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Abstract
Background  The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-
CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis 
(SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and 
machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition.

Methods  A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS 
patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature 
selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with 
demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural 
Language Processing (NLP).

Results  The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were 
identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 
proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; 
accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. 
Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and 
EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all 
organ systems; the highest levels of expression were found in the digestive system. The cell types most involved 
included leukocytes not yet determined, lymphocytes, macrophages, and platelets.

Conclusions  The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated 
expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients 
could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, 
and mortality risks.
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Introduction
Coronavirus disease (COVID-19) is a result of a severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection [1, 2]. Most children infected with SARS-CoV-2 
present with mild COVID-19 symptoms, including 
headache, fever, and cough [3–6]; however, a subset will 
develop a multisystem inflammatory syndrome (MIS-C) 
with a prevalence of approximately 3 per 10,000 children 
[7–15]. MIS-C typically occurs 2–6 weeks post-infec-
tion, resulting in hyperinflammation, organ dysfunction, 
rashes, pain, and a high fever [9–11, 16]. A large propor-
tion of MIS-C patients present with cardiac (myocarditis 
and pericarditis) and/or gastrointestinal involvement [12, 
17, 18]. The pathophysiology of MIS-C is still unknown, 
but it shares similarities with Kawasaki Disease or Toxic 
Shock Syndrome [8, 11, 19–22].

The diagnosis of MIS-C is subjective, as specific dis-
ease biomarkers for MIS-C are lacking. Clinicians rely on 
patient history, physical examination, SARS-CoV-2 posi-
tivity using polymerase chain reaction or serology, and 
standard hospital laboratory testing (e.g., complete blood 
count, C-reactive protein, ferritin, etc.). The treatment 
of MIS-C follows recommended guidelines (https://cps.
ca/en/documents/position/pims, 2023-05-31), which 
are distinct from SARS-CoV-2 negative sepsis (SCNS) 
treatment, and include corticosteroids, immunoglobu-
lins, and/or anticoagulation. Severely ill MIS-C patients 
require admission to the pediatric intensive care unit 
(PICU) for advanced monitoring and additional interven-
tions, such as ventilation and inotropic or vasopressor 
support. Despite optimal therapy, the long-term conse-
quences of MIS-C may include muscular fatigue, neuro-
logical sequelae, and myocardial scars [11, 12, 17, 23, 24].

Given the subjective nature of the MIS-C diagnosis 
and the specific MIS-C treatment guidelines, distin-
guishing MIS-C from SCNS early in the disease course 
is critical for optimal management. Thus, the primary 
goal of this study was to identify blood proteins specific 
to MIS-C inpatients relative to age- and sex-matched 
SCNS patients. Our specific objectives were: (1) to mea-
sure a large number of blood proteins from each cohort 
with targeted proteomics [25–30]; (2) to determine the 
relative importance of the proteins with machine learn-
ing to differentiate MIS-C subjects; (3) to correlate pro-
tein expression with clinically relevant MIS-C variables; 
and (4) to determine the cell types and organ systems in 
which the important proteins are expressed.

Methods
Study participants and blood sampling
MIS-C patients admitted to the PICU were prospectively 
enrolled in the Geneva University Hospitals (Geneva, 
Switzerland), and SCNS PICU patients and healthy con-
trol subjects were enrolled in the Children’s Hospital, 
London Health Sciences Centre (London, ON, Canada). 
SARS-CoV-2 status was confirmed or ruled out for all 
PICU patients based on standard hospital testing using a 
polymerase chain reaction [31]. Blood sampling for both 
MIS-C and SCNS patients began on PICU admission Day 
1 and continued for MIS-C patients on additional PICU 
days. Daily blood was obtained from ICU patients via 
indwelling catheters, and if a venipuncture was required, 
research blood draws were coordinated with a clinically 
indicated blood draw. In keeping with accepted research 
phlebotomy protocols, blood draws did not exceed maxi-
mal volumes for age. Blood was centrifuged and plasma 
isolated, aliquoted at 250 µL, and frozen at − 80  °C. All 
samples remained frozen until use, and freeze-thaw 
cycles were avoided. The healthy control subjects were 
individuals without disease, acute illness, or prescription 
medications that were previously banked at the Trans-
lational Research Centre, London, ON (Directed by Dr. 
D.D. Fraser; https://translationalresearchcentre.com/) 
[32, 33]. These latter samples were obtained prior to the 
emergence of SARS-CoV-2 in our region and, therefore, 
were considered not to have been exposed to the virus.

Patient demographics and clinical data
Baseline characteristics were recorded for MIS-C and 
SCNS patients and included age, sex, weight, clinical 
measures, infectious source and pathogen, interventions, 
and outcomes (reported as median (IQR) for continuous 
variables and frequency (%) for categorical variables). Ill-
ness severity scores were calculated, including the Pedi-
atric Risk of Mortality III (PRISM III) score, the Pediatric 
Index of Mortality 2 (PIM 2) score, the daily Pediatric 
Logistic Organ Dysfunction 2 (PELOD-2) score, and the 
Glasgow Coma Scale (GCS).

Proximity extension assay
Plasma underwent proximity extension assay (PEA) 
as previously described at an Olink-certified labora-
tory (Boston, MA) [34, 35]. Specifically, we measured 
a total of 3072 plasma proteins in the plasma of MIS-C 
and SCNS patients, as well as healthy control subjects. 
The Olink Explore 3072 library consists of multiple pan-
els with duplicate proteins, leading to the measurement 
of 2870 unique proteins. The PEA was performed in 
three steps: (1) antibody pairs, labeled with unique DNA 
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oligonucleotides, were attached to their target antigen 
in plasma; (2) oligonucleotides that were brought into 
proximity hybridized and were extended by a deoxy-
ribonucleic acid (DNA) polymerase; and (3) the newly 
formed DNA barcode was amplified for high-sensitivity, 
high-specificity readout with next generation sequencing 
(NovaSeq Platform; Illumina Inc., San Diego, CA). The 
data were generated and expressed as relative quantifica-
tions on the log2 scale of normalized protein expression 
(NPX) values. Samples were screened based on quality 
controls for immunoassay and detection, as well as the 
degree of hemolysis. Following proteomic quality control, 
all patients/subjects were deemed suitable for analysis.

Non-parametric statistical methods
Two group comparisons were made using a Mann-Whit-
ney U test, while three group comparisons used a Krus-
kall-Wallis test. A Wilcoxon Signed Rank test was used 
for time course analyses to account for the inter-patient 
variation between the different PICU days. Continuous 
patient variables were compared to the leading proteins 
with a Spearman correlation.

Feature selection
Normalized protein expression was exponentially con-
verted, and was then subjected to feature selection with 
or without a COMBAT-Seq batch-effect adjustment. The 
latter method decreases the potential variation caused by 
differences in technical factors during sample collection 
and processing [36]. COMBAT-Seq was performed using 
R statistical software (v4.3.2, [37]) with the Surrogate 
Variable Analysis package (v.3.50.0, [38]). In both analytic 
approaches, proteins with a P < 0.0001 and with a Ben-
jamini Hochberg False Discovery Rate (FDR) adjusted 
hypothesis test P < 0.05 between MIS-C and SCNS 
patients formed reduced subsets for focused analyses.

Machine learning
The two reduced protein sets (feature selection alone or 
COMBAT-Seq batch effect adjusted feature selection) 
were analyzed with a Random Forest, which is based on 
decision trees, to classify the MIS-C patients in com-
parison to SCNS. To reduce overfitting and maintain 
a conservative model, three-fold cross-validation with 
a Random Forest of 10 trees and a maximum depth of 
three was used [39]. Receiver operating characteristic 
(ROC) curves and Area-under-the-curve (AUC) were 
determined as an aggregate measure of protein perfor-
mance across all possible classification thresholds [40]. 
Precision and Recall were determined, including their 
combined metric (F1 score), which was calculated as the 
harmonic mean. A high F1 score indicated that both Pre-
cision and Recall were high.

The protein data was visualized with a nonlinear 
dimensionality reduction on the full, reduced, and opti-
mal datasets using the t-distributed stochastic nearest 
neighbor embedding (t-SNE) algorithm. t-SNE assumes 
that the ‘optimal’ representation of the data lies on a 
manifold with complex geometry, but a low dimension 
embedded in the full-dimensional space of the raw data 
[41]. A pairwise comparison, using cosine similarity, 
was conducted to determine the similarity between sub-
jects across the selected proteins [42]. As such, subjects 
similar across their selected protein profile have a score 
closer to 1, while dissimilar subjects have a score closer 
to 0. The similarity analysis was done with data Min-Max 
scaled between 0 and 1, and the cosine similarities were 
visualized using a heatmap.

The sensitivity and specificity of individual proteins 
comparing SCNS and MIS-C on Day 1 were determined 
via logistic regression. A bootstrap method of 1000 rep-
etitions with resampling with replacement and three-fold 
cross-validation was used to determine the average ROC 
curve AUC and F1 score of the individual proteins. The 
machine learning analysis was conducted using Python 
v3.10.4, Scikit-Learn v1.1.1, Scikit-Posthocs = 0.7.0, and 
Scipy v1.7.3, [43–45].

Natural language processing
Exploratory expression analysis was also conducted to 
determine physiological areas of interest in MIS-C inpa-
tients. Protein expression tissue specificity was parsed 
from the UniProt Knowledgebase using the UniProt web-
site REST API [46]. The tissue specificity was unstruc-
tured text on the expression at the mRNA or protein 
level in cells or tissues gathered manually by experts. The 
expression information was processed by Natural Lan-
guage Processing (NLP) using the Stanza Python package 
implemented with spaCy (Python v. 3.10.4; spaCy v. 3.3.1; 
spaCy-Stanza v. 1.0.2; negspaCy v. 1.0.3) [47–49]. An 
NLP named-entity recognition pipeline was configured 
with the MIMIC package for preprocessing, negation 
detection, and the pretrained Stanza BioNLP13CG Bio-
medical model. The negation detection was done using 
the NegEx-based negspaCy implementation with a modi-
fied English clinical term set to filter negative expression 
terms. Although the BioNLP13CG biomedical model was 
based on cancer genetics and publicly available PubMed 
abstracts, in comparison to the other Stanza models, 
it provided the most granular entity classification. The 
model separately identifies cell types as well as anatomi-
cal systems, organs, tissues, and multi-level tissues, which 
were manually combined into an organ system classifi-
cation. The detected organ system and cell type entities 
were manually classified into keyword-based groups sep-
arately. The frequency of the keyword-based categories 
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with respect to the relevant proteins was determined to 
identify physiological patterns of expression.

Results
A total of 3 age- and sex-matched cohorts were included, 
consisting of MIS-C patients (median years old = 12; 
IQR = 3; n = 12), SCNS patients (median years old = 12.5; 
IQR = 2.2; n = 12) and healthy control subjects (median 
years old = 12.5; IQR = 4.3; n = 12). There were no signifi-
cant differences between the ages (Kruskal-Wallis H-test, 
P = 0.8561) and sex (Chi-square, P = 1.000) between the 
three participant groups. Baseline demographics, clinical 
characteristics, infection source and pathogen, interven-
tions, and outcomes are provided in Table 1.

A total of 2,888 proteins were measured from plasma 
samples, with 2,870 unique proteins (duplicates 

removed). The data set underwent feature selection, with 
or without a COMBAT-Seq batch effect adjustment. The 
two analytic approaches identified similar protein models 
with excellent concordance; 58 proteins were determined 
with feature selection (FDR-adjusted P < 0.005, P < 0.0001; 
Supplemental Tables 1, 2; Supplemental Figs.  1, 2), 
whereas 15 proteins were identified with a COMBAT-
Seq batch effect adjustment (FDR-adjusted P < 0.05, 
P < 0.0001; Table 2; Fig. 1A). All 15 proteins were present 
in the 58-protein model; a comprehensive list of the 58 
proteins with reported functions is found in Supplemen-
tal Table 3.

A binary classification of the 58 proteins in MIS-C ver-
sus SCNS plasma showed a balanced accuracy = 0.96, an 
AUC = 1.00, and an F1 = 0.95 (all 2,870 measured proteins 
had an accuracy = 0.83, an AUC = 0.95, and an F1 = 0.82). 
With the 15-protein model, a binary analysis comparing 
MIS-C to SCNS plasma showed a similar performance 
with a balanced accuracy = 0.92, an AUC = 1.00, and an 
F1 = 0.89 (all 2,870 measured proteins had an accuracy of 
0.79, an AUC = 91, and an F1 = 0.63). The individual ROC 
AUCs, F1 scores, and importance ranking of the 15 pro-
teins are provided in Table 2. All 15 proteins had excel-
lent individual ROC AUCs ranging from 0.97 to 1.00 and 
had high F1 scores of 0.80–0.98.

Using t-SNE and pairwise comparison of all 2,870 
proteins, it was shown that MIS-C patients were eas-
ily separable from SCNS patients (PICU Day 1) and 
healthy control subjects (Supplemental Fig.  2A, C). 
When reduced to 58 proteins, both tSNE and pairwise 
comparison showed separation of cohorts (classification 
accuracy for the three cohorts was 92%; Supplemental 
Fig. 2B, D; [classification accuracy of 96% for MIS-C ver-
sus SCNS only]). Using the 15-protein model, both tSNE 
and pairwise comparison demonstrated clear separation 
of MIS-C from SCNS patients on PICU Day 1 (classifica-
tion accuracy 92%; Fig. 1B and C).

A paired time course analysis of the leading 58 proteins 
in MIS-C plasma showed decreased expression for three 
proteins, SERPINA1, PRDX6, and SOST (P < 0.05; Sup-
plemental Fig. 3).

Clinical variables of MIS-C patients were compared to 
the expression levels of the leading proteins; significant 
associations were observed for both the 58 (Supplemen-
tal Figs.  4, 5) and 15 (Figs.  2 and 3) protein models. In 
both datasets, the same significant correlations were 
found for LTA4H, PTN, PPBP, and EGF (P < 0.001). Hos-
pital length of stay was positively correlated with LTA4H 
and PTN (Fig.  2A and B; Supplemental Fig.  4A, B), 
PICU length of stay was negatively correlated with PPBP 
(Fig. 2C; Supplemental Fig. 4D), and PIM2 mortality risk 
was negatively correlated with EGF expression (Fig. 2D; 
Supplemental Fig. 4F). MIS-C patients that received ino-
trope or vasopressor support had elevated PTN (P < 0.05; 

Table 1  Demographics and clinical data
Variable MIS-C

Patients
SCNS
Patients

P
Value

Age (yrs), median (IQR) 12.0 
(10.0–13.0)

12.5 (11.0-13.2) 0.617

Male sex, no. (%) 11 (91.7) 11 (91.7) 1.000
Weight (kg), median (IQR) 49.0 

(36.7–57.5)
35.4 (31.8–48.7) 0.326

Clinical Measures, median 
(IQR)
PRISM III Score 5.5 (2.8–7.3) 6.5 (2.2–13.8) 0.663
PIM2 Mortality Risk 1.2 (1.0-4.4) -3.4 (-4.3–2.8) < 0.001
dPELOD Initial 1 (0.0–3.0) 10.5 (0.0–12.0) 0.063
sPELOD Score Highest 2.5 (0.8–3.2) 12.0 (11.0-12.5) < 0.001
GCS Admission 15.0 

(15.0–15.0)
14.0 (7.0–15.0) 0.007

Source of Infection, no. (%)
Respiratory 12 (100.0) 8 (66.7) 0.093
Cardiovascular 0 (0) 2 (16.7) 0.478
Gastrointestinal 0 (0) 1 (8.3) 1.000
Wound 0 (0) 1 (8.3) 1.000
Pathogen Type, no. (%)
Bacteria - Gram positive 0 (0) 2 (16.7) 0.478
Bacteria - Gram negative 0 (0) 6 (50.0) 0.014
Viral1/Bacteria Gram positive 0 (0) 1 (8.3) 1.000
Viral postive1 0 (0) 3 (25.0) 0.217
SARS-CoV-2 positive 12 (100) 0 (0) < 0.001
Ventilation, no. (%)
Invasive Ventilation 2 (16.7) 6 (50.0) 0.192
Non-Invasive Ventilation 2 (16.7) 2 (16.7) 1.000
Hemodynamic Support, 
no. (%)
Inotrope/Vasopressors 8 (66.7) 10 (83.3) 0.640
Outcomes, median (IQR)
Alive, no. (%) 12 (100.0) 12 (100.0) 1.000
PICU length of stay 5.5 (2.0-7.5) 5.5 (2.8–10.2) 0.706
Hospital length of stay 8.0 (5.8–10.5) 12.5 (9.5–16.8) 0.040
Note Continuous variables compared with Mann-Whitney U Test. Binary 
variables compared with Fisher Exact Test. 1SARS-CoV-2 negative viral illness
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Fig. 3; Supplemental Fig. 5B). The 58-protein model also 
contained significant associations in MIS-C patients for 
ANGPT1, BDNF, FCN1, HLA-DRA, EGF and STAT5B 
(P < 0.001 to P < 0.05). PICU length of stay was negatively 
correlated with ANGPT1 (Supplemental Fig. 4C). PIM2 
mortality risk score was negatively correlated with BDNF 
and FCN1 (Supplemental Fig. 4E, G). The sPELOD score 
was positively correlated with HLA-DRA (Supplemental 
Fig. 4H). MIS-C patients that received inotrope or vaso-
pressor support had elevated HLA-DRA and decreased 
EGF (Supplemental Fig. 5A, C). Lastly, STAT5B was ele-
vated in obese MIS-C patients (Supplemental Fig. 5D).

Using named-entity recognition on expert-curated pro-
tein expression from the UniProt knowledgebase, organ 
and cell-type expression was extracted and manually 
sorted into categories (Supplementary Tables 4, 5). Out 
of the 58 differentially expressed MIS-C proteins with 
expression information, 29 (50%) had expert-curated 
organ expression information, while 19 (33%) had cell-
type information. The percentage of proteins expressed 
in an organ system and cell types is shown in Supplemen-
tal Fig. 6. The leading organ system in the MIS-C patient 
population was the digestive system, followed by the 
nervous system. Lastly, the most common cell type was 
leukocytes not yet determined, followed by lymphocytes, 
macrophages, and platelets.

Discussion
In this study, the expression of 2,870 unique plasma pro-
teins was measured using targeted proteomics for age- 
and sex-matched MIS-C patients, SCNS patients, and 
healthy control subjects. Feature selection identified 58 
proteins that differentiated MIS-C from SCNS patients 
with an accuracy of 0.96, an AUC of 1.00, and a F1 of 0.95. 
The COMBAT-Seq batch effect adjusted feature section 

resulted in a 15-protein model that had similar high per-
formance with an accuracy of 0.92, an AUC of 1.00, and 
an F1 of 0.89. All of the latter 15 proteins were present 
in the former 58-protein model. Many proteins were cor-
related with demographic and clinical variables, and NLP 
of the UniProt Knowledgebase identified protein organ 
and cell-type expression. Taken together, our study iden-
tified novel proteins that could be useful for early MIS-C 
identification to confidently administer MIS-C specific 
treatments, as well as predict lengths of stay, an interven-
tions, and mortality risks. The latter may be important 
for resource mobilization, clinical trial stratification, and 
goals of care discussions with guardians.

Our MIS-C cohort was generally similar to those 
reported in earlier studies [12, 50–52], with only a few 
deviations. For example, our cohort was predominantly 
male (92%); however, most publications report a greater 
proportion of male MIS-C patients [8, 51, 53, 54]. In 
addition, the PRISM III and sPELOD scores were lower 
in our MIS-C cohort when compared to another report, 
suggesting less illness burden [53]. With regards to SCNS 
patients, they were similar to other pediatric non-SARS-
CoV-2 sepsis studies in demographics, illness severity, 
and clinical interventions [55, 56].

The primary finding of our study was that the plasma 
proteome of MIS-C patients was different from that of 
SCNS patients. Based on a reduced number of 58 pro-
teins, a proteomic signature for MIS-C was developed 
with standard feature selection, and potential disease 
proteins were identified. Similarly, a COMBAT-Seq batch 
effect adjusted feature selection demonstrated a 15-pro-
tein signature for MIS-C. In both reduced protein mod-
els, MIS-C patients were visually separable from SCNS 
patients and healthy control subjects with both tSNE and 
pairwise comparisons. An inspection of the 58 proteins 

Table 2  Importance of the 15 biomarkers in distinguishing MIS-C from SCNS
Rank Assay MIS-C

Patients
SCNS
Patients

pValue ROC
AUC

F1 Feature Importance

1 MRPL58 0.7 (0.5–0.8) 1.0 (1.0–2.0) 0.00003 1.00 0.82 8.89
2 LTA4H 0.8 (0.3-1.0) 0.1 (0.0-0.1) 0.00004 1.00 0.80 8.75
3 BTLA 0.4 (0.2–0.6) 1.0 (1.0–1.0) 0.00002 1.00 0.98 8.58
4 C3 1.0 (0.6-1.0) 0.2 (0.2–0.2) 0.00003 1.00 0.85 8.50
5 PDGFA 3.0 (1.8-4.0) 0.5 (0.4–0.5) 0.00003 1.00 0.84 8.43
6 F10 2.0 (2.0–2.0) 0.6 (0.5–0.8) 0.00002 1.00 0.89 8.38
7 ANGPT1 4.0 (2.0-4.2) 0.5 (0.4–0.6) 0.00003 1.00 0.94 8.37
8 CREBZF 0.1 (0.0-0.2) 1.0 (0.8-1.0) 0.00004 1.00 0.96 8.33
9 PPBP 3.0 (2.0-4.2) 0.2 (0.1–0.3) 0.00004 1.00 0.90 8.25
10 PTN 0.2 (0.1–0.5) 1.0 (1.0-2.2) 0.00004 0.99 0.90 5.43
11 BDNF 1.0 (0.9-2.0) 0.1 (0.1–0.2) 0.00004 0.99 0.89 5.31
12 SERPINI1 1.0 (0.9-1.0) 0.4 (0.3–0.6) 0.00005 0.99 0.91 3.95
13 BMP4 0.0 (0.0–0.0) 0.1 (0.1–0.1) 0.00006 0.99 0.94 3.54
14 EGF 6.0 (2.8–11.0) 0.4 (0.2–0.5) 0.00009 0.97 0.91 3.28
15 LYSMD3 0.6 (0.5–0.8) 0.1 (0.1–0.3) 0.00009 0.97 0.88 2.02
Note Continuous variables compared with Mann-Whitney U Test
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that differentiate MIS-C from SCNS suggested roles in 
inflammation, cell growth and survival, metabolism, 
angiogenesis, and organ/cell-specific functions. Interest-
ingly, over the first 3 days of PICU admission, the pair-
wise comparison revealed that most proteins did not 
change, suggesting a static disease process. The timescale 
analysis identified only three proteins that significantly 

decreased over time, including PRDX6 (a member of 
the peroxiredoxin family of antioxidant enzymes), SER-
PINA1 (a neutrophil elastase protease inhibitor), and 
SOST (a bone morphogenetic protein and WNT signal-
ing inhibitor).

Correlation analyses indicate that multiple proteins 
were associated with MIS-C clinical variables. Four 

Fig. 1  Identification of 15 key proteins differentiating MIS-C from SCNS patients. (A) Volcano plot demonstrating the log2 change in biomarkers between 
patients with MIS-C and SCNS. The top 15 biomarkers (P < 0.0001; FDR adjusted P value < 0.05) are highlighted, with those coloured green demonstrating 
an increase in protein expression in MIS-C patients compared with SCNS patients, while those in red demonstrate a decrease in MIS-C protein expression 
relative to SCNS patients. (B) Subjects plotted in two dimensions, following t-SNE dimensionality reduction of the top 15 proteins, showed cluster separa-
tion of MIS-C patients and SCNS patients on Day 1. (C) A heatmap demonstrating the pairwise cosine similarity between the participants’ top 15 protein 
profiles. A greater cosine similarity measure between subjects indicated similar protein profiles, whereas a smaller measure indicated large differences 
between profiles (the measure was pseudocolored on the bar scale). The protein profile of MIS-C patients was distinctively different from that of SCNS 
Day 1 patients, with some homogeneity across the different days.
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proteins (LTA4H, PTN, PPBP, and EGF) exhibited the 
same associations in both the standard feature selec-
tion and the COMBAT-Seq adjustment analysis. The 
functions of these four proteins are diverse and include 
angiogenesis [PTN [57]], cell growth and differentiation 
[PPBP, also known as CXCL7 [58], and EGF [59]], and 
neutrophil chemoattraction [LTA4H [60]]. Four proteins 
correlated with either PICU or hospital length of stays 
(LTA4H, PTN, ANGPT1, and PPBP), and another four 
proteins correlated with outcome risk scores (BDNF, EGF, 
FCN1, and HLA-DRA). BDNF is important for neuronal 
survival and plasticity [61], and FCN1 regulates innate 
immunity [62]. HLA-DRA mediates antigen process-
ing by macrophages and helper T cells [63]. HLA-DRA, 
PTN, and EGF also differentiated those MIS-C patients 
that required inotrope/vasopressor support. STAT5B, a 

promotor of adipogenesis, differentiated MIS-C patients 
with pre-existing obesity [64].

Expertly curated protein expression information was 
collected from the UniProt Knowledgebase for the 
reduced 58 proteins and processed using NLP to identify 
organ and cell-type expression patterns. Of the 58 pro-
teins, 29 had organ, tissue, major tissue system, and/or 
anatomical system information (combined to represent 
the organ system), and 19 had cell-type expression infor-
mation. The reduced proteins were expressed in all organ 
systems, with the majority expressed in the digestive sys-
tem. Consistent with the inflammatory and immune basis 
of MIS-C, the reduced proteins were primarily expressed 
in immune and inflammatory cells.

Gastrointestinal symptoms in MIS-C patients are 
common, estimated to occur in greater than 80% of all 

Fig. 2  Significant Correlations Between Protein Expression in MIS-C Patients and Continuous Clinical Variables. The 15 leading proteins of MIS-C on PICU 
Day 1 were compared with continuous clinical and demographic variables; significant correlations are shown (P < 0.05). Blue points are MIS-C patient 
measurements; the green-filled area represents the 25th–75th percentile protein expression range of healthy control subjects. The Spearman correlation 
Rho statistic (𝜌) and the significance value of the comparison are shown. (A-B) Plots demonstrating a positive correlation between hospital length of stay 
and LTA4H and PTN such that greater expression was associated with a greater length of stay, respectively; however, compared with healthy controls, 
LTA4H expression was greater in all MIS-C patients on Day 1 and PTN expression was lower in all MIS-C patients on Day 1. (C) Plots demonstrating a nega-
tive correlation between PPBP and PICU length of stay; lower expression was associated with a greater PICU length of stay. (D) Plot of EGF expression 
demonstrating a negative correlation with PIM2 mortality risk, such that greater expression was associated with lower PIM2 mortality risk.
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patients, with common symptoms including nausea, 
vomiting, diarrhea, and abdominal pain [10, 50, 65]. Our 
study demonstrated that the digestive system had the 
highest number of top proteins, as determined by NLP. 
Factor X (F10) was elevated in MIS-C patients, which is 
synthesized in the liver and is critical in the coagulation 
cascade to form blood clots [66]. In contrast, CREBZF, 
a protein that is expressed in the liver, kidney, and pan-
creas, was decreased in MIS-C patients. CREBZF has 
been associated with innate immune responses, obesity, 
and energy metabolism, as well as inhibiting liver regen-
eration [67, 68].

Neurological symptoms during acute MIS-C are preva-
lent, and concerns have been raised for potential long-
term neurological morbidity [24, 69]. Our NLP results 
indicated that the nervous system is highly affected in 
MIS-C patients. BDNF is significantly elevated in MIS-C 
patients, and it is a critical synaptic protein associated 
with neuronal survival, plasticity, and signaling, as well 
as memory, learning, depression, and anxiety [70–72]. 
MIS-C patients with lower BDNF expression had a 
greater mortality risk on admission, suggesting a protec-
tive role. DCTN1, a multi-subunit protein complex that 
binds and activates dynein and engages retrograde axonal 
transport [73], was highly upregulated in MIS-C patients. 
Disrupted axonal transport is associated with numerous 
neurodegenerative diseases, including Alzheimer’s dis-
ease, Parkinson’s disease, and Huntington’s disease [74]. 
Both BDNF and DCTN1 have been implicated in the 
neurological pathology associated with COVID-19 [75, 
76].

SARS-CoV-2 is a respiratory virus, and high levels of 
protein expression were found in the respiratory system. 
FCN1 was significantly elevated in the MIS-C cohort, 
specifically in those patients that escaped ventilation. 
Actively involved in innate immunity, FCN1 may pro-
tect the respiratory system through its high expression 
in alveolar macrophages [77, 78]. HLA-DRA was also 
elevated in MIS-C patients, particularly in those under-
going ventilation. As a key protein in the immune system, 
HLA-DRA is expressed by antigen-presenting cells, and 
it has been linked to bronchial epithelial cells in COVID-
19 [79–81]. CA4 was elevated in the MIS-C cohort and 
is primarily expressed on the luminal surfaces of pulmo-
nary capillaries, where it is known to play a critical role in 
gas exchange [82, 83]. In contrast to the aforementioned 
upregulated proteins, KLK13 expression was decreased 
in the MIS-C cohort and is recognized as a key protease 
in coronavirus HKU1 infection of pulmonary epithelial 
cells [84].

A high number of MIS-C-associated proteins were 
expressed in the musculoskeletal system, and musculo-
skeletal symptoms are a key characteristic of MIS-C. In 
fact, muscle fatigue is a possible long-term consequence 
of the disease process [24]. DKK1, a WNT antagonist 
that is a central regulator of osteoblast activity [85–87], 
was upregulated in our MIS-C cohort. Lower DKK1 
expression in COVID-19 patients has also been linked 
to poorer outcomes, possibly indicating a protective 
effect in MIS-C patients [88]. SOST is a negative regula-
tor for bone metabolism [89–92] and is also elevated in 
the MIS-C cohort, but its expression decreases by PICU 
Day 3. Increased SOST has been associated with disease 
severity in critically ill patients, including renal or hepatic 
organ failure [93, 94]. Decreased in the MIS-C cohort, 
NEB is a critical skeletal muscle protein and has been 
suggested to be a sepsis biomarker [95, 96].

Cardiovascular symptoms are prevalent in MIS-C and 
predispose patients to long-term cardiac consequences 
[97, 98]. Greater than 25% of the proteins with expres-
sion information were associated with the cardiovascu-
lar system. ANGPT1 is increased in the MIS-C cohort 
and is angiogenic with vascular protective effects [99]. 
As a primary regulator of angiogenesis, ANGPT1 is 
highly elevated in Long-COVID patients [27, 30, 100]. 
PPBP, also known as CXCL7, is elevated in the MIS-C 
cohort. Released in high amounts from activated plate-
lets, high PPBP levels are associated with thrombosis 
risk [101, 102]. The expression of both ANGPT1 and 
PPBP in MIS-C patients was inversely correlated with 
PICU length of stay, suggesting a protective role linked 
to vascular transformation. Lastly, PDGFA and PDGFB 
are both elevated in the MIS-C cohort. As members of 
the platelet-derived growth factor family, PDGFA and 

Fig. 3  Elevated PTN Expression in MIS-C was Associated with Inotrope/
Vasopressor use. The 15 leading proteins of MIS-C on PICU Day 1 were 
compared with the measured categorical clinical and demographic vari-
ables; significant correlations are shown (P < 0.05). The green-filled area 
represents the 25th–75th percentile protein expression range of healthy 
control subjects. The boxplot demonstrates elevated PTN expression in 
MIS-C patients that received Inotrope/Vasopressor intervention
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PDGFB are associated with angiogenesis and vascular 
transformation [103–105].

NLP identified differentially expressed proteins in 
MIS-C patients that were associated with leukocytes, 
lymphocytes, and macrophages. MIS-C patients exhib-
ited decreased expression of BTLA, an inhibitory recep-
tor on T lymphocytes that limits T-cell proliferation and 
cytokine production [106]. In contrast, critically ill sepsis 
patients exhibit greater BTLA + T-cells [107]. The differ-
ential BTLA expression may reflect the immune response 
to the instigating pathogen, where a viral infection like 
SARS-CoV-2 requires a greater T-cell response. SAIE, 
upregulated in the MIS-C cohort, decreases B lympho-
cyte antigen receptor signaling and controls immunologi-
cal tolerance [108, 109]. Its upregulation in MIS-C could 
either be protective by decreasing the enhanced immune 
response. IRAK4, a serine/threonine kinase that plays an 
important role in innate immunity, was upregulated in 
MIS-C patients. IRAK4 is upregulated in SARS-CoV-2 
infection [110], and IRAK4-based silencing therapy has 
been proposed as a method to treat macrophage inflam-
matory and glycolytic reprogramming in COVID-19 
[111]. Upregulated PRDX6 in the MIS-C cohort may 
regulate lung phospholipid metabolism, lipid peroxida-
tion repair, and inflammatory signaling [112]. MPO, a 
neutrophil lysosomal protein that regulates the forma-
tion of reactive oxygen species [113], was increased in 
MIS-C. Variants in the MPO gene have been associated 
with greater MIS-C susceptibility [114–116]. Lastly, C3, 
CXCL11, and CCL5 are established immune proteins 
that were elevated in our MIS-C cohort and have been 
previously identified to be elevated in COVID-19 patients 
[117–119].

Our study identified a unique MIS-C proteome con-
sisting of 58 proteins that were different from those of 
SCNS patients. Despite the novelty of our study, it had 
several limitations. First, the majority of patients enrolled 
were male. Although the generalizability of the data to 
females is limited, previous reports indicate MIS-C prev-
alence is higher in males. Second, plasma samples were 
collected at different tertiary pediatric hospitals and, for 
some samples, analyzed after international transport. 
To reduce sample variability, standard practices were 
employed for sample collection, storage, and transport. 
Despite these best practices, a separate parallel analy-
sis with batch effect adjustment using COMBAT-Seq 
was performed to decrease possible technical variation 
between study hospitals. Also, conservative statistics 
were used to help identify proteins with a high degree 
of difference between cohorts. Thirdly, our study exam-
ined a limited number of matched subjects. To account 
for the smaller sample size, we used non-parametric sta-
tistics and conservative machine learning parameters to 
limit overfitting. Furthermore, reduced model building 

was done with a conservative filter selection to ensure a 
robust analysis. Fourth, while our analysis differentiated 
MIS-C patients from both SCNS patients, cross-identity 
with other diseases is a possibility. A combined model 
using multiple proteins might be necessary to limit cross-
identity concerns. Lastly, the UniProt Knowledgebase did 
not have expression information on all the reduced pro-
teins, limiting anatomical and functional understanding. 
Despite these limitations, our exploratory study differen-
tiated the MIS-C cohort by its plasma proteome and pro-
vided valuable insights into MIS-C pathophysiology.

Conclusion
Differentiation of MIS-C from SCNS early in the disease 
course is critical to implementing treatment guidelines, 
as well as predicting the length of stay and mortality risk. 
Our study suggests that an accurate MIS-C diagnosis can 
be obtained with protein assays (e.g., lateral flow assay, 
quantitative enzyme-linked immunosorbent assay, mul-
tiplex immunoassay, etc.). Protein assays may also aid in 
the identification of MIS-C treatment responders. Finally, 
our study sheds light on MIS-C pathophysiology, with 
identified proteins mediating inflammation, cell growth 
and survival, metabolism, angiogenesis, and organ/cell-
specific functions. These exploratory results highlight 
the distinct aspects of MIS-C and may serve as a basis for 
future protein- and pathway-specific studies.
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