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Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for 
tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated 
with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading 
to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of 
cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their 
uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of 
GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, 
which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 
in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic 
marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial 
for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing 
cancer cells. This review emphasizes the complexities surrounding GLUT5’s involvement in cancer and underscores 
the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, 
ultimately improving cancer management and patient outcomes.
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Introduction
Structure, function, and regulation of GLUT5
The GLUT transporter family, which consists of 14 mem-
bers, is essential for the efficient diffusion of glucose and 
other hexoses across cell membranes. These transporters 
are classified into three types based on their sequence 
similarity and substrate selectivity (Manolescu et al. 
2007). Class I includes GLUT1-4 and GLUT14, which 
are principally important for glucose transport. Class II, 
which includes GLUT5, GLUT7, GLUT9, and GLUT11, 
is known for its fructose transport capabilities (Mano-
lescu et al. 2007; Barron et al. 2016). GLUT5 is an iso-
form of the glucose transporter family, exclusively found 
in mammalian cells. This membrane-bound protein is 
predominantly located in the small intestine, facilitat-
ing the selective transport of fructose (Mora and Pessin 
2013). Featuring 12 transmembrane domains with intra-
cellular N- and C-termini, GLUT5 diverges from other 
GLUT isoforms through its specialized role in fructose 
translocation across the enterocytes’ apical membrane 
without effectively transporting glucose, thereby exhib-
iting a unique specificity for fructose (Mora and Pessin 
2013; Douard and Ferraris 2008). Despite the compre-
hensive understanding of other GLUT isoforms, such as 
GLUT1 and GLUT4, the regulation of GLUT5 expres-
sion and its activity remains underexplored (Douard 
and Ferraris 2008). Dietary fructose has been identified 
as a modulator of GLUT5 expression in the small intes-
tine, highlighting a regulatory mechanism distinct from 
the insulin-dependent modulation observed in GLUT4 
(Douard and Ferraris 2008). GLUT5’s function in dietary 
fructose absorption and the distinct metabolic pathways 
of fructose, primarily within the liver, link excessive fruc-
tose consumption to a spectrum of metabolic compli-
cations, including insulin resistance, fatty liver disease, 
and obesity (Barone et al. 2009). The pharmacological 
exploration of GLUT5 regulation and fructose metabo-
lism is crucial for identifying dietary interventions and 
therapeutic strategies to mitigate metabolic diseases 
associated with fructose intake (Shi et al. 2021). More-
over, the potential of GLUT5 inhibitors as therapeutic 
agents for conditions such as colorectal cancer (CRC) is 
under investigation, emphasizing the necessity for fur-
ther research to clarify their efficacy and mechanism of 
action (Włodarczyk et al. 2021). Ongoing studies in the 
regulation and pharmacological targeting of GLUT5 are 
expected to reveal a new understanding of its metabolic 
functions and therapeutic potential.

Role of enzyme phosphorylation of fructose and its 
metabolites
Fructose metabolism within cells is a critical pro-
cess influenced by various enzymes, primarily through 
phosphorylation reactions. This metabolic pathway 

contributes to energy production and plays a significant 
role in cancer development. Two key enzymes involved 
in the phosphorylation of fructose and its derivatives are 
ketohexokinase (KHK) and hexokinase 2 (HK2).

Ketohexokinase (KHK)
KHK is responsible for the phosphorylation of fructose to 
fructose-1-phosphate (Fig. 1). This enzyme exists in two 
isoforms, KHK-A and KHK-C. KHK-A, besides its lower 
affinity for fructose, has been involved in cancer progres-
sion through mechanisms beyond its catalytic activity. 
KHK-A acts as a protein kinase, mediating the phosphor-
ylation of target proteins crucial for cancer cell invasion 
and metastasis (Kim et al. 2020). The same group demon-
strated that KHK-A is predominantly expressed in vari-
ous cancers, including breast cancer, and is associated 
with enhanced metastasis. Specifically, KHK-A promotes 
breast cancer metastasis by facilitating the nuclear trans-
location and subsequent phosphorylation of tyrosine 
3-monooxygenase/tryptophan 5-monooxygenase activa-
tion protein eta (YWHAH) at Ser25, which recruits snail 
family transcriptional repressor 2 (SNAI2) to repress 
cadherin 1 (CDH1) expression, a key step in epithelial-
mesenchymal transition (EMT) (Kim et al. 2020).

In breast cancer, KHK-A levels are significantly higher 
in metastatic tissues compared to non-metastatic ones, 
indicating its role in cancer progression (Oppelt et al. 
2017). Similarly, KHK expression has been observed in 
brain regions, suggesting its potential involvement in 
brain cancers (Oppelt et al. 2017). High dietary fructose 
intake upregulates KHK activity in the brain, further sup-
porting the enzyme’s role in fructose metabolism and 
possibly cancer.

Hexokinase 2 (HK2)
HK2 catalyzes the phosphorylation of glucose and, to a 
lesser extent, fructose, forming fructose-6-phosphate. 
HK2’s role in cancer is well-documented, with high 
expression levels correlating with poor prognosis in 
various cancers (Guo et al. 2023). HK2 contributes to 
the glycolytic pathway and interacts with mitochondrial 
proteins to prevent apoptosis, promoting cancer cell sur-
vival. Although less directly involved in fructose metab-
olism than KHK, HK2’s broad role in phosphorylating 
hexose sugars underscores its significance in cancer cell 
metabolism and survival (Guo et al. 2023).

Based on the presented relations between GLUT5, 
fructose metabolism, and cancer, two potential therapeu-
tic strategies arise:

(i) Targeting GLUT5 overexpression alone: Small 
molecules developed to bind to GLUT5 can either be 
transported through it or block its function. These 
molecules do not directly interact with intracellular 
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enzymes but can inhibit fructose uptake, thereby 
starving cancer cells that rely on fructose for energy 
and growth. This approach is particularly relevant 
in cancers with high GLUT5 expression, where 
blocking fructose uptake can disrupt cancer cell 
metabolism and inhibit tumor growth.

(ii) Utilizing fructose uptake and metabolism in cancer 
cells: Beyond targeting GLUT5, understanding 
the intracellular metabolism of fructose is crucial. 
The phosphorylation of fructose by KHK and HK2 
represents a significant step in fructose metabolism. 
Targeting these enzymes can disrupt the metabolic 
pathways that cancer cells exploit for survival and 
proliferation. For example, inhibiting KHK can 
prevent the formation of fructose-1-phosphate, 
thereby blocking a key metabolic route. Similarly, 
targeting HK2 can affect glucose and fructose 
metabolism, making it a broad-spectrum strategy 
against cancer cells.

By addressing both the transport and metabolic aspects 
of fructose utilization in cancer cells, we can develop 
comprehensive therapeutic strategies that target multiple 

points in the fructose metabolism pathway. This dual 
approach has the potential to enhance the efficacy of 
cancer treatments by simultaneously inhibiting nutrient 
uptake and disrupting metabolic processes essential for 
cancer cell survival.

Role of HIF1α as a master regulator for GLUT5 expression
Hypoxia-inducible factor 1-alpha (HIF1α) is a tran-
scription factor that plays a crucial role in the cellular 
response to hypoxia. It is known to regulate the expres-
sion of various genes involved in metabolic adaptation, 
including those encoding glucose and fructose transport-
ers. Recent studies have highlighted HIF1α as a key reg-
ulator of GLUT5 expression, linking it to the metabolic 
reprogramming observed in cancer cells.

HIF1α and GLUT5 expression
Under hypoxic conditions, HIF1α is stabilized and trans-
locates to the nucleus, where it binds to hypoxia-respon-
sive elements (HREs) in the promoter regions of target 
genes. This binding leads to the transcriptional activation 
of genes involved in glucose and fructose metabolism, 
including GLUT5. The regulation of GLUT5 by HIF1α 

Fig. 1 Experimental evidence supports specific GLUT5-mediated effects related to tumor development and metastasis. GLUT5, glucose transporter 
5; HIF1α, hypoxia-inducible factor 1-alpha; KHK, ketohexokinase; F-1-P, fructose-1-phosphate; HK2, hexokinase 2; F-6-P, fructose-6-phosphate; 12-LOX, 
12-lipoxygenase; 12-HETE, 12-Hydroxyeicosatetraenoic acid; AMPK/mTORC1, AMP-activated protein kinase/mechanistic target of rapamycin complex 1. 
Created with BioRender.com
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is not limited to specific cancer types but represents a 
more general phenomenon of metabolic adaptation to 
hypoxia. This regulatory mechanism allows cancer cells 
to increase fructose uptake, supporting their metabolic 
needs and promoting survival under low oxygen condi-
tions (Kim et al. 2020; Oppelt et al. 2017).

HIF1α in cancer metabolism
The role of HIF1α extends beyond the regulation of 
GLUT5. It orchestrates a wide array of metabolic pro-
cesses that enable cancer cells to thrive in hypoxic envi-
ronments. By upregulating enzymes and transporters 
involved in glycolysis, lactate production, and fructose 
metabolism, HIF1α enhances the metabolic flexibility of 
cancer cells (Fig.  1). This metabolic reprogramming is 
crucial for the rapid proliferation and survival of cancer 
cells, making HIF1α a central player in cancer metabo-
lism (Kim et al. 2020; Oppelt et al. 2017).

Implications for cancer therapy
Targeting HIF1α and its downstream pathways presents a 
promising therapeutic strategy. Inhibiting HIF1α activity 
can disrupt the expression of GLUT5 and other key met-
abolic regulators, impairing the metabolic adaptability of 
cancer cells. This approach can sensitize cancer cells to 
hypoxic stress and reduce their growth and metastatic 
potential (Kim et al. 2020; Oppelt et al. 2017).

Tumorigenic implications
Breast cancer
Breast cancer (BC), a major health concern worldwide, 
disproportionately affects women but is also seen in men. 
Jiang et al. (2016b), have exposed a significant associa-
tion between the overconsumption of fructose/sucrose 
and an increased risk of BC initiation and progression. 
BC cell lines are distinguished by their higher fructose 
consumption compared to normal cells when glucose is 
absent, indicating fructose’s essential role in cancer cell 
growth (Monzavi-Karbassi 2010; Gowrishankar et al. 
2011). Moreover, fructose is implicated in promoting 
cancer cell invasion and migration through the upregu-
lation of lipoxygenase-12 (12-LOX) and the produc-
tion of 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid 
(12-HETE), a key fatty acid in cell membrane function 
and signaling (Jiang et al. 2016b). The exact mechanism 
through which fructose activates 12-LOX and its conse-
quent impact on BC remains a topic for further research, 
with findings suggesting that an increase in 12-HETE 
levels correlates with heightened tumor cell invasiveness 
(Liu et al. 1996) (Fig. 1).

Research has underscored GLUT5’s crucial involve-
ment in BC’s fructose-mediated development and metas-
tasis, documenting its high expression levels in BC cell 
lines and tissues, in contrast to its low presence in the 

normal mammary epithelium (Zamora-León et al. 1996; 
Fan et al. 2017; Godoy et al. 2006; Hamann et al. 2018; 
Wuest et al. 2018) (Table  1). Suppressing GLUT5 using 
antisense oligonucleotides has proven effective in inhib-
iting BC cell proliferation (Chan et al. 2004) (Table  1; 
Fig.  3). Furthermore, it has been shown that hypoxia-
inducible factor 1 alpha (HIF1α) plays a role in elevating 
GLUT5 expression under the hypoxic conditions preva-
lent within tumor microenvironments (Hamann et al. 
2018). Yet, the study by Gowrishankar et al. (2011), chal-
lenges the critical nature of GLUT5 in fructose uptake for 
BC, suggesting the involvement of other transporters and 
positioning fructose as a marker for detecting cancerous 
cells.

This new understanding has led to increased interest 
in targeting GLUT5 for BC imaging and therapy, offering 
promising pathways for clinical advancements. Adopt-
ing fluorescently labeled molecules as an alternative to 
radiotracers provides a less expensive and safer option for 
imaging, particularly suited to laboratory studies (Choy 
et al. 2003). For instance, the creation of a 7-nitro-1,2,3-
benzoxadiazole (NBD)-labeled fructose analog by Levi et 
al. (2007), has enabled the tracking of fructose uptake in 
BC cell lines through fluorescence microscopy (Fig.  2). 
Additional research has shown the effective transporta-
tion of various fluorescent fructose analogs by GLUT5, 
shedding light on the metabolic behavior of BC cells 
(Kannan et al. 2018; Tanasova et al. 2013). Rana et al. 
(2023) utilized a fluorescent assay to assess the inhibition 
of GLUT5 uptake by D-fructose analogs, establishing a 
basis for the design of selective GLUT5 probes (Fig. 2).

The utilization of GLUT5-specific radiotracers within 
positron emission tomography (PET) and single-pho-
ton emission computed tomography (SPECT) enhances 
molecular imaging of BC cells with improved deep-tissue 
penetrability and potential for clinical use. Notably, [18F]-
labeled 6-deoxy-6-fluoro-D-fructose (6-[18F]FDF) has 
been employed in PET imaging to visualize BC, leverag-
ing GLUT5’s role in mediating the transport of 6-[18F]
FDF and its consequent accumulation in BC cell lines 
(Wuest et al. 2011, 2018; Trayner et al. 2009) (Fig.  2). 
The feasibility of employing 6-[18F]FDF as a PET radio-
tracer in clinical settings is further supported by devel-
opments in automated synthesis processes and dosimetry 
calculations (Bouvet et al. 2014). Haradahira et al. (1995) 
reported that 1-Deoxy-1-[18F]Fluoro-D-Fructose (1-[18F]
FDF) was synthesized by nucleophilic substitution of 
[18F]fluoride ion (Fig. 2). The tissue distributions in rats 
and tumor-bearing mice showed initial high uptake 
and subsequent rapid washout of the radioactivity in 
the principal sites of D-fructose metabolism (kidneys, 
liver, and small intestine). The uptakes in the brain and 
tumor (fibrosarcoma) were the lowest and moderate, 
respectively, but tended to increase with time. Metabolic 
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studies indicated that the fluorinated analog remained 
unmetabolized in the brain and tumor tissues, suggesting 
it does not undergo metabolic trapping without apprecia-
ble organ or tumor-specific localization.

In recent developments, Kirby et al. (2024) explored 
the potential of [18F]4-fluoro-4-deoxyfructose ([18F]4-
FDF) as a novel radiotracer for PET imaging. Their study 
demonstrated that [18F]4-FDF effectively accumulates 
in tumors with minimal bone uptake, contrasting with 
[18F]6-FDF, which shows significant bone uptake due to 
metabolic processing. [18F]4-FDF exhibited low uptake 
in healthy brain and heart tissues, typically high in gly-
colytic activity, making it a promising tool for mapping 
neuro- and cardio-inflammatory responses. The meta-
bolic tracing indicated that [18F]4-FDF gets trapped as 
fluorodeoxyfructose-1-phosphate within the cell, unlike 
the C1 and C6 radio analogs, thus allowing for effective 
imaging of inflammation and potentially cancer (Fig. 2).

The proposal to use radiolabeled C-3-modified 
2,5-anhydro-D-mannitol (2,5-AM) compounds for BC 
molecular imaging via PET presents another promis-
ing method (Rana et al. 2022). Earlier work by Soueidan 
et al. has demonstrated the synthesis and evaluation of 
1-deoxy-1-fluoro-2,5-anhydro-D-mannitol (1-FDAM) 
as a potential imaging agent, highlighting its transport 
into BC cell lines via GLUT5 and suggesting routes for 
developing new molecular imaging probes (Soueidan et 
al. 2015; 2017) (Fig. 2). In a particular study, Nahrjou et 

al. (2021), explored the feasibility of delivering the bioac-
tive anticancer agent chlorambucil (CLB) via the GLUT5 
transporter using a 2,5-anhydro-D-mannitol conjugate, 
aiming to achieve cancer-specific cytotoxicity (Fig.  3). 
These conjugates exhibit enhanced selective cytotoxicity 
towards BC cells (MCF-7 and MDA-MB-231), compared 
to non-cancerous breast cells (184B5) due to higher 
GLUT5-mediated uptake in cancer cells (Nahrjou et al. 
2021). Additionally, a significant relationship was found 
between cancer selectivity and the size of the conjugate, 
with a decrease in GLUT5-mediated uptake correlating 
with increases in conjugate size and hydrophobicity.

Moreover, the group led by Tanasova has extensively 
worked on fluorescence-labeled probes for GLUT5, 
including 2,5-AM and coumarin glycoconjugates. Their 
studies have shown the feasibility of using these probes 
for high-throughput cancer identification and the poten-
tial development of a novel GLUT5-targeting glycocon-
jugate as a PET probe (Begoyan et al. 2018; Nahrjou et al. 
2021; Oronova & Tanasova 2023) (Fig. 2).

In oncology, targeted therapies have demonstrated 
superior efficacy and diminished side effects compared 
to conventional treatment modalities. Preclinical stud-
ies focusing on GLUT5-targeted interventions for BC 
have shown encouraging outcomes. Inhibiting GLUT5 
and thus blocking fructose uptake interferes with the 
metabolic pathways of cancer cells, leading to apoptosis 
and increased susceptibility to traditional treatments. 

Table 1 Principal roles of GLUT5 in various cancers
Cancer type Principal role of GLUT5 References
Breast Cancer 
(BC)

High expression in BC cells and tissues, promoting fructose uptake and enhancing cell proliferation 
and metastasis. Targeting GLUT5 can inhibit BC cell proliferation.

Zamora-León et al. 1996;
Fan et al. 2017;
Godoy et al. 2006; Hamann 
et al. 2018; Wuest et al. 2018;
Chan et al. 2004

Colorectal Can-
cer (CRC)

Upregulated in CRC cells, facilitating fructose-driven glycolysis and tricarboxylic acid cycle. GLUT5-
KHK axis plays a role in malignant metabolism and metastasis. Targeting GLUT5 can impede CRC 
progression.

Mahraoui et al. 1992; 
Mesonero et al. 1995; Shen 
et al. 2022;
Lin et al. 2021

Prostate Cancer 
(CaP)

Significant GLUT5 expression in CaP cells, enhancing proliferative and invasive capabilities. GLUT5-
mediated fructose uptake contributes to CaP’s aggressive nature.

Reinicke et al. 2012; Carreño 
et al. 2021; Echeverría et 
al. 2024

Glioma Elevated GLUT5 expression in glioma cells and tissues, promoting fructose utilization, cell growth, 
and tumor progression. GLUT5 is a prognostic marker for gliomas.

Su Li and Gao 2018; Sasaki 
et al. 2004

Cholangiocarci-
noma (CCA)

Overexpressed in CCA cells and tissues, enhancing fructose uptake and glycolysis. GLUT5 silencing 
reduces cell proliferation and invasion.

Suwannakul et al. 2022

Leukemia Upregulated in acute myeloid leukemia (AML) cells, facilitating fructose uptake and glycolytic me-
tabolism. GLUT5 inhibition suppresses AML cell proliferation.

Chen et al. 2016

Ovarian Carci-
noma (OC)

Higher GLUT5 expression in OC cells and tissues, supporting fructose metabolism and tumor 
growth. Targeting GLUT5 reduces OC cell proliferation.

Jin et al. 2019

Lung Carcinoma 
(LC)

Upregulated in lung adenocarcinoma (LUAD) cells, promoting fructose utilization and tumor growth. 
GLUT5-mediated metabolism supports LC progression.

Weng et al. 2018a, b;
Chen et al. 2020

Renal Carcinoma Elevated GLUT5 expression in clear cell renal cell carcinoma (ccRCC), promoting fructose uptake and 
cell proliferation. GLUT5 inhibition induces apoptosis in ccRCC cells.

Jin et al. 2019

Intestinal 
Cancers

Higher GLUT5 levels in intestinal tumors, facilitating fructose-driven tumor growth and metabolic 
adaptations. Targeting GLUT5 can inhibit tumor growth.

Goncalves et al. 2019
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A significant breakthrough was achieved with the dis-
covery of N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-
benzodioxol-5-amine (MSNBA), a highly potent and 
specific GLUT5 inhibitor, shown to significantly reduce 
fructose-driven proliferation in BC cell lines (Thompson 
et al. 2016) (Fig. 3). The unique selectivity of the GLUT5 
transporter has been exploited in developing various 
delivery systems, such as constructs and micelles imbued 
with fructose components, designed to specifically 
deliver chemotherapeutic agents to BC cells (Englert 
et al. 2017; Zhou et al. 2017; Lu et al. 2017). Zhou et al. 
(2017) introduced a significant advancement in this area 
by developing D-fructose-modified poly(ε-caprolactone)-
polyethylene glycol (PCL-PEG-Fru) diblock amphiphi-
les. When combined with D-α-tocopheryl polyethylene 
glycol 1000 succinate (TPGS) to form PCL-PEG-Fru/
TPGS mixed micelles (PPF MM), these nanocarriers 
demonstrated a promising potential for GLUT5-medi-
ated, cell-specific delivery in cancer therapy (Fig. 3). The 
construction of PCL-PEG-Fru employs Cu(I)-catalyzed 
click chemistry, with the resultant PPF MM showcasing 
notably higher uptake in MCF-7 cells, which overexpress 
GLUT5, compared to L929 cells, where GLUT5 is not 

overexpressed. The study further proves that free D-fruc-
tose can competitively inhibit the incorporation of PPF 
MM in MCF-7 cells, underscoring their GLUT5 specific-
ity. In vivo assessments in MCF-7 breast tumor-bearing 
mice xenografts showed selective tumor accumulation 
of PPF MM, highlighting their utility as a targeted drug 
delivery system in cancer therapy.

Targeting efficiency has been improved by integrating 
additional ligands, including short peptides, biotin, and 
folic acid, with fructose in complex delivery vehicles like 
multifunctional liposomes or carbon nanotubes (Pu et al. 
2019; Li et al. 2022; Omurtag et al. 2020) (Fig. 3). Pu et 
al. (2019) pioneered the development of innovative lipo-
somes designed to recognize GLUT5 and integrin αvβ3, 
markers predominantly expressed in triple-negative 
BC cell lines, including MDA-MB-231 and 4T1. These 
liposomes were synthesized by covalently bonding fruc-
tose and the peptide arginylglycylaspartic acid (RGD) 
to cholesterol molecules, which were then integrated 
into the liposome structure, creating Fru-RGD-chol and 
Fru-RGD-chol variants. Both types of liposomes dem-
onstrated significant cellular uptake in vitro and efficient 
tumor accumulation in vivo. Notably, the Fru-RGD-chol 

Fig. 2 GLUT5-targeted imaging modalities. Various radiotracers and fluorescently labeled probes have been experimentally explored for targeting GLUT-
5 in cancer imaging. NBD, 7-nitro-1,2,3-benzoxadiazole; 6-[18F]FDF, [18F]-labeled 6-deoxy-6-fluoro-D-fructose. 2,5-AM, C-3-modified 2,5-anhydromannitol; 
1-FDAM, 1-fluoro-2,5-anhydro-D-mannitol; [18F]-FDG, [¹⁸F]Fluorodeoxyglucose; 1-[18F]FDF, 1-Deoxy-1-[18F]Fluoro-D-Fructose; [18F]4-FDF, [18F]4-fluoro-
4-deoxyfructose. Created with BioRender.com
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variant exhibited superior targeting capabilities, mak-
ing it a promising candidate for targeted drug delivery 
applications.

Moreover, the implementation of multimodal GLUT5-
targeting nanoparticle systems has facilitated a synergistic 
approach, combining chemotherapy with photothermal 
and photodynamic therapies for augmented therapeutic 
impact (Cetin Ersen et al. 2023). Despite these advance-
ments, challenges such as potential off-target effects and 
unintended consequences on the metabolism of normal 
tissues necessitate a comprehensive exploration of these 
strategies prior to clinical application.

The ongoing exploration of these methodologies 
stresses the dynamic potential of GLUT5-targeted 

therapy and diagnostics, promising a new horizon in the 
treatment of GLUT5 overexpression-related diseases.

Cholangiocarcinoma
Cholangiocarcinoma (CCA) is a heterogeneous group 
of malignancies originating from the biliary tract (Bana-
les et al. 2020). It is a silent and aggressive type of cancer 
with increasing incidence and mortality (Banales et al. 
2020; Kirstein and Vogel 2016). Recently, light has been 
shed on the role of GLUT5 in CCA tumorigenesis, which 
can potentially lead to an improved diagnosis and treat-
ment. It has been shown that SLC2A5, the gene encoding 
GLUT5, is overexpressed in human CCA cells and tissues 
compared to normal cholangiocytes and normal liver tis-
sue (Suwannakul et al. 2022) (Table 1). Moreover, in the 

Fig. 3 GLUT5-targeted interventions. Promising experimental data reveal the potential application of various drug constructs targeting the GLUT5 trans-
porter in different types of cancer. MSNBA, N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine; CLB − 2,5-AM, chlorambucil (CLB) 2,5-anhydro-
D-mannitol conjugate; PPF MM, poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru)/D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) 
mixed micelles; Fru-RGD-chol, fructose-arginylglycylaspartic acid (RGD)-cholesterol liposome; 2,5-AM + Ara-C, 2,5-anhydro-D-mannitol + cytosine arabi-
noside; G5, 2-[5-(4-Chlorobenzylidene)-2,4-dioxothiazolidin-3-yl]-N-(4-chloro-2-trifluromethylphenyl) acetamide. Created with BioRender.com
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advanced pathological stages III and IV, the upregulation 
of GLUT5 is increased compared to the earlier stages I 
and II (Suwannakul et al. 2022). In the presence of fruc-
tose supplementation, CCA cells exhibit higher prolifera-
tive rates and adenosine triphosphate (ATP) production 
than those in glucose-supplemented medium. In addi-
tion, it has been shown that fructose-consuming mouse 
xenografts had increased tumor growth compared to 
those consuming water (Suwannakul et al. 2022). Taken 
together, this conveys the idea that GLUT5-mediated 
fructose uptake may contribute to the progression and 
growth of CCA. In support of this, it has been shown 
that GLUT5 silencing attenuates the cell proliferative 
effect, lowers CCA cell’s fructose uptake, suppresses 
cell invasion and migration, and reduces tumor growth 
in mouse xenografts (Suwannakul et al. 2022). GLUT5 
silencing has also led to upregulation of the epithelial-
like cell marker, E-cadherin, and downregulation of 
the mesenchymal-like cell marker, N-cadherin, imply-
ing that GLUT5 may influence the metastatic potential 
of CCA cells by regulating epithelial-to-mesenchymal 
transition (EMT) processes (Suwannakul et al. 2022). 
The development of CCA involves complex interac-
tions between external signaling molecules in the tumor 
microenvironment, abnormal activation of cell surface 
membrane proteins, and deregulations in intracellular 
signaling pathways (Liu et al. 2023). It has been shown 
that the upregulation of GLUT5 impacts genes linked 
to fructose metabolism and the Warburg effect, such 
as ketohexokinase (KHK), aldolase B (ALDOB), lactate 
dehydrogenase A (LDHA), and HIF1α (HIF1α) (Suwan-
nakul et al. 2022) (Fig. 4). When fructose is taken by the 
hepatocytes, it is metabolized to fructose-1-phosphate 
by KHK and then rapidly cleaved to dihydroxyacetone 
phosphate (DHAP) and glyceraldehyde (GA) by ALDOB 
(Merino et al. 2019). Both enzymes are overexpressed in 
CCA due to GLUT5 overexpression (Suwannakul et al. 
2022). Cancer cells undergo the Warburg effect to meet 
the increased demand for ATP, wherein GA and DHAP 
enter a series of chain reactions leading to pyruvate pro-
duction (Danhier et al. 2017). In this metabolic process, 
pyruvate is converted to lactate by LDHA, which is also 
deregulated in CCA in a GLUT5-expression-dependent 
manner, indicating that elevated GLUT5 levels result 
in increased lactate production in cancer cells (Suwan-
nakul et al. 2022; Cai et al. 2013). Additionally, elevated 
LDHA in bladder cancer is correlated with cancer pro-
liferation and metastasis (Jiang et al. 2016a). Monocar-
boxylate transporter 4 (MCT4), whose expression is also 
proportionally influenced by GLUT5 expression in CCA 
cells, plays a crucial role in transporting the accumulated 
lactate into the extracellular environment (Suwannakul 
et al. 2022; de la Cruz-López et al. 2019). This process 
contributes to extracellular acidification in the tumor 

microenvironment, thus promoting tumor invasion and 
metastasis (de la Cruz-López et al. 2019). Accordingly, 
the inhibition of MCT4 has been shown to reduce tumor 
proliferation in colorectal cancer (Kim et al. 2018). Lastly, 
HIF1α plays a key role in cellular adaptation to hypoxia, 
a common feature of carcinogenesis, and is known to 
regulate lactate levels by controlling the expression of 
LDHA and MCT4 (Serganova et al. 2018). The correla-
tion between lactate-MCT/HIF1α and metabolic repro-
gramming of macrophage polarization in gastric cancer 
has been observed in interactions between cancer cells 
and immune cells (Zhang and Li 2020). Additionally, 
it has been reported that HIF1α regulates GLUT1 and 
GLUT5 in breast cancer cells and tissues during hypoxia 
(Hamann et al. 2018).

These findings suggest that GLUT5 upregulation leads 
to enhanced glycolysis and ATP production through the 
fructolysis-Warburg pathway. The subsequent increase in 
lactate production contributes to the acidic tumor micro-
environment and thus may promote tumor invasion and 
metastasis.

Choriocarcinoma
Choriocarcinoma is an uncommon yet aggressive form of 
gestational trophoblastic neoplasm that arises from the 
placenta (Bishop and Edemekong 2023). During preg-
nancy, focusing on getting enough hexoses among other 
nutrients, is vital for fetal development and growth. Evi-
dence suggests that high fructose intake during gestation 
may contribute to adverse effects, including metabolic 
syndrome in offspring during adulthood (Asghar et 
al. 2016; Koo et al. 2021). Nonetheless, the association 
between fructose metabolism and the initiation of cho-
riocarcinoma tumorigenesis remains elusive. Investiga-
tions have demonstrated that human choriocarcinoma 
cells can express the GLUT5 fructose transporter and 
metabolize fructose, although less efficiently than glu-
cose (Shah et al. 1999). This highlights the need for more 
extensive research, particularly considering that the 
expression of GLUT5 in choriocarcinoma cells could sig-
nify a significant role for fructose metabolism in the can-
cer’s development.

Glioma
Gliomas are the most prevalent primary brain tumors 
and are characterized by their aggressive metastatic and 
invasive behavior (Weller et al. 2015; Davis 2018; Qi et 
al. 2017). Like many cancers, glioma cells undergo meta-
bolic reprogramming, displaying the Warburg effect and 
a propensity for fructose utilization (Poff et al. 2019; Su 
et al. 2018) (Table 1). Studies have indicated that gliomas 
can proliferate and form colonies in fructose-enriched 
mediums comparably to glucose mediums. However, 
fructose fails to restore normal proliferation in microglial 
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Fig. 4 Potential pathway through which GLUT5 contributes to tumorigenesis in CCA cells. KHK, ketohexokinase; ALDOB, aldolase B; LDHA, lactate de-
hydrogenase; F-1-P, fructose-1-phosphate; DHAP, dihydroxyacetone phosphate; GA, glyceraldehyde; G3P, glyceraldehye-3-phosphate; HIF1α, hypoxia-
inducible factor 1 alpha; MCT4, monocarboxylate transporter. Created with BioRender.com
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cells under glucose deprivation. This discrepancy may 
stem from the differential expression of GLUT5, which 
is significantly higher in glioma cells and tissues than 
in normal microglia and surrounding tissues (Su et al. 
2018). The suppression of GLUT5 in glioma cells dimin-
ishes their proliferation and colony-forming capabili-
ties, underscoring GLUT5’s crucial role in glioma cell 
growth and tumorigenesis via fructose metabolism (Su et 
al. 2018). In vivo evidence further supports that GLUT5 
silencing substantially impedes tumor progression, high-
lighting GLUT5’s critical function (Mahraoui et al. 1992). 
Additionally, research by Su et al. (2018), has linked 
elevated GLUT5 expression with reduced survival rates, 
proposing GLUT5 as a prognostic marker for gliomas. 
Sasaki et al. (2004) complement this by demonstrating 
that astrocytic gliomas, particularly pilocytic astrocyto-
mas, exhibit a higher density of GLUT5-positive microg-
lia compared to the less malignant oligodendroglial 
gliomas (Table  1). These insights emphasize the thera-
peutic and prognostic potential of targeting GLUT5 in 
glioma treatment strategies.

Leukemia
Acute leukemias are aggressive hematologic malignancies 
marked by swift progression and altered glucose metabo-
lism that often display the Warburg effect (Chen et al. 
2016; Konończuk et al. 2022; Padda et al. 2021). Acute 
myeloid leukemia (AML) cells, in particular, exhibit a 
pronounced glycolytic metabolism. In low-glucose envi-
ronments, AML cells adapt by increasing fructose intake, 
facilitated by upregulated GLUT5 expression (Chen et al. 
2016; Herst et al. 2010). This adaptation allows AML cells 
to maintain vigorous proliferation in glucose-deprived 
conditions (Table  1). Notably, GLUT5 overexpression 
is prevalent in various AML cell lines and bone marrow 
blasts of AML models, contrasting with normal mono-
cytes (Chen et al. 2016). Silencing the SLC2A5 gene 
in AML cells leads to decreased fructose uptake and 
inhibited cell proliferation. Conversely, SLC2A5 overex-
pression enhances fructose-driven proliferation, colony 
formation, and cellular mobility. Overexpressed SLC2A5 
in AML also boosts glycolysis byproducts, including 
pyruvate, lactate, and alanine, highlighting the critical 
role of fructose in glycolytic flux via GLUT5. Chen et al. 
(Chen et al. 2016) have shown that high SLC2A5 expres-
sion correlates with poorer outcomes, linking above-
median or above-mean levels with reduced survival in 
AML patients. Research into pharmacological GLUT5 
inhibition with 2,5-AM revealed its efficacy in suppress-
ing fructose-driven proliferation and mobility in AML 
under glucose restriction and its synergistic effects with 
the chemotherapy drug Ara-C, enhancing treatment 
potential (Chen et al. 2016) (Fig. 3). Additionally, Tilekar 
et al. (2020), identified a thiazolidinedione derivative, G5, 

as a potent GLUT5 inhibitor, exhibiting anti-prolifera-
tive actions and promoting cell cycle arrest in leukemia 
cells, leading to apoptotic and necrotic cell death (Fig. 3). 
These findings highlight the critical dependency of leu-
kemia cells on fructose metabolism through GLUT5 and 
position GLUT5 inhibition as a promising approach for 
leukemia therapy.

Liver carcinoma
Liver metastases frequently occur in advanced-stage 
tumors and are associated with significantly worsened 
prognoses (Bilen et al. 2019). Since the liver is the main 
site for fructose metabolism, it necessitates a deeper 
understanding of how fructose transporters, especially 
GLUT5, are involved in liver carcinogenesis. Exces-
sive fructose intake is linked to numerous health issues 
related to oxidative stress, inflammation, increased levels 
of uric acid and triglycerides, hypertension, and insulin 
resistance, all known risk factors for liver disease devel-
opment and progression (Muriel et al. 2021). Despite 
these associations, the expression and role of GLUT5 in 
liver cancer cells have yet to be fully elucidated. A par-
ticular study highlighted that GLUT5 expression is nota-
bly higher in metastatic liver tumors compared to normal 
liver and lung tissues, indicating a significant alteration in 
metabolic preferences (Kurata et al. 1999). This variation 
in GLUT5 expression between primary and metastatic 
liver tumors hints at distinct fructose metabolism path-
ways, which could play a critical role in the metastatic 
processes. Intriguingly, evidence from another study 
indicates that liver metastases from lung cancer specifi-
cally show GLUT5 upregulation, suggesting a specialized 
adaptation that allows these tumors to utilize fructose for 
energy more effectively in metastatic sites (Kurata et al. 
1999).

Lung carcinoma
Lung carcinoma (LC) ranks as one of the top causes of 
cancer-related deaths globally due to its aggressive cell 
proliferation within the lungs (Molina et al. 2008). The 
development of LC is driven by intricate molecular 
processes, leading to tumor growth, progression, and 
metastasis. It is categorized into two main histological 
subtypes: small-cell lung carcinoma (SCLC) and non-
small-cell lung carcinoma (NSCLC), with NSCLC mak-
ing up about 85% of all LC incidences. This category 
includes various forms like adenocarcinoma, squamous, 
and large cell carcinoma. In contrast, SCLC accounts 
for 15% of lung cancer cases, characterized by rapid 
growth and significant genetic variability, which com-
plicates therapeutic decision-making (Barta et al. 2019). 
Despite the introduction of targeted therapies, overcom-
ing immune evasion remains a critical issue, especially 
in patients without identifiable driver mutations. The 
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five-year survival rate for LC patients is low, highlighting 
the urgent need for an in-depth understanding of the dis-
ease’s fundamental mechanisms (Qin et al. 2016; Hirsch 
et al. 2017; Chen et al. 2014).

A significant yet underexplored aspect of LC research 
is the role and overexpression of GLUT5 in LC and its 
metastases. A study by Kurata et al. (1999) pioneered 
this investigation, analyzing GLUT family gene expres-
sions, including GLUT5, across primary LC, metastatic 
liver tumors, and normal lung tissue. Their results dem-
onstrated significantly higher GLUT5 expression in 
metastatic liver tumors compared to normal tissues, sug-
gesting these tumors’ unique ability to exploit fructose 
for energy, possibly aiding their aggressive progression 
(Kurata et al. 1999). Although this study significantly 
advanced our understanding, it lacked direct compari-
sons between GLUT5 expression in primary and meta-
static lung tumors, leaving a gap in our comprehension 
of GLUT5’s specific contributions to LC metastasis. 
Nonetheless, it hints at distinct energy metabolism and 
pathways in metastatic lung tumors, underscoring the 
importance of further research into how these pro-
cesses influence their malignancy and capacity for organ 
invasion.

Weng et al. (2018a, b) studied the impact of fructose 
metabolism on lung adenocarcinoma (LUAD) cells, par-
ticularly focusing on the mediation by GLUT5 and its 
role in promoting metabolic activity and tumor growth. 
Utilizing in vitro analyses with LUAD patient tissue 
samples, the authors observed a marked upregulation of 
GLUT5 in NSCLC samples, notably in LUAD, compared 
to healthy lung tissue (Table  1). GLUT5 upregulation 
was significantly linked to a poorer prognosis in LUAD 
patients, suggesting its vital role in the disease’s evolu-
tion and aggression (Weng et al. 2018a, b). Despite these 
findings, the mechanisms governing GLUT5 expression 
and its precise function within LC contexts remained 
vague, prompting further investigation into whether LC 
cells preferentially use fructose via GLUT5 amidst other 
metabolic substrates in vivo to support their growth and 
metabolic needs.

Furthermore, Chen et al. (2020) presented results that 
LC cells preferentially utilize fructose as an alternative 
to glucose by enhancing GLUT5 expression (Table  1;). 
Through in-depth in vitro and in vivo studies, they dem-
onstrated that GLUT5 overexpression in LC cells corre-
lates with increased fructose absorption, stimulating fatty 
acid synthesis and activating the AMPK/mTORC1 sig-
naling pathway (Fig.  1). These metabolic shifts not only 
facilitate tumor growth but also provide the essential 
energy and substrates needed for the cancer cells’ rapid 
proliferation (Chen et al. 2020). The findings emphasize 
the critical function of fructose metabolism, mediated 
through GLUT5, in driving LC progression and highlight 

the potential of targeting GLUT5 as a novel therapeutic 
approach to combat fructose-dependent cancer cells.

Oral squamous carcinoma
Oral squamous cell carcinoma (OSCC), ranking as the 
ninth most prevalent cancer globally, represents a for-
midable challenge in the field of head and neck oncology 
(Bray et al. 2018). Treatment modalities for advanced-
stage lesions (stages I-III) typically include surgery and 
radiotherapy, while high-risk patients, identified by 
extensive lymph node involvement or distant metasta-
ses, undergo chemotherapy, as outlined by Reis et al. 
(2011). In cases of stage IV OSCC, a targeted non-sur-
gical strategy incorporating intensified chemotherapy 
aims to improve disease outcomes, prolong survival, and 
enhance life quality for affected individuals. Despite these 
efforts, for all oral cavity cancers, the 5-year overall rela-
tive survival rate hovers around 57%, indicating a plateau 
in the effectiveness of current treatment approaches over 
the years (Marsh et al. 2011).

In their in vitro study, Paolini et al. (2022), assessed 
the expression of GLUT transporters in human OSCC 
cells and compared these findings with those from nor-
mal oral keratinocytes (OKF6), focusing on the effects of 
GLUT1-specific inhibitors BAY876 and WZB117. This 
study contributes to our understanding of GLUT tran-
scriptional regulation within OSCC, potentially influ-
encing cancer cell metabolism and highlighting novel 
therapeutic targets. A key finding was the consistent 
expression of GLUT5 across all tested cell lines, indicat-
ing its role in both normal and malignant oral cell metab-
olisms. Additionally, the study observed a reduction in 
GLUT5 mRNA expression in OSCC cells following treat-
ment with BAY876, suggesting a regulatory relationship 
between GLUT1 and GLUT5 expressions (Paolini et al. 
2022). These initial observations provide a valuable foun-
dation for future investigations into the role of GLUT5 in 
the pathogenesis of OSCC, pointing towards its potential 
as a therapeutic target.

Ovarian carcinoma
Ovarian carcinoma (OC) represents a life-threatening 
form of cancer affecting women, primarily attributed to 
its pelvic location, asymptomatic early stages, and lim-
ited practical diagnostic approaches. Consequently, most 
OC cases are identified at advanced stages, significantly 
diminishing survival prospects (Park et al. 2017). Obe-
sity is recognized as a critical risk factor for OC, affect-
ing both its onset and patient outcomes (Tworoger and 
Huang, 2016). The impact of dietary components on can-
cer proliferation has become a focal point of research, 
with high-fructose consumption being investigated for its 
potential role in cancer initiation (Lyssiotis and Cantley 
2013). Despite existing evidence linking fructose intake 
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to tumorigenesis, specific studies on fructose’s relation-
ship with OC and the involvement of GLUT5 remain 
scarce (Joung et al. 2017).

In their study, Bono et al. (2017), assessed the risk of 
false-positive results in detecting malignancy via posi-
tron emission tomography with 18F-fluorodeoxyglucose 
positron emission tomography-computed tomogra-
phy (18F-FDG PET-CT), particularly concerning benign 
ovarian tumors, while examining GLUT5 expression’s 
implication in tumorigenesis (Fig.  2). Investigating solid 
ovarian tumors flagged as potentially malignant based 
on magnetic resonance imaging (MRI) and [¹⁸F]Fluoro-
deoxyglucose [18F-FDG] uptake, the research revealed 
that these tumors exhibited positive 18F-FDG signals, 
leading to a potential misdiagnosis as malignant via PET-
CT. However, surgical intervention and subsequent fro-
zen section diagnosis clarified that these instances were 
benign thecomas. Immunohistochemical analysis further 
identified immunoreactive GLUT5 expression within 
these tumor tissues, which indicates its potential involve-
ment in tumor formation and presents it as a candidate 
for therapeutic targeting (Bono et al. 2017).

Jin et al. (2019) conducted research into fructose 
metabolism within OC cells, uncovering that these cells 
sustain growth rates in fructose media lacking glucose, 
highlighting their efficient fructose utilization com-
pared to non-tumorous ovarian cells’ incapacity for 
similar growth in fructose environments. Their explora-
tion into GLUT5 expression within OC tissues further 
aimed to identify correlations with clinicopathological 
features and patient survival outcomes (Table  1). The 
study revealed that OC tissues exhibit significantly higher 
GLUT5 expression than adjacent non-cancerous ovar-
ian tissues, linking elevated GLUT5 levels to advanced 
tumor stages and poorer prognoses in OC patients (Jin 
et al. 2019). Further experiments demonstrated that 
GLUT5 silencing markedly reduces fructose absorption 
and metabolism, decreasing proliferation, colony forma-
tion, and migration in OC cells. This effect was accom-
panied by the downregulation of critical enzymes in 
fructose metabolism, such as KHK, ALDOB, and triose 
kinase (TK). The study also showed that a high-fructose 
diet accelerates tumor growth in vivo, whereas GLUT5 
inhibition reduces tumor expansion in a mouse xenograft 
model. Consequently, Jin et al. (2019) concluded that 
GLUT5 is integral to fructose metabolism and the pro-
gression of OC, proposing GLUT5 targeting as a viable 
therapeutic approach.

Prostate cancer
Prostate cancer (CaP) remains the second most prevalent 
cause of cancer-related deaths among adult men in the 
United States, underscoring the importance of identify-
ing and understanding both inherent and modifiable risk 

factors (Siegel et al. 2019). Recent research has shifted 
towards modifiable risk factors, such as dietary habits, 
revealing a direct link between increased consumption 
of dietary sugar, particularly high fructose corn syrup 
(HFCS), and an increased risk of developing symptomatic 
CaP (Makarem et al. 2018). Moreover, fructose’s role in 
promoting cell proliferation and metastasis in pancreatic 
cancers has been documented, suggesting its broader 
implications in cancer pathophysiology (Liu et al. 2010).

A significant investigation into the cellular dynamics 
of GLUT1 and GLUT5 in both benign and malignant 
prostate tissues was undertaken by Reinicke et al. (2012). 
This study aimed to outline the distribution and func-
tional implications of these glucose transporters within 
the prostate, examining their expression in conditions 
ranging from high-grade prostatic intraepithelial neopla-
sia (HGPIN) to clinical cases of CaP (Table 1). Findings 
indicated a reduced expression of GLUT5, a fructose-
specific transporter, in CaP tissues compared to their 
benign counterparts. This reduction suggests a potential 
decrease in fructose consumption by CaP cells. However, 
the presence of GLUT5 in HGPIN lesions implies that 
fructose metabolism may be crucial for the metabolic 
needs and survival of precancerous epithelial cells, hint-
ing at a complex relationship between fructose and early-
stage prostate carcinogenesis (Reinicke et al. 2012).

Based on this, Carreño et al. (2021), sought to further 
clarify the role of fructose transporters, particularly 
GLUT5 and GLUT9, in the context of CaP. Through com-
prehensive analyses of benign and malignant prostate 
tissue specimens and CaP cell lines, significant GLUT5 
expression was observed in CaP samples, identifying it 
as a primary mediator of fructose transport in these cells 
(Table 1). Fructose stimulation was found to enhance the 
proliferative and invasive capabilities of CaP cells in vitro, 
with in vivo experiments revealing that dietary fructose 
significantly fosters tumor growth and cellular prolifera-
tion. These findings emphasize the potential of GLUT5-
mediated fructose uptake to contribute to the aggressive 
nature of CaP, presenting a compelling argument for tar-
geting GLUT5 in therapeutic strategies (Carreño et al. 
2021).

Echeverría et al. (2024), provided additional insights 
into the role of GLUT5 in CaP. They also showed that 
inhibiting GLUT5 reduces tumor growth and metasta-
sis in vivo, supporting the idea that GLUT5 is not only 
involved in early-stage prostate carcinogenesis but also 
plays a critical role in the progression and aggressiveness 
of the disease. These findings further highlight the ther-
apeutic potential of targeting GLUT5 in CaP treatment 
(Echeverría et al. 2024).
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Renal carcinoma
Renal carcinoma, recognized as a particularly lethal form 
of cancer, is responsible for a substantial number of can-
cer-related fatalities globally (Siegel et al. 2017; Barata 
and Rini, 2017; Garcia and Rini 2007). Despite significant 
strides in treatment modalities involving targeted thera-
pies and immune checkpoint inhibitors, the prognosis 
for patients remains unsatisfactory (Curti 2018; Ghata-
lia et al. 2017; Wong et al. 2017; Quinn and Lara, 2015). 
A notable barrier to improving patient outcomes is the 
emergence of chemotherapeutic resistance, highlighting 
the imperative need for identifying new therapeutic tar-
gets (Heinzer et al. 2001).

A study by Jin et al. (2019), explored the implications of 
GLUT5 in clear cell renal cell carcinoma (ccRCC), explor-
ing its influence on the malignancy’s progression through 
fructose utilization and its viability as a therapeutic tar-
get. This study found a marked elevation in GLUT5 
expression within ccRCC tissues and cell lines compared 
to normal kidney cells, establishing a significant differen-
tial in fructose uptake rates. The utilization of fructose by 
ccRCC cells promoted cell proliferation, colony develop-
ment, and survival, underscoring the metabolic adapta-
tions fueling the cancer’s growth (Table 1). An increase in 
GLUT5 expression in ccRCC cells was correlated with an 
intensified rate of fructose utilization, further propelling 
cell growth and colony formation. In contrast, SLC2A5 
deletion reduced fructose-driven cell proliferation and 
increased apoptosis rates among ccRCC cells. Similarly, 
treatment with the GLUT5 inhibitor, 2,5-AM, suppressed 
fructose-induced cell growth while stimulating apoptosis 
in ccRCC cells (Jin et al. 2019) (Fig. 3).

The findings from Jin et al.‘s (2019), research revealed 
the critical function of GLUT5 in ccRCC by promot-
ing fructose uptake and utilization, making GLUT5 not 
only a facilitator of cancer metabolism but also a poten-
tial therapeutic target (Jin et al. 2019). This study dem-
onstrated that GLUT5 inhibition, particularly through 
agents like 2,5-AM, can impede cancer cell proliferation 
and induce apoptosis, making it a promising approach for 
ccRCC treatment.

Intestinal cancers
The GLUT5 transporter plays a significant role in the 
development and progression of intestinal cancers. High-
fructose corn syrup (HFCS), prevalent in many diets, has 
been shown to enhance tumor growth in the intestines. 
The study by Goncalves et al. (2019) provides compel-
ling evidence that the consumption of HFCS can increase 
fructose concentrations in the intestinal lumen and 
serum, supporting tumor growth in the absence of obe-
sity and metabolic syndrome (Table 1).

GLUT5 is crucial for fructose uptake in intesti-
nal epithelial cells (IECs). The research demonstrated 

that intestinal tumors express higher levels of GLUT5 
compared to normal IECs, enabling efficient fructose 
transport and metabolism within the tumors. This is 
particularly important because fructose is converted 
to fructose-1-phosphate by KHK, which then activates 
glycolysis and fatty acid synthesis, processes that are 
essential for tumor growth and survival (Goncalves et al. 
2019).

Furthermore, the study found that in genetically modi-
fied mice predisposed to develop intestinal tumors 
(APC mutant mice), the administration of HFCS led to 
a significant increase in tumor size and grade. This was 
attributed to the upregulation of GLUT5 and other fruc-
tose-metabolizing enzymes within the tumors, highlight-
ing the transporter’s role in facilitating fructose-driven 
tumorigenesis (Goncalves et al. 2019). The results suggest 
that targeting GLUT5 or KHK could be a potential thera-
peutic strategy to inhibit the growth of intestinal cancers 
driven by fructose metabolism.

Experimental colitis
Inflammatory bowel disease (IBD), which includes Ulcer-
ative colitis (UC) and Crohn’s disease (CD), represents 
a spectrum of chronic inflammatory conditions target-
ing the gastrointestinal tract (Abraham and Cho 2009). 
The proliferation of IBD has been attributed to the wide-
spread consumption of a western diet, notably rich in 
fructose. Excessive dietary fructose is linked to its accu-
mulation and colonic microbiota modifications, contrib-
uting to the aggravation of experimental colitis (Kawabata 
et al. 2018; Khan et al. 2020; Montrose et al. 2021). Exper-
iments indicate that fructose feeding in GLUT5-deficient 
(GLUT5−/−) mice results in increased fructose levels and 
altered colonic microbiota, unlike their GLUT5-deficient 
or GLUT5+/+ counterparts on a fructose or sucrose-
free regimen (Basu et al. 2021). Furthermore, the exac-
erbation of colitis in heterozygous mice, compared to 
GLUT5+/+ mice, points to the detrimental influence of 
fructose on IBD, mediated mainly by GLUT5 inactivation 
(Basu et al. 2021). Supporting this, CD patients exhibit 
lower GLUT5 expression in ileal epithelial cells than 
healthy controls, alongside an upregulation of proinflam-
matory cytokine genes such as tumor necrosis factor 
alpha (TNF), interleukin 6 (IL6), and interleukin-1 beta 
(IL1-β), indicating an inflammatory cascade triggered by 
reduced GLUT5 function (Basu et al. 2021). The inverse 
correlation between GLUT5 expression and proinflam-
matory cytokines in GLUT5-deficient mice strengthens 
the hypothesis that inflammatory mediators may sup-
press GLUT5 expression, warranting further exploration 
into the relationship between inflammation and GLUT5 
in IBD development.
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Colorectal cancer
CRC ranks as the third most prevalent cancer worldwide 
(Xi and Xu 2021), with an increasing incidence among 
the younger demographic, necessitating a comprehensive 
exploration of its underlying drivers and contributing 
factors.

The role of the GLUT5 transporter in CRC has been 
the focus of scientific research for over three decades, 
yet its mechanisms demand further elucidation. Initially, 
Mahraoui et al. (1992) investigated the GLUT5 trans-
porter in the Caco-2 colon malignant cell line, uncovering 
its presence at the mRNA and protein levels, marking an 
early insight into GLUT5’s involvement in CRC (Table 1). 
Subsequently, Mesonero et al. (1995), delved deeper, 
analyzing the impact of glucose and fructose on GLUT5 
expression within Caco-2 cells. Their findings showed a 
decrease in GLUT5 expression under hexose-deprived 
conditions, compared to a significant increase in GLUT5 
protein and mRNA levels in cells cultured with fructose, 
emphasizing the hexose-specific regulation of GLUT5 
(Mesonero et al. 1995).

Building on this foundational knowledge, Shen et al. 
(2022), further outlined GLUT5’s significance, linking 
its upregulation to increased cell proliferation and resis-
tance to chemotherapy. They demonstrated that CRC 
cells enriched with fructose upregulated KHK, thereby 
facilitating the conversion of fructose into fructose-
1-phosphate, a critical step in fructose metabolism. 
This interaction between KHK and GLUT5 catalyzed 
fructose-driven glycolysis and the tricarboxylic acid 
cycle, underscoring the metabolic adaptability of malig-
nant CRC cells. Interestingly, silencing KHK attenuated 
the oncogenic function of GLUT5, suggesting the role 
of the GLUT5-KHK axis in CRC’s malignant metabo-
lism (Table 1). Shen et al. (2022) proposed that targeting 
this metabolic pathway through dietary modifications 
and pharmacological interventions could impede CRC 
progression.

Further advancing the field, Lin et al. (2021) investi-
gated SLC2A5 expression in CRC tissues and cell lines 
and its metastatic implications. Their research unveiled 
a novel metastatic mechanism mediated by the S100 
calcium-binding protein P (S100P), which stimulates the 
demethylation and activation of SLC2A5 transcription, 
thereby elevating GLUT5 protein expression. This break-
through offers new details into the molecular dynamics 
facilitating CRC metastasis and highlights the potential 
of targeting SLC2A5/GLUT5 in therapeutic strategies.

Another study investigated the presence of GLUT5, 
GLUT2, and SGLT1 transporters in the colonic mucosa 
of healthy individuals and patients with IBD and found 
them to be ubiquitously expressed in the mucosal epi-
thelial cells of both groups (Merigo et al. 2018). Notably, 
GLUT5 expression was also observed in lymphatic vessel 

clusters within these populations, linking its role in the 
unusual congregation of lymphatic vessels (Merigo et al. 
2018). This insight holds potential significance for the 
histopathological evaluation of lymphangiogenesis in the 
gastrointestinal tract, particularly regarding cancer and 
inflammatory bowel diseases, where GLUT5 expression 
and lymphatic vessel density might serve as early diag-
nostic markers.

Further research by Włodarczyk et al. (2021), empha-
sized a fivefold increase of GLUT5 expression in colon 
cancer tissues compared to healthy colon mucosa. 
Remarkably, 96.7% of CRC tissues expressed GLUT5, 
compared to just 53.3% in healthy mucosal samples, with 
a positive correlation identified between GLUT5 expres-
sion and cancer grade. This study also highlighted the 
efficacy of the GLUT5 inhibitor MSNBA, which signifi-
cantly reduced colon cancer cell viability and inhibited 
cancer growth without adversely affecting healthy cells 
(Fig. 3).

Chałaskiewicz et al. (2023), explored the genetic regu-
lation of GLUT5, discovering that the application of a 
histone deacetylase inhibitor, trichostatin A, increased 
SNAI1 and SNAI2 expression in high mesenchymal cells, 
consequently downregulating SLC2A5 expression. Inter-
estingly, trichostatin A pretreatment made colon cancer 
cells more susceptible to platinum compounds, address-
ing a significant challenge in colon cancer treatment 
(Chałaśkiewicz et al. 2023) (Fig. 3).

Given the considerable demand for glucose in tumori-
genesis, which is often unmet due to vascular dysfunc-
tion and metabolic competition within tumors, CRC cells 
notably adapt by utilizing fructose as an alternate energy 
source. Therefore, while the specific mechanisms of this 
metabolic compensation ask for further investigation, 
targeting fructose metabolism via GLUT5 regulation 
emerges as a promising approach for developing novel 
CRC therapeutics.

Future directions: unraveling mechanisms and 
therapeutic approaches
Investigating GLUT5’s role in cancer biology and its 
tumorigenic implications, including effects on prolif-
eration, apoptosis, migration, and invasion, offers an 
opportunity to deepen our understanding of cancer 
mechanisms and develop new therapeutic strategies. It is 
essential to enhance the research on how GLUT5 over-
expression alters cancer cell metabolism, causing changes 
in energy production, biosynthesis pathways, and redox 
balance due to altered fructose metabolism. Assessing 
the influence of GLUT5 overexpression on the tumor 
microenvironment and its role in tumor immune eva-
sion and exploring it as a diagnostic, prognostic, or early 
detection biomarker could revolutionize patient man-
agement, therapy selection, and outcome prediction. 
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Comprehensive analysis of the genetic and epigenetic 
landscape in tumors overexpressing GLUT5 can identify 
key regulatory mechanisms controlling GLUT5 expres-
sion. This could lead to developing therapies that spe-
cifically target GLUT5-overexpressing tumors, including 
small-molecule inhibitors and monoclonal antibod-
ies. Part of the process of designing effective treatment 
strategies would be addressing GLUT5 overexpression-
related resistance against targeted therapies, as well as 
the potential of combining GLUT5-targeted interven-
tions with existing treatments to enhance overall efficacy.

Finally, translating preclinical findings into a clinical 
setting would require trials to assess the safety and effec-
tiveness of GLUT5-targeted therapies. Advancing these 
research directions requires collaboration among scien-
tists, clinicians, and industry partners to translate scien-
tific discoveries into practical clinical benefits for patients 
with GLUT5-overexpressing tumors.

Conclusion
GLUT5 overexpression and its related tumorigenic 
implications represent a complex and intriguing area of 
research in cancer biology. It is now evident that GLUT5 
plays an important role in the development and pro-
gression of various types of tumors. Studies have shown 
that GLUT5 overexpression can enhance the uptake of 
fructose by cancer cells, providing them with an alter-
native energy source and promoting their growth and 
survival. Additionally, increased GLUT5 expression has 
been associated with alterations in cellular metabolism, 
contributing to the Warburg effect, a typical feature of 
cancer cells characterized by increased glycolysis. These 
metabolic changes can give a selective advantage to can-
cer cells, stimulating their proliferation and metastasis. 
Furthermore, the relationship between GLUT5 over-
expression and tumorigenesis extends beyond meta-
bolic adaptations. Recent research suggests that GLUT5 
may also be involved in immune evasion mechanisms 
employed by cancer cells, thus further promoting tumor 
growth. Future research should focus on elucidating the 
precise molecular pathways and regulatory mechanisms 
driving GLUT5 overexpression in different cancer types, 
understanding GLUT5’s role in fructose-related meta-
bolic disorders, exploring pharmacological interventions, 
and translating these findings into practical applications 
for improved healthcare.
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