrend 
signature associated with FFPE specimen age and fur-
thermore limited to genes that showed consistent prog-
nostic relevance in another RNA-Seq cohort (TCGA 
PRAD) with time to BCR as prognostic endpoint. These 
filtering steps resulted in a newly formed, ProstaTrend-
ffpe signature. TRS using the ProstaTrend-ffpe signa-
ture showed a prognostic significance in FFPE_Bx and 
retained its prognostic relevance when adjusted for Glea-
son Grade Groups. Additional file 2: Table S11 provides 
an overview of all ProstaTrend genes.

Utilizing a single‑cell atlas of human PCa tissue to relate 
TRS of ProtaTrend(‑ffpe) to cell compartments
To characterize and analyze the expression of Pros-
taTrend genes with respect to cell types, we compiled 
a PCa single-cell transcriptome atlas from previously 
published datasets of 5 studies (Chen et  al. 2021; Dong 
et al. 2020; Ma et al. 2020; Song et al. 2022; Tuong et al. 
2021) (see Additional file 1: Fig. S14 and Table S7 for an 
overview of the datasets). After quality-control filtering 
of cells, integration, clustering and cell cluster annota-
tion, the atlas contained data for about 90,000 cells from 
41 donors derived from their PCa and, when available, 
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Fig. 2 Prognostic value of ProstaTrend(‑ffpe) in the FFPE biopsy cohort FFPE_Bx. We assessed the prognostic value of the ProstaTrend (A, C) 
and ProstaTrend‑ffpe TRS (B, D) signature by Kaplan–Meier analysis and Cox proportional hazard regression (BCR as the primary endpoint). A, 
B Kaplan–Meier curves for patients with TRS > 0 (increased risk) compared to patients with TRS ≤ 0 (reduced risk). Color shades depict the 95% 
confidence intervals for Kaplan–Meier curves. The curves were truncated if the number of patients at risk dropped below 10 in both groups. The 
colored numbers above the x‑axis indicate the number of patients at risk. Log‑rank tests were performed to evaluate probabilities of BCR‑free 
survival between these two groups. The numbers under the log‑rank p‑values indicate the number of patients and cases with BCR. C, D Univariate 
Cox‑regression analysis for TRS on a continuous scale (top) and multivariable Cox‑regression for TRS adjusted for Gleason grading group (GGG > 2) 
of the biopsies (bottom). logHR log hazard ratio, HR hazard ratio, CI confidence interval



Page 9 of 20Rade et al. Molecular Medicine           (2024) 30:19  

from adjacent non-malignant tissue (n = 14 donors with 
matched tumor and adjacent tissue).

We annotated cell types following a three-step 
approach (see Additional file 1): first, we used the R pack-
age clustifyr (Fu et al. 2020), a correlation-based method 
for annotating cell clusters using single-cell/bulk data 
from healthy human prostate tissue (Henry et  al. 2018) 
and hematopoietic cell types (Racle and Gfeller 2020; 
Villani et  al. 2017) as reference. Second, we verified the 
annotated cell clusters based on the expression of canon-
ical cell type markers. Third, if available, we matched our 
annotation results with the already annotated cells of the 
analyzed datasets. Overall, we identified 15 cell types 
derived from lymphoid, myeloid stromal and epithelial 
cell lineages in tumor and adjacent tissue (Fig. 3A). Basal 
cell and club cell populations were distinguished by sub-
clusters that had high KLK3 (kallikrein related peptidase 
3—also known as PSA) expression and were annotated 
with the suffix “KLK3” accordingly (Additional file 1: Fig. 
S23).

We applied a simplified TRS (see “Methods”) to each 
cell from the tumor samples using theProstaTrend(-ffpe) 
signatures. Figure  3B depicts the expression of TRS in 
cells from tumor samples. On average, risk scores calcu-
lated from the ProstaTrend(-ffpe) signatures were lower 
in luminal cells compared to other cell types (Additional 
file 1: Fig. S30). In addition, for the ProstaTrend-ffpe sig-
nature, we observed higher risk score in cycling cells (S, 
G2M phase) compared with the other cell types. Group-
ing TRS by GS and cell lineages revealed a positive corre-
lation between TRS and GS for epithelial cells in 3 out of 
4 studies (with heterogeneous GS), especially for luminal 
cells (Spearman correlation ProstaTrend-ffpe vs. GS in 
luminal cells: Chen et al. cor = 0.42; Song et al. cor = 0.12; 
Tuong et  al. cor = − 0.02; Dong et  al. cor = 0.56; Addi-
tional file 1: Fig. S31).

Furthermore, we used inferCNV (see Additional file 1 
for methods) to estimate tumor-specific cells in epithelial 
cell types from tumor samples. We observed that tumor-
specific luminal cells (T-luminal) had a significantly 
higher risk score than luminal cells in single-cell datasets 
of all studies (p-value < 0.05, Fig. 3C). We performed this 
analysis for all epithelial cell types but found the most 
significant effect across all studies in the luminal cell type 
(Additional file 1: Fig. S32).

We also compared ProstaTrend(-ffpe) with gene sets 
for 14 functional states of cancer (Yuan et  al. 2019) 
(Additional file 1: Table S10). For 7 gene sets, we detected 
a significant enrichment of ProstaTrend genes, including 
metastasis, invasion, proliferation, EMT (Epithelial–mes-
enchymal Transition), cell cycle, DNA damage and DNA 
repair.

Association of ProstaTrend genes with cell lineages and cell 
types
We associated ProstaTrend genes with cell lineages and 
cell types by performing DGEA utilizing the single-cell 
atlas for human PCa tissue. A Wilcoxon rank-sum test 
was applied between the average gene expressions per 
patient for each cell lineage against the average patient 
expressions of the other lineages (see Additional file  1 
for details). Figure 3D depicts the number of significantly 
overexpressed ProstaTrend(-ffpe) genes (FDR < 0.05 and 
log fold change > 0.25). Most ProstaTrend genes were 
uniquely characteristic for epithelial (n = 108), followed 
by stromal (n = 81), myeloid (n = 39) and lymphoid cells 
(n = 39).

Approximately 73% of all ProstaTrend genes signifi-
cantly differentially expressed (DE) in epithelial cells 
had a logHR < 0, i.e., high expression was associated 
with a good prognosis. In contrast, approximately 91% 
of DE genes associated with the other cell lineages were 

(See figure on next page.)
Fig. 3 Analysis of ProstaTrend genes in the developed PCa single‑cell atlas. A We embedded about 90,000 cells of 41 PCa patients from 5 
publicly available datasets (Chen et al. 2021; Dong et al. 2020; Ma et al. 2020; Song et al. 2022; Tuong et al. 2021) into a two‑dimensional space 
by the t‑distributed stochastic neighbor embedding (tSNE) method. Each dot represents a single cell. Cells are colored according to cell identity. B 
We applied a simplified TRS to each cell from the tumor samples using the ProstaTrend and ProstaTrend‑ffpe signatures. Each area containing cells 
on the tSNE was divided into hexagonal bins, and cells within each bin were averaged. The bins are colored according to TRS. C For tumor samples, 
TRS were grouped based on the ProstaTrend(‑ffpe) signatures and colored according to luminal and tumor‑specific luminal (T‑luminal) cells 
(****p‑value < 0.0001, Wilcoxon rank‑sum test). PT ProstaTrend, PT-ffpe ProstaTrend‑ffpe. The y‑axis depicts the TRS. D UpSet plot of ProstaTrend(‑ffpe) 
DE genes (FDR < 0.05) of four cell lineages. The squares in the matrix represent unique or overlapping DE genes for the cell lineages. The stacked 
bar graph above the matrix summarizes the number of ProstaTrend(‑ffpe) DE genes for each unique lineage. The top stacked bar plot shows 
the fraction of DE genes with log hazard ratio > 0 or < 0. E Heat map of the highest ranked DE genes for the ProstaTrend(‑ffpe) genes. Genes are 
ranked by log2 fold change. 15 genes (if present) are depicted for each cell lineage. Each column depicts the average expression value for one 
patient, grouped by cell lineage and tissue source. Average gene expression values are standardized. F UpSet plot of ProstaTrend(‑ffpe) DE genes 
for cell types. G Pathological annotations of a human prostate stage III adenocarcinoma biopsy, which was FFPE preserved and processed using 
the Visium spatial gene expression for FFPE workflow. H Standardized overall enrichment (OE) scores of cell type markers for each spot were 
estimated using the AddModuleScore function implemented in Seurat. I OE of DE genes (T‑luminal vs. luminal cells from the PCa Cell Atlas) for each 
spot. J TRS was applied to gene expression spots using the ProstaTrend(‑ffpe) signatures
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associated with adverse prognosis (logHR > 0). The 15 
highest ranked significantly DE genes for each cell lineage 
and signature are depicted in Fig. 3E.

DGEA for cell types was performed in their respec-
tive cell lineage group (Fig. 3F). Additional file 1: Fig-
ures S27, S29 depict the highest ranked genes and the 
number of all DE genes, respectively. Of the 74 unique 
DE genes in the ProstaTrend-ffpe signature, 53% were 
associated with cycling cell types. Approximately 96% 

of all DE genes from the ProstaTrend(-ffpe) signatures 
associated with luminal cell types had a logHR < 0, 
consistent with the observation of low ProstaTrend(-
ffpe) scores in luminal cells (Fig.  3B). DE genes asso-
ciated with the luminal, club, cycling epithelial and 
cycling macrophage cell types were significantly 
(p-value < 0.05) enriched with genes from the Pros-
taTrend signature (Additional file  1: Table  S9). All 
DE genes from the ProstaTrend signature and their 
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respective assignment to cell lineages and cell types 
are included in Additional file 2: Tables S12, S13.

We also performed a DGEA between paired tumor 
and normal samples for each cell lineage and cell type. 
However, we did not observe significant expression 
differences which is consistent with the result of the 
study by Song et al. (2022).

Relating the ProstaTrend(‑ffpe) TRS to spatial 
transcriptomics of a PCa biopsy
We re-analyzed publicly available spatial transcrip-
tome data from an FFPE-preserved PCa biopsy 
(GS = 3 + 4) to characterize ProstaTrend in the spatial 
context of prostate tissue. Pathological annotations 
for the tumor tissue were done at an overview level as 
shown in Fig. 3G. Each spot was scored for enrichment 
of cell type markers from the PCa cell atlas (see Addi-
tional file 1: Fig. S34 for enrichment of all cell types). 
Overall, we observed conformity between the patho-
logical annotation and the cell type enrichment results 
(Fig.  3H). Gene sets for these cell types are included 
in Additional file 2: Table S14. Since primary prostate 
cancer has a luminal phenotype, we performed DGEA 
between T-luminal and luminal cells from the PCa sin-
gle-cell atlas (see Additional file  1 for details). These 
DE genes were then used for enrichment analysis in 
the spots of the spatial sequencing sample. DE genes 
with log fold changes (LFC) > 0 were enriched in the 
invasive carcinoma regions of the tissue (p < 2.2e−16; 
see Additional file  1: Fig. S35), whereas DE genes 
with LFC < 0 were enriched in the normal glandular 
regions (p < 2.2e−16). See Fig. 3I and Additional file 2: 
Table  S15 for gene sets. These results confirm the 
pathological annotation and indicate the transferability 
of the T-luminal signature to spatial transcriptomics.

As with the PCa cell atlas, we applied TRS to each 
spot using the ProstaTrend(-ffpe) signatures (Fig.  3J). 
We observed largely negative ProstaTrend risk scores 
in spots annotated as invasive carcinoma regions 
(Fig. 3G) and with high enrichment scores for luminal 
cells (Fig. 3H). On the other hand, TRS calculated from 
the ProstaTrend-ffpe signature showed a strongly neg-
ative score in normal glandular regions. Positive risk 
scores are mainly observed in stromal regions but also 
in spots enriched for leukocytes and partially in spots 
enriched for epithelial cells. Interestingly, a compari-
son of the TRS in Fig.  3J with the enrichment results 
from Fig.  3I shows that in both cases, spots enriched 
with T-luminal DE genes (LFC > 0 or < 0) had a nega-
tive TRS using ProstaTrend signatures.

The significant association of the TRS with BCR 
is confirmed in 9 independent validation cohorts
To further validate the association of the TRS with BCR, 
we applied the ProstaTrend(-ffpe) TRS to publicly availa-
ble PCa transcriptome datasets. We included studies with 
gene expression data available by microarray or RNA-Seq 
from primary PCa samples with available data on time to 
BCR or time to last follow-up if BCR had not occurred. 
In total 9 cohorts matched our criteria for inclusion (Li 
et al. 2020; Fraser et al. 2017; Luca et al. 2018; Long et al. 
2014; Gerhauser et al. 2018; Jain et al. 2018; Ross-Adams 
et  al. 2015; Taylor et  al. 2010) (see “Methods”). Six of 
these were analyzed by gene expression microarrays and 
three by bulk RNA-Seq. The total number of patients 
included was n = 1109 and ranged from n = 73 to n = 248 
per individual study. Additional file  1: Tables S1 and S3 
provide a description of the included studies and the clin-
icopathological parameters, respectively. We performed 
survival analysis to assess the prognostic performance of 
TRS using the ProstaTrend(-ffpe) signatures for predict-
ing time to BCR. For each cohort, the score was applied 
and dichotomized (TRS > 0 vs. TRS ≤ 0).

As shown in Fig.  4A, the Kaplan–Meier curves indi-
cate a quantitatively strong difference in time to BCR 
for the ProstaTrend-ffpe TRS for the cohorts (for the 
original ProstaTrend see Additional file  1: Fig. S5). Sta-
tistical differences to assess the probability of BCR-free 
survival of patients with a TRS > 0 (increased risk) com-
pared with patients with a TRS ≤ 0 (reduced risk) were 
evaluated using a log-rank test. For all cohorts except 
MSKCC_2010_Taylor, we observed significant differ-
ences (p-value < 0.05) between the two groups. Additional 
file 1: Figures S5 and S6 illustrate that the ProstaTrend-
ffpe TRS showed a stronger association with time to BCR 
compared with ProstaTrend with respect to the log-rank 
test in all 9 cohorts.

Matched benign biopsies from PCa patients with at 
least 10 events were available for three cohorts, one from 
the ProstaTrend training cohorts (FF_array_RP) and 
two from the validation cohorts (CamCap_2016_Ross_
Adams and CPGEA_2020_Li). We performed Kaplan–
Meier analysis and log-rank test with dichotomized TRS 
using the ProstaTrend(-ffpe) signatures and observed 
only for CPGEA_2020_Li a consistent trend for a prog-
nostic effect of ProstaTrend(-ffpe) in matched normal tis-
sue (see Additional file 1: Fig. S7).

An overview of the estimated logHRs for TRS on a 
continuous scale is provided in Fig.  4B. ProstaTrend-
ffpe was significantly associated with time to BCR in 
all 9 cohorts with p-values ranging from 4.17e−8 (Bel-
fast_2018_Jain) to 0.02 (Atlanta_2014_Long). Consist-
ently, increased TRS using the original ProstaTrend 
signature was associated with shorter time to BCR in 
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all cohorts, although statistical significance was not 
reached for Atlanta_2014_Long (p-value = 0.336). For 
all cohorts except CPC_GENE_2017_Fraser, the asso-
ciation between time to BCR and TRS was more sig-
nificant for ProstaTrend-ffpe compared to the original 
version.

In a multivariable Cox-regression analysis with adjust-
ment for GS on a continuous scale, the ProstaTrend-ffpe 
TRS showed a consistent association with time to BCR 
for all validation cohorts (Additional file  1: Table  S5), 
and statistical significance was achieved for all cohorts 
except MSKCC_2010_Taylor (p-value = 0.113) and 
Atlanta_2014_Long (p-value = 0.081). In 6 of the 9 ana-
lyzed cohorts, the association of prognosis with the 
ProstaTrend-ffpe TRS was more significant compared 
to the GS. Furthermore, using a Kruskal–Wallis test, we 
found a significant association between TRS and GS in 
all 9 cohorts (Additional file 1: Fig. S9). Significant differ-
ences in TRS between patients with low (pT1/2) and high 
(pT3/4) pathological tumor stages were observed in 5 of 8 
cohorts (Additional file 1: Figs. S10, S11).

Next, we compared the prognostic prediction capa-
bilities of the ProstaTrend(-ffpe) signatures with ran-
dom gene sets. We randomly sampled 1000 gene sets 
of the same size as the number of ProstaTrend(-ffpe) 
genes detectable/passing the quality filtering criteria 
in that respective cohort, followed by Cox-regression 
analysis for each cohort (see “Methods”). The signifi-
cance of the logHRs from the random gene sets is shown 
as boxplots for each cohort in Fig. 4C. The p-values for 
ProstaTrend(-ffpe) gene sets are depicted as colored dots. 
In all cohorts, the p-values of the ProstaTrend-ffpe signa-
ture were above the 75% percentiles of the boxplots of the 
random gene set. In 7 cohorts, the p-values of the Pros-
taTrend-ffpe signature were below all 1000 random gene 
sets (Fig. 4C, green dots).

Finally, we analyzed whether the directions of the 
estimated combined effect sizes of the logHRs from the 
ProstaTrend training cohorts (Kreuz et al. 2020) matched 
the combined effect size from the 9 validation cohorts 
(Fig. 4D). Concordance of the directions of the combined 
effect sizes was observed in 87% of all ProstaTrend genes 
and in 99% of the ProstaTrend-ffpe genes by univariate 
random-effect meta-analysis.

Comparison of the prognostic performance 
of the ProstaTrend‑ffpe with other prognostically relevant 
PCa panels revealed that ProstaTrend‑ffpe was among the 
best‑ranked panels
We compared the prognostic performance of 
ProstaTrend(-ffpe) with 17 other prognostically relevant 
PCa gene sets (see “Methods” and Additional file  1: 
Table  S6). All genes in the panels were assigned binary 
information on whether their expression was associated 
with an increased or decreased risk of adverse outcome 
in the respective original publication. The corresponding 
table with all annotated genes of the panels is included 
in Additional file  2: Table  S16. Using the cohort-wise 
standardized expression values of the validation cohorts, 
we applied for each gene set (including both ProstaTrend 
gene sets) and patient a simplified TRS, which was the 
median of all genes at increased risk minus the median of 
genes at reduced risk (see “Methods”).

We then performed a log-rank and Cox-regression 
analysis for each cohort to assess the prognostic perfor-
mance of all gene sets. When we ranked the significance 
of the estimated logHRs by descending magnitude, we 
observed that the gene sets of the ProstaTrend-ffpe were 
among the 5 highest ranked panels in 8 cohorts (Fig. 4E 
and Additional file  1: Fig. S12A for all gene sets). On 
the log-rank test, ProstaTrend-ffpe were among the top 
5 ranked panels in all 9 cohorts (Additional file  1: Fig. 

Fig. 4 Validation of the ProstaTrend and ProstaTrend‑ffpe signature in 9 publicly available PCa cohorts. A For the ProstaTrend‑ffpe signature, 
Kaplan–Meier curves for patients with TRS > 0 (increased risk) compared to patients with TRS ≤ 0 (reduced risk) are shown. The numbers 
under the cohort IDs indicate the number of patients and cases with BCR. Color shades depict the 95% CI for Kaplan–Meier curves. The curves 
were truncated if the number of patients at risk dropped below 10 in both groups. The colored numbers above the x‑axis indicate the number 
of patients at risk. Log‑rank tests were performed to evaluate probabilities of BCR‑free survival between the two groups. The numbers in the plot 
(above the log‑rank p‑values) indicate how many ProstaTrend‑ffpe genes are available in the datasets. B Forest plot of the overall logHRs 
and corresponding 95% confidence intervals (95% CI) estimated by Cox‑regression on a standardized continuous scale. Significant logHRs 
with a p‑value < 0.05 are highlighted in green. C We generated 1000 random gene sets each for ProstaTrend and the ProstaTrend‑ffpe signature, 
followed by Cox‑regression analysis for each cohort (see “Methods”). The estimated −log10(p‑value) for the random gene sets are shown 
as boxplots. The p‑values for ProstaTrend(‑ffpe) gene sets are shown as colored dots (same p‑values as in B). D The x‑axis depicts the combined 
effect size of logHRs for genes from a univariate random‑effects meta‑analysis approach of the ProstaTrend training cohorts. The same 
meta‑analysis approach was performed for the 9 validation cohorts (y‑axis). Genes whose logHRs from the meta‑analysis of the training cohort 
showed no significance (FDR ≥ 0.05) are colored in gray. The logHRs of the ProstaTrend(‑ffpe) genes are colored accordingly. E The dots depict 
the ‑log10(p‑values) estimated from a Cox‑regression model with a two‑sided Wald test. Prognostic signatures that were among the top 5 (sorted 
by p‑value) in more than 3 cohorts were highlighted by a label. The white numbers represent the rank by p‑value. The dashed vertical line indicates 
a p‑value of 0.05. F The average rank of each prognostic gene set across all cohorts from the log‑rank and Cox‑regression analysis

(See figure on next page.)
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S12B). In Fig. 4F, we calculated the average rank of each 
prognostic gene set across all cohorts from the log-rank 
and Cox-regression analysis. We observed that the Pros-
taTrend-ffpe signature ranked first in the log-rank and 

Cox-regression analysis (see Additional file  1: Fig. S12C 
for the ranking of all gene sets).

The results demonstrate the prognostic relevance of 
our new ProstaTrend-ffpe signature and thus illustrate 
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the added value of our signature. In addition, 155 of 204 
genes in the ProstaTrend-ffpe signature do not occur in 
any other of the 17 prognostic signatures, underlining 
the novelty value of the prognostic genes (see Additional 
file 1: Fig. S12D).

The majority of all ProstaTrend‑ffpe genes showed 
significant combined effect sizes in a meta‑analysis with all 
13 cohorts
To assess the consistency and predictive performance 
of individual genes in the ProstaTrend(-ffpe) gene 
sets across all cohorts, we conducted a meta-analysis 
approach. The resulting model integrated all available 
samples for a best effort assessment of gene-wise com-
bined effect size of logHRs, and significance of prognostic 
association. For the meta-analysis, we used the FFPE_Bx 
cohort, the TCGA PRAD cohort, the 9 validation cohorts 
and all training cohorts (Kreuz et al. 2020) with sufficient 
number of events (see “Methods”).

Of the total 1376 ProstaTrend genes, 535 genes (≈ 39%) 
had a significant combined effect size (FDR < 0.05), of 
which 124 genes had a combined effect size (logHR) < 0 
and 411 > 0 (Fig.  5A). Overall, 160 of 203 (≈ 78%) Pros-
taTrend-ffpe genes had a significant combined effect 
size, of which 37 genes had a combined effect size < 0 and 
123 > 0.

Considering the publicly available data sets were from 
different sources (see Additional file 1: Table S1), not all 
significant ProstaTrend genes were always present in all 
cohorts. Of 535 significant ProstaTrend genes, approxi-
mately 94% are annotated as protein-coding (data not 
shown). Of the significant genes available in fewer than 
10 cohorts, the majority are annotated as non-coding and 
only 8% are protein-coding. This suggests a lower repre-
sentation of non-coding genes across the cohorts stud-
ied and thus a lower statistical power to detect potential 
prognostic associations. Figure 5B indicates in how many 
cohorts the logHRs for the significant combined effect 
sizes had the same direction, i.e., > or < 0. Among 391 of 
the ProstaTrend genes whose significant combined effect 
sizes were composed of logHRs across all 13 cohorts, 
346 genes showed a consistent logHR in more than 10 
cohorts.

The 5 highest ranked ProstaTrend genes (by adjusted 
p-value) from the meta-analysis are shown as forest 
plots in Fig. 5D (see Additional file 1: Fig. S13 for a more 
detailed representation of the forest plots). SRD5A2, 
the gene with the highest significance level in our meta-
analysis, encodes one of three isozymes of steroid 5 
α-reductase, which catalyzes the conversion of testos-
terone to the more potent androgen dihydrotestosterone 
(DHT), the most active androgen in the prostate. In the 
case of PCa, increased androgen production stimulates 

androgen-dependent cancer cells. In advanced stages of 
metastasis, androgen dependence declines, and SRD5A2 
expression has been observed to be downregulated in 
these cases (Titus et  al. 2005, 2014; Kosaka et  al. 2013; 
Söderström et al. 2001).

Lastly, we performed a second meta-analysis in which 
we estimated the combined effect size of log odds 
ratios derived from the logistic regression model to 
predict GS > 7 versus ≤ 7. We observed that 488 Pros-
taTrend genes (of which 154 are part of ProstaTrend-
ffpe) had a significant combined effect size (FDR < 0.05) 
in both meta-analysis approaches (Fig.  5C). Moreover, 
we observed a spearman correlation coefficient of 0.89 
between the effect sizes of both meta-analyses.

In summary, a large proportion of genes from the Pros-
taTrend-ffpe signature not only had significant combined 
effect sizes in the meta-analysis but also showed con-
sistency in the direction of effect sizes across all cohorts 
analyzed. Results of the meta-analysis are included in 
Additional file 2: Tables S17, S18. Forest plots and other 
statistics on ProstaTrend genes from the meta-analysis 
can be analyzed at https:// bioinf. izi. fraun hofer. de/ prost 
atrend/.

Discussion
We utilized a cohort of n = 176 PCa biopsy specimens 
to develop a transcriptome-based prognostic signature 
for FFPE-conserved specimens used in routine PCa 
diagnostic by selecting a gene subset from a previously 
described signature for fresh-frozen RPx-derived sam-
ples. For a substantial proportion of the genes selected 
for the prognostic score in fresh-frozen samples, we 
observed a strong correlation between gene expression 
and the time of FFPE conservation, indicating a relevant 
impact of FFPE-associated degradation on the measure-
ment and consequently on the prediction of the progno-
sis in FFPE tissue. Filtering of these genes and removal of 
genes that are low expressed or inconsistent with the PCa 
dataset of the TCGA resulted in a strongly prognostic 
and FFPE biopsy-compatible novel ProstaTrend-ffpe sig-
nature that encompassed 204 genes. We observed excel-
lent reproducibility of the prognostic relevance in nine 
publicly available studies demonstrating a high degree of 
robustness with respect to the measurement platforms 
used, tissue preservations, and differences in laboratory-
specific processes. It should be noted that not all genes 
were available for all datasets, but this did not impair the 
reproducibility of the score. Based on the good repro-
ducibility of the original ProstaTrend signature in other 
independent cohorts, we chose the approach of filter-
ing genes whose expression signal was affected by FFPE 
conservation. This filtering process did not consider the 
prognostic endpoint (BCR) of the FFPE_Bx cohort to 

https://bioinf.izi.fraunhofer.de/prostatrend/
https://bioinf.izi.fraunhofer.de/prostatrend/
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avoid potential overfitting. Alternatively, training a com-
pletely new signature considering all measured genes 
and cohorts would be possible but we refrained from 
this strategy as this would have led to an overestimation 
of the prognostic accuracy of the resulting score in the 
FFPE_Bx cohort.

PCa is a multifocal disease and considerable intra- and 
interfocal heterogeneity has been described (Carm et al. 
2019). Evaluation of multiple foci of different gradings 
by molecular risk assessments showed significant dif-
ferences in scoring (Carm et  al. 2019). This also applies 
to transcriptome-based risk assessment for PCa (Salami 
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Fig. 5 Results of the univariate random‑effect meta‑analysis using Cox proportional hazard models. A We estimated a combined effect size 
of logHRs for each gene across 13 cohorts. Shown are the combined effect sizes of all prognostic ProstaTrend genes (n = 1376). The x‑axis 
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et  al. 2018). The results of our analyses already show a 
strong correlation of ProstaTrend-ffpe with prognosis in 
all analyzed cohorts. Despite the high number of genes 
included in the signature, molecular heterogeneity can be 
assumed to have a major influence on the assessment. We 
therefore expect an even better risk classification of Pros-
taTrend-ffpe if multiple foci of a patient will be analyzed 
in parallel. This could be achieved by utilizing imaging 
methods that support the detection of different foci.

Interestingly, the differences between ProstaTrend and 
ProstaTrend-ffpe TRS were less pronounced in the pub-
licly available FFPE cohorts of Atlanta_2014_Long and 
Belfast_2018_Jain (see Additional file  1: Fig. S5) com-
pared to the FFPE_Bx cohort used for filtering. Potential 
explanations could be the use of RPx specimens instead 
of biopsies in these cohorts or differences in preservation 
type or duration. Applying the ProstaTrend-ffpe TRS to 
matched benign prostate tissue from bulk transcriptom-
ics indicated no or only a weak prognostic association. 
This indicates that the prognostic information is derived 
from the expression patterns of the tumor cells and/or 
tumor microenvironment. We demonstrate good con-
cordance of the prognostic impact of individual genes 
between the ProstaTrend training (Kreuz et al. 2020) and 
validation cohorts (Fig.  4D). The higher absolute value 
of the estimated logHRs in the training cohorts is con-
ceivably caused by the consideration of a different end-
point, i.e., DoD instead of BCR, as well as the enrichment 
of patients with events in the training cohorts. In addi-
tion, the smaller sample size as well as lower heterogene-
ity in the training cohort could lead to a higher absolute 
estimate of logHRs. Nevertheless, a large proportion of 
genes showed a reproducible association with prognosis 
suggesting that molecular processes with a multitude of 
associated genes are involved in an aggressive phenotype. 
This explains that a variety of gene expression signatures 
with discordant gene sets reproducibly reveal prognos-
tic differences in patient cohorts (Fig. 4E and Additional 
file 1: Fig. S12). The analysis of ProstaTrend(-ffpe) and 17 
published gene signatures for PCa prognosis indicated 
a comparatively very clear and reproducible prognos-
tic relevance for ProstaTrend-ffpe. The public signatures 
are partly based on different clinical endpoints and have 
been established for different platforms with more spe-
cific weights and statistical models. Nevertheless, the 
simplified aggregation of single genes applied for the 
comparison of the signatures here represents a suitable 
and robust method to estimate the prognostic relevance 
of the signatures and is similarly applied, e.g., for the esti-
mation of the Decipher score (Erho et al. 2013) in Salami 
et al. (2018). Although the standardization and simplifi-
cation of the signatures obviously affect the results, our 
findings still indicate that the ProstaTrend-ffpe is among 

the signatures with the strongest prognostic predic-
tion potential. The original ProstaTrend TRS described 
by Kreuz et  al. (2020) was significantly associated with 
time to BCR in 8 of 9 of the validation cohorts, however 
the correlation was considerably weaker compared to 
the revised version, and it is not ranked among the best 
scores. The small sample size in the training cohort, the 
use of DoD as a clinical endpoint with enrichment for 
patients who experienced an event, and the focus on 
gene-expression microarrays might be factors that result 
in poorer generalizability of the original ProstaTrend 
TRS and worse performance in the validation cohorts. 
In conclusion, ProstaTrend-ffpe generally shows better 
prognostic performance than the original ProstaTrend 
signature and should also be applied for fresh frozen 
biopsy or RPx samples in the future.

The meta-analysis for the detection and validation of 
potential prognostic genes is limited by the availability of 
raw expression data and the lack of total-RNA sequenc-
ing data. Thus, data on novel and non-coding transcripts 
were not available for the majority of cohorts, and many 
relevant biomarkers belonging to these biotypes are likely 
to be missed in our analysis. The extent to which the 
prediction accuracy can be further improved by includ-
ing these markers remains to be elucidated. However, in 
a total of 13 cohorts, a significant combined effect size 
was detected for 163 of 204 genes of the ProstaTrend-ffpe 
signature, underlining the prognostic relevance of the 
signature.

Even with the reduced number of included genes, 
ProstaTrend-ffpe still includes 204 genes which leads to 
high complexity and costs for the measurement. Other 
available signatures for PCa range from 3 to 222 genes 
(Additional file  1: Table  S6). We expect with decreas-
ing costs, transcriptome-wide analyses are also becom-
ing applicable in clinical routine. Initial projects such 
as the WINTHER trial (Rodon et  al. 2019) and the risk 
prediction for breast cancer using a 50-gene classifier 
(Parker et  al. 2009) pave the way for a broader applica-
tion. Furthermore, more comprehensive panels such as 
the FoundationOne®CDx assay (Frampton et  al. 2013) 
including 324 genes are already being used successfully 
for the determination of genomic changes in solid tumors 
within molecular tumor boards. The application in clini-
cal routine of the PCa panel described here is therefore 
not out of the question in the foreseeable future. To facil-
itate the application in the clinic, a further reduction of 
the gene signature might also be feasible. Analysis of the 
ProstaTrend-ffpe signature showed prognostic relevance 
in all analyzed validation cohorts even if not all signature 
genes were available in the cohorts (overlap ranging from 
105 to 199 genes per cohort; see Fig. 4A). We investigated 
to what extent the prognostic accuracy decreases with a 
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reduction of the signature size (Additional file 1: Fig. S8) 
and found only a small decrease in the concordance index 
for a reduction to a size of ≥ 50 genes. This indicates that 
a certain reduction in the size of the signature would be 
possible for the application in clinical routine with little 
loss in prognostic accuracy.

Our analyses confirm the added value for progno-
sis prediction with ProstaTrend-ffpe TRS compared to 
clinical and histological parameters alone. However, we 
demonstrated a strong association between the score 
and GS (Additional file 1: Fig. S9). Comparing the gene-
wise meta-analysis with time to event endpoint (BCR and 
DoD) and a meta-analysis for GS > 7 vs GS ≤ 7 revealed 
strong correlation for the estimated overall effect sizes 
(Fig. 5C). This association is also reflected in the scRNA-
Seq analyses, where the correlation of the GS and the 
transcriptomic risk score was observed in epithelial 
cells and, in particular, luminal cells. In addition, the 
ProstaTrend(-ffpe) TRS was increased in luminal tumor 
cells compared to normal luminal cells. Interestingly, 
scores were generally low in epithelial and luminal cells 
in single-cell and spatial RNA sequencing data compared 
to other cell lineages. However, due to the small num-
ber of patients, further studies are needed to validate 
this association in single-cell data. The association of 
expression patterns and GS suggests that the degree of 
differentiation of the tissue is reflected in both the gene 
expression of the tissue as well as the histological appear-
ance of the glands. It would be interesting to investigate 
to what extent information on localization and the spatial 
extension of the tumor, for example, by means of imaging 
data, can provide complementary prognostic information 
and thus further improve the prediction. A comparison 
of imaging data (mpMRI) with a molecular assessment 
of the tumor by Leapman et  al. resulted only in a weak 
agreement between mpMRI and biomarker data suggest-
ing indeed complementary information for these meth-
ods (Leapman et al. 2017).

The prognostic relevance of individual genes provided 
in the analyses presented here can be investigated via 
a web interface (https:// bioinf. izi. fraun hofer. de/ prost 
atrend/). In addition, the role of individual genes in 
spatial or scRNA-Seq data of PCa can be explored, and 
thereby, we provide a valuable resource to the research 
community.

Conclusions
In conclusion, we provide a detailed overview of the rela-
tionship of gene expression landscape and prognosis in 
early PCa. We present a new version of the ProstaTrend 
signature consisting of 204 genes predicting clinical out-
come of PCa based on FFPE preserved biopsies, suit-
able to support clinical decision-making. The signature 

complements clinical and pathologic prognostic informa-
tion and is competitive with already existing signatures. 
Furthermore, we have developed a PCa single cell atlas 
to analyze the expression patterns of prognostic genes in 
different cellular compartments, which will be an impor-
tant resource for future studies of PCa.
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