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Introduction
A recently identified subset of T helper cells, referred to 
as T peripheral helper (Tph) cells, demonstrates height-
ened programmed cell death protein 1 (PD-1) expression 
and diminished expression of C-X-C motif chemokine 
receptor 5 (CXCR5) (Rao et al. 2017). This distinctive 
population primarily localizes within peripheral inflam-
matory tissues and exerts its functional effects through 
the modulation of various cytokines, notably interleu-
kin-21 (IL-21) (Yoshitomi and Ueno 2021) and CXCL13 
(Kobayashi et al. 2016).

Many hypotheses have been raised regarding the gen-
eration of Tph cells. To be specific, naive T cells can 
differentiate into Tph cells upon stimulation by trans-
forming growth factor beta (TGF-β) (Kobayashi et al. 
2016) or autoantigens presented by plasmacytoid den-
dritic cells (pDCs) (Caielli et al. 2019). Tph cells exhibit 
comparable levels of the transcription factor RAR-related 
orphan receptor gamma t (RORγt), characteristic of the 
Th17 lineage, probably suggesting a potential lineage 

Molecular Medicine

†Junyi Ren and Kuai Ma contributed equally to this work.

*Correspondence:
Moussa Ide Nasser
moussa@gdph.org.cn
Chi Liu
liuchi_1230@163.com
1School of Medicine, University of Electronic Science and Technology of 
China, Chengdu, China
2Department of Nephrology, Osaka University Graduate School of 
Medicine, Osaka, Japan
3Department of Ophthalmology, West China Hospital, Sichuan University, 
Chengdu, Sichuan, China
4General Practice Center, Sichuan Provincial People’s Hospital, Sichuan 
Academy of Sciences, University of Electronic Science and Technology, 
Chengdu 610072, China
5Department of Cardiac Surgery, Guangdong Cardiovascular Institute, 
Guangdong Provincial People’s Hospital (Guangdong Academy of 
Medical Sciences, Southern Medical University, Guangzhou 510100, 
Guangdong, China
6 Department of Nephrology and Institute of Nephrology, Sichuan 
Provincial People’s Hospital, Sichuan Clinical Research Centre for Kidney 
Diseases, Chengdu, China

Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune 
diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 
(CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within 
inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major 
histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) 
but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features 
distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells 
within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize 
recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and 
various renal diseases.
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relationship between Tph and Th17 cells (Fischer et al. 
2022). Interferon-alpha (IFN-α) can suppress BCL-6 
expression in Tfh cells, diminishing the expression of 
CXCR5 and facilitating their transition toward Tph cells 
(Jiang et al. 2022; Liu et al. 2021). In summary, naïve T 
cells, Tfh cells and other T helper cells might be able to 
differentiate into Tph cells.

Recent investigations underscore the crucial role of 
Tph cells in the pathogenesis of autoimmune kidney dis-
eases (Huang et al. 2023). In order to alleviate autoim-
mune kidney diseases, certain scholarly investigations 
have demonstrated that an appreciably increased pro-
portion of Tph cells is observed in the peripheral blood 
of patients suffering from autoimmune disorders, con-
comitant with elevated TIGIT expression. Likewise, the 
application of anti-human TIGIT agonistic monoclonal 
antibodies effectively curtails the activation and pro-
liferation of Tph cells, concurrently dampening their 
paracrine influence on B cells. This discovery presents a 
promising therapeutic avenue with the potential to yield 
positive outcomes in managing autoimmune conditions 
(Kojima et al. 2023). Consequently, investigating the role 
of Tph cells in various autoimmune kidney diseases and 
identifying potential therapeutic targets within these 
conditions is essential.

Meticulous exploration into the multifaceted roles 
played by diverse Tph cell subsets in the context of auto-
immune kidney ailments and the renal lesions associated 
with other autoimmune disorders holds profound scien-
tific significance. This review may enhance our compre-
hension of the etiology underlying autoimmune diseases 
and, in turn, substantiate the development of novel thera-
peutic agents, offering a robust framework for progress 
in this domain.

General molecular features
Tph cells exhibit notable molecular characteristics char-
acterized by elevated PD-1 expression and reduced 
CXCR5 expression (Huang et al. 2023). In various auto-
immune kidney diseases, distinct phenotypes may 
emerge, including ICOS+ cells (Edner et al. 2020), Foxp3- 
cells (Pontarini et al. 2020a, b), and CD45RA- cells 
(Makiyama et al. 2019a, b). Additionally, Tph cells exhibit 
heightened expression of inflammatory chemokine 
receptors, including C-C chemokine receptor 2 (CCR2), 
C-X3-C motif chemokine receptor 1 (CX3CR1), and 
C-C chemokine receptor 5 (CCR5) (Zhang et al. 2019; 
O’Connor et al. 2015; Balistreri et al. 2007; Vietinghoff 
and Kurts 2021).

Regarding Tfh cell phenotype, high PD-1, CXCR5, 
and ICOS expression distinguish them from Tph cells 
(Yoshitomi and Ueno 2021). Additionally, Tfh cells 
possess CD40 ligand (CD40L), tumor necrosis fac-
tor receptor superfamily member 4 (OX40), and T 

cell immunoreceptor with immunoglobulin and ITIM 
domain (TIGIT) (Wei and Niu 2023). (Fig. 1)

The general function of Tph/Tfh cells in 
autoimmune diseases
The lack of CXCR5 potentially hampers their migration 
towards CXCL13-enriched regions (Pan et al. 2022). 
However, the expression of chemokine receptors such 
as CCR2 and CCR5 promotes their migration toward 
peripheral inflammatory tissues rich in diverse che-
mokines, resulting in a preferential localization within 
tertiary lymphoid structures (TLS) (Sato et al. 2023). 
After reaching TLS, Tph cells also wield the capability 
to elicit heightened expression of T-bet within B cells, 
thereby fostering the differentiation of CD21low B cell 
subtypes. Furthermore, Tph cells exhibit the capacity to 
extend T-cell assistance using costimulatory interactions 
involving CD40L and IL-21 receptors (Keller et al. 2021). 
Within these specialized microenvironments, Tph cells 
engage in intricate crosstalk with B cells and other T cells, 
thereby triggering the release of immune modulators and 
intensifying the inflammatory cascade. In summary, Tph 
cells play a critical role in fostering the activation of auto-
antibody-secreting B cells, secretion of cytokines leading 
to tissue damage, and recruitment of diverse T cell sub-
sets (Huang et al. 2023; Christophersen et al. 2019; Marks 
and Rao 2022; Yoshitomi 2022).

As for the function of Tfh cells, antigens presented by 
DCs and costimulation via ICOS-L and IL-6 from DCs 
induce Bcl6 expression, committing the T cells to the Tfh 
lineage in germinal centres (Jogdand et al. 2016). Within 
germinal centres, Tfh cells directly interact with B cells, 
providing costimulation via the CD40-CD40L interaction 
and producing the cytokine IL-21 to drive B cell prolif-
eration (Crotty 2011).

Tph and IgA nephropathy
IgA nephropathy (IgAN) is a significant renal disorder 
that commonly affects the younger demographic and 
has the potential to progress into chronic kidney disease, 
including end-stage renal failure (Rajasekaran et al. 2021). 
It is characterized by the renal accumulation of immu-
noglobulin A and subsequent inflammatory responses, 
engendering renal tissue damage (Du et al. 2023). The 
pathophysiology of IgAN is multifaceted and involves 
the immune system, characterized by the accumulation 
of IgA-containing immune complexes in the glomerular 
mesangium (Knoppova et al. 2021). Although the pre-
cise etiology of IgAN remains elusive, current literature 
suggests that the four-strike doctrine is the predominant 
hypothesis (IgA nephropathy 2016). In addition, Tph cells 
have been identified as critical contributors to the patho-
genesis of IgAN.
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The initial stage of the four-strike doctrine involves 
the over-activation of IgA1-producing cells, resulting in 
the production of galactose-deficient IgA (Gd-IgA) anti-
bodies in afflicted individuals (Gentile et al. 2023). Sub-
sequently, Tph cells, elevated in patients with IgAN, can 
infiltrate the glomerular mesangium. TGF-β overexpres-
sion in renal tubular endothelial cells and augmented IFN 
levels in the blood can stimulate the differentiation of 
naive T cells into Tph cells (Goumenos et al. 2002; Shan 
et al. 2022; Zheng et al. 2017; Tanemura et al. 2022a, b). It 
is conceivable that pDCs induced by Toll-like receptor 9 
(TLR9) activation play a role in the heightened activation 
of their secreted IFN-α, known as the pDC-IFN-α axis, 
in individuals with IgAN. Additionally, this mechanism 
may further stimulate the generation of Tph cells in the 
affected microenvironment (Zheng et al. 2017). In the 
glomerular mesangium, Tph cells demonstrate increased 
RNA levels of IL-21/CXCL13 and upregulation of sur-
face proteins, including PD-1, CCR2, CCR3, and CXCR1 
(Wang et al. 2020). Once situated in the mesangium, Tph 
cells interact with CD38+ B cells through CD84/CD40, 
instigating the production of secreted anti-Gd-IgA anti-
bodies through the secretion of IL-21 and CXCL13 
(Tangye 2017). These antibodies bind to CD138+ B cells, 
and heightened levels of IgG4 serve as a key indicator 

of autoimmune hepatitis, leading to the degradation 
and exacerbation of IgAN (Zhang et al. 2014). In the 
subsequent phase, the anti-Gd-IgA antibodies attach 
to Gd-IgA, generating large molecular weight immune 
complexes that deposit in the mesangium. Ultimately, 
the final stage involves the immune complexes inducing 
the proliferation of mesangial cells and massive produc-
tion of the matrix, ultimately contributing to the exacer-
bation of IgAN (Chang and Li 2020). Furthermore, IgAN 
patients exhibiting tertiary lymphoid structures (TLS) 
showed a notable elevation in the counts of Tfh and Tph 
cells. Tph cells localized within the TLS may concur-
rently release IL-21 alongside Tfh cells, thereby fostering 
the development of renal fibrosis (Luo et al. 2023). CD4+ 
T cells infiltrating renal tissues may play a pivotal role in 
renal injury by activating B cells in situ, thereby contrib-
uting significantly to the pathogenesis of IgAN (Du et 
al. 2022). In summary, the four-strike doctrine is widely 
accepted as the pathogenic mechanism of IgAN, with 
Tph cells playing a crucial role in the pathogenesis and 
disease progression.

Fig. 1 Tph cells typically migrate to and execute crucial functions within tertiary lymphoid structures (TLS). At these sites, Tph cells may differentiate 
from various precursor cells, including naïve T cells, Th2 cells, Th17 cells, and Tfh cells. Within TLS, IFN-α markedly enhances T-cell responsiveness to IL-2/
STAT5 signaling, resulting in the downregulation of CXCR5 expression. Concurrently, TGF-β plays an indispensable role in promoting CXCL13 expression 
in Tph cells
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Tph and IgG4-related renal disease
IgG4-related disease (IgG4-RD) entails elevated levels 
of IgG4 antibodies, instigating kidney tissue impairment 
(Sánchez-Oro et al. 2019). The etiology of IgG4-related 
kidney disease is intricately linked with both genetic and 
immune factors involving T cells (Mbengue et al. 2021). 
This disorder is marked by substantial T-cell infiltration 
in the renal tubular interstitium along with the pres-
ence of IgG4-producing B cells, leading to the formation 
of antigen-antibody complexes and subsequent fibrotic 
changes (Saeki and Kawano 2014). However, the precise 
mechanism by which IgG4 secretion by B cells influences 
the progression of renal fibrosis remains an area of active 
investigation (Kawano et al. 2023).

In IgG4-related disease patients, the quantity of Tph 
cells within the peripheral blood of IgG4-related disease 
patients markedly surpasses that of healthy counter-
parts (Kamekura et al. 2018; Mancuso et al. 2021). These 
cells are typified by elevated levels of CD25, CD38, and 
TIGIT, along with diminished levels of T-bet, but Tfh-
like cells expressed more CCR7 and CD127 than Tph 
cells (Zhang et al. 2022). Notably, CCR7 is known to play 
a pivotal role in cell migration to lymphoid organs (Hong 
et al. 2022), while CD127 is a cytokine receptor for IL-7, 
a critical factor for T cell survival and steady-state pro-
liferation (Chen et al. 2021). Consequently, Tph-like cells 
may have a reduced ability to migrate to secondary lym-
phoid organs when compared to Tfh cells. However, the 
heightened expression of CX3CR1 chemokine receptors 
on Tph cells facilitates their migration to inflammatory 
tissues (Yabe et al. 2021). Thus, a theoretical basis sug-
gests that Tph cells may actively facilitate the onset and 
perpetuation of IgG4-RD through the secretion of che-
mokines and engagement of costimulatory molecules. 
These molecular mediators recruit Tfh cells and B cells to 
the inflamed sites, potentially amplifying the pathologi-
cal processes inherent to IgG4-RD (Cargill et al. 2020). 
Additionally, the observed positive correlation between 
Tph cells and the frequency of plasma cells present in 
secondary lymphoid organs suggests a potential role 
for Tph cells in promoting the differentiation of naive B 
cells (Zhang et al. 2022). Tph cells establish interactions 
with B cells through TIGIT, leading to an upregulation of 
IL-21 expression and subsequent stimulation of B cell dif-
ferentiation into plasma cells via IL-21 signaling. Silenc-
ing of TIGIT in Tph cells results in a reduction of IL-21 
expression and impedes the differentiation of B cells into 
plasma cells. Tph cells, particularly TIGIT+ Tph cells, 
exhibit potential as discernible markers for assessing the 
activity of IgG4-related disease (Ji et al. 2023; Akiyama et 
al. 2021). The proportion of Tph cells positively correlates 
with serum IgG4 levels, the extent of organ involvement, 
and the percentage of CD11c+CD21− B cells (Kamekura 
et al. 2022). Moreover, Tph cells produce CXCL13, which 

attracts CXCR5+ Tfh cells, and together with Tfh cells, 
form ectopic lymph node-like structures that contribute 
to the initiation of inflammation and the perpetuation 
of chronic fibrositis. Furthermore, Tph cells expressing 
CX3CR1 demonstrate cytotoxicity, leading to the apop-
tosis of vascular endothelial and ductal epithelial cells 
by releasing granzyme and perforin. Significantly, these 
cells exhibit heightened expression of CX3CL1, a ligand 
for CX3CR1, within the affected organs of patients with 
IgG4-RD (Yabe et al. 2021; Kamekura et al. 2019). Tph 
cells, in conjunction with Th2 cells, Treg cells, and Tfh 
cells, actively foster the differentiation of naïve B cells 
into plasma cells. This process ultimately intensifies the 
manifestations of IgG4-RD (Liu et al. 2020).

In conclusion, Tph cells have been demonstrated to 
exert a crucial role in the pathogenesis of IgG4-related 
nephropathy through their ability to activate B cells and 
recruit Tfh cells, ultimately contributing to disease exac-
erbation. (Fig. 2)

Tph and diabetic nephropathy
DN represents a microvascular complication of diabetes 
mellitus that manifests as a progressive decline in renal 
function (Kanwar et al. 2011). The pathogenesis of DN 
is intricately associated with the presence of hypergly-
cemia. Hyperglycemia represents a primary etiological 
factor in the pathogenesis of DN. Hyperglycemia exerts 
its deleterious effects by compromising the integrity of 
the renal microvasculature, disrupting normal kidney 
function (Papadopoulou-Marketou et al. 2017). Fur-
thermore, hyperglycemia also impacts the glomerular 
filtration membrane, rendering it more permeable and 
resulting in the excretion of human molecules, includ-
ing proteins, into the urine. Continued renal exposure 
to these substances may lead to kidney damage and ulti-
mately contribute to the development and progression of 
DN (Alsharidah 2022). Hence, investigating the specific 
mechanisms underlying the involvement of Tph cells in 
hyperglycemia is of paramount importance in the context 
of elucidating the pathogenesis of DN. In children newly 
diagnosed with type 1 diabetes (T1D) who display mul-
tiple autoantibodies, a higher frequency of circulating 
Tph cells with elevated TIGHT expression was observed 
(Ekman et al. 2019). TIGHT signaling in these cells may 
promote a tolerogenic phenotype in DCs (Annese et al. 
2022), which may contribute to the exacerbation of auto-
immune disease development (Kim et al. 2021). Fur-
thermore, there is an indication that IL-21 is not solely 
generated by CXCR5+ T follicular helper cells within the 
pancreatic islets of individuals with T1D since Tph cells 
may also contribute to its production (Viisanen et al. 
2016).

Moreover, Tph overexpression in animal models is 
associated with a reduction in the frequency of spleen 
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naive B cells and an increase in non-conventional mem-
ory CD27−IgD− B cells (Vecchione et al. 2022). Under 
certain stimuli, CD27−IgD− B cells can differentiate into 
antibody-secreting cells (ASCs) that produce immune 
complexes capable of infiltrating the glomerulus (Beckers 
et al. 2023; Vandamme and Kinnunen 2020), exacerbat-
ing thylakoid expansion and glomerular basement mem-
brane thickening, thus contributing to the progression 
of DN (Smith et al. 2017). Moreover, the involvement of 
Tfh cells in DN has been documented, evidenced by an 
elevated count of CD4+CXCR5+PD-1+ Tfh cells in DN 
patients. This increase exhibits a negative correlation 
with estimated glomerular filtration rate (eGFR) and a 
positive correlation with 24-hour urine protein concen-
tration. However, the precise mechanism of Tph cells 
in this context remains under exploration (Zhang et al. 
2016).

Proposedly, after the induction of islet antigen-spe-
cific Tfh cells in pancreatic lymph nodes, certain Tfh 
cells undergo a transition marked by the loss of CXCR5 
expression and an upregulation of chemokine recep-
tors such as CCR2, CCR5, and CX3CR1, transforming 
into Tph cells that exit lymph nodes. These Tph cells are 
attracted to inflamed pancreatic islets by chemokines 

CCL2, CCL5, and CX3CL1. Furthermore, Tph cells pro-
duce CXCL13, attracting B cells to inflamed pancreatic 
islets and generating IL-21, fostering the maturation of B 
cells. This process culminates in the localized production 
of autoantibodies (AAbs). Additionally, IL-21, generated 
by Tph cells, may support the proliferation and survival 
of cytotoxic CD8 T cells, the predominant subset of 
immune cells infiltrating inflamed pancreatic islets (Van-
damme and Kinnunen 2020).

In summary, highly amplified Tph cells have been 
implicated in the pathogenesis of DN through multiple 
mechanisms. Specifically, Tph cells may directly impair 
islet function by promoting DC immune tolerance and 
CD8+ T cell activation, leading to hyperglycemia in 
affected kidneys. Alternatively, Tph cells may contribute 
to the production of double-negative B cells and anti-
body-secreting cells, resulting in the secretion of autoan-
tibodies and the formation of larger immune complexes 
that exacerbate glomerular injury.

Tph and ANCA vasculitis-affected kidneys
ANCA-associated vasculitis (AAV), characterized by 
vascular inflammation and necrosis, frequently leads to 
glomerulonephritis and consequential renal dysfunction 

Fig. 2 The involvement of Tph cells in the pathogenesis of IgA nephropathy, pSS, and IgG4 nephropathy. In these conditions, Tph cells are robustly acti-
vated and expanded within peripheral inflammatory tissues, where they secrete cytokines such as IL-21 and CXCL13 to stimulate the activation of numer-
ous autoantibody-producing B cells. This results in the deposition of large quantities of antigen-antibody complexes, leading to an increase in thylakoid 
cell and stromal cell numbers. Furthermore, in IgG4 nephropathy, Tph cells can also exert cytotoxic effects, causing necrosis of glomerular epithelial cells 
and promoting mesangial cell proliferation and fibrosis
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(Austin et al. 2022). AAV is a chronic autoimmune dis-
ease characterized by recurrent episodes of small vessel 
inflammation, affecting primarily the respiratory tract 
and kidneys (Sunderkötter et al. 2018). AAV is a major 
cause of rapidly progressive glomerulonephritis (GN), 
often presenting as pauci-immune necrotizing crescentic 
GN and associated with high morbidity, including a high 
risk of progression to end-stage kidney disease (ESKD) 
and increased mortality (Scurt et al. 2022). The pathogen-
esis of AAV is currently believed to involve the activation 
of neutrophils by antibodies to ANCA. These antibodies 
bind to ANCA antigens located at the basement mem-
brane of glomerular vessels, leading to glomerular vas-
cular damage via neutrophil respiratory bursts and other 
mechanisms (Jennette and Nachman 2017).

Elevated circulating Tph cell counts have been observed 
in patients with active AAV, and these cells have been 
found to exacerbate the development and progression of 
ANCA-associated vasculitis through the production of 
cytokines such as TNF-α, IL-4, IL-21, and IL-12, as well 
as the presence of elevated serum MPO-ANCAs concen-
trations (Krajewska Wojciechowska et al. 2021; Liu et al. 
2022). Conversely, serum IL-10 has been found to exhibit 
a negative correlation with circulating Tph cells in active 
AAV patients. A reduction in IL-10 is anticipated to con-
tribute to the escalation of the disease progression (Liu 
et al. 2022; Diefenhardt et al. 2018). Furthermore, a study 
showed that the percentage of memory T cells from 
MPO-ANCA-associated vasculitis patients was signifi-
cantly higher than that of normal controls (Hirayama et 
al. 2010). However, in a recent study, no significant differ-
ence was observed in the frequency of Tph cells between 
patients diagnosed with granulomatosis with polyangi-
itis, microscopic polyangiitis, and healthy controls (Lon-
don et al. 2021). This finding contrasts previous studies, 
which demonstrated an increased frequency of Tph cells 
in patients with active AAV and suggested their contri-
bution to the pathogenesis of the disease. The differences 
in the disease status and treatment regimens between the 
patient cohorts in the different studies may have contrib-
uted to the discrepant results. Further investigation is 
needed to elucidate the role of Tph cells in the pathogen-
esis of polyangiitis and microscopic polyangiitis.

Tph and primary sjögren’s syndrome
Primary Sjögren’s syndrome (pSS), an autoimmune dis-
order affecting exocrine glands, including the lacrimal 
glands, can also involve the kidneys, resulting in reduced 
renal function due to autoantibody-mediated damage 
(Goules et al. 2019). The pSS is a multifaceted autoim-
mune disease associated with systemic complications and 
lymphoma development (Manfrè et al. 2022). It is char-
acterized by T cell-mediated hyperactivation of B cells 
and can affect multiple organs, including the kidneys 

(Aiyegbusi et al. 2021). Renal involvement is a common 
feature of pSS (Luo et al. 2019).

Following the destruction of the lacrimal gland, auto-
antigens are generated and presented by DCs to naive 
T cells, which can lead to their differentiation into Tph 
cells. This process is significant as Tph cells have been 
implicated in the pathogenesis of various autoimmune 
disorders, including Sjögren’s syndrome (Verstappen et 
al. 2021). Enriching Tph cells in the peripheral blood and 
labial gland of patients with pSS suggests their involve-
ment in developing this disease. Tph cells were signifi-
cantly associated with disease activity scores, including 
ESSDAI scores, IgG, ESR, IL-21, and anti-SSA antibody 
levels (Chen et al. 2022). Key pathogenic players in the 
immunopathology of pSS include IL-21 and the ICOS 
costimulatory pathway and IL-21/IFN-γ double-pro-
duction (Pontarini et al. 2020a, b); thus, IFN-γ may also 
play a role in the disease (Sato et al. 2022). In addition, 
TGF-β is believed to contribute to the differentiation of 
Tph cells, which have been shown to promote the acti-
vation of B cells, particularly CD138/CD19 plasma cells, 
in patients with pSS (Shan et al. 2022; Dupré et al. 2021; 
Maślińska et al. 2019). In addition to generating antigen-
antibody complexes directed against the lacrimal gland’s 
autoantigens, activated Tph cells, B cells, and plasma cells 
can also infiltrate the renal interstitium, resulting in the 
onset of tubulointerstitial nephritis (François and Mari-
ette 2016).

Tph and lupus nephritis
Lupus nephritis (LN), an aggressive manifestation of sys-
temic lupus erythematosus (SLE), manifests as severe 
renal inflammation and damage (Bhargava et al. 2023). 
SLE is a complex autoimmune disease characterized by 
its chronic and recurrent nature, encompassing a diverse 
array of symptoms ranging from mild to severe, with life-
threatening manifestations. The pathogenesis of SLE is 
intricately associated with the presence of autoantibod-
ies, immune complexes, and aberrant immune responses 
(Basta et al. 2020). Despite extensive research efforts, the 
precise mechanisms underlying the development and 
progression of SLE remain elusive and challenging to 
ascertain definitively (Crow 2023). Among the various 
organ manifestations observed in SLE, lupus nephropa-
thy represents a particularly grave form of glomerulo-
nephritis, posing significant clinical implications and 
requiring comprehensive management strategies (Anders 
et al. 2020).

In previous investigations, the existence of Tph 
cells in human lupus nephritis samples has been con-
firmed through meticulous analysis utilizing single-
cell RNA sequencing (Arazi et al. 2019). Notably, an 
augmented population of Tph cells with a distinc-
tive PD-1hiCXCR5−ICOS+CD38+HLA-DR+MHC-II+ 
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phenotype has been discerned in the peripheral blood 
of patients diagnosed with SLE (Choi et al. 2015; Lin et 
al. 2019). Based on the expression profiles of CXCR3 
and CCR6, Tph cells can be categorized into three dis-
tinct subtypes: CXCR3+CCR6−Tph (referred to as 
Tph1), CXCR3−CCR6−Tph (referred to as Tph2), and 
CXCR3−CCR6+Tph (referred to as Tph17) (Makiyama et 
al. 2019a, b). However, in combination, the expression of 
CXCR5 and ICOS was found to be minimally detectable 
among CCR6+IL-7R+ T cells. This observation suggests a 
limited representation of CXCR5 and ICOS co-express-
ing cells within the CCR6+IL-7R+ T cell population (Fac-
ciotti et al. 2020).

Tph cells can induce the differentiation of naive B cells 
into CD27/CD38 double-positive plasma cells in a man-
ner that relies on the presence of IL-21 and the transcrip-
tion factor MAF (Lin et al. 2019; Bocharnikov et al. 2019; 
Deng et al. 2015). This process exhibits a positive cor-
relation with the level of disease activity. Furthermore, 
the production of IL-21 by Tph cells directly exacerbates 
the pathological processes associated with lupus (Her-
ber et al. 2007). Additionally, the elevated expression of 
granzyme B, a protease enzyme, in Tph cells plays a piv-
otal role in the deterioration of renal function in lupus 
nephritis (Bocharnikov et al. 2019; Kok et al. 2017).

Furthermore, in individuals diagnosed with SLE, the 
release of mitochondrial DNA (mtDNA) from neutro-
phils triggers the activation of pDCs, which may induce 
the differentiation of naive T cells into Tph cells. Subse-
quently, the activated Tph cells play a role in the reac-
tivation of naive B cells by employing interleukin-10 

(IL-10) and succinate, leading to the differentiation 
of CD18+CD21+CD11c− plasma cells and the secre-
tion of IgG antibodies (Caielli et al. 2019; Biswas et al. 
2022). Notably, recent investigations have identified 
a distinct subset of plasma cells characterized by the 
CD18+CD21−CD11c+ phenotype, known as ABC cells, 
which are closely associated with the pathogenesis of LN 
(Sachinidis et al. 2020).

Elevated levels of IFN-α have been observed in patients 
diagnosed with SLE, a complex autoimmune disorder 
(Niewold 2011). The upregulation of IFN-α has been 
implicated in differentiating Tfh cells into Tph cells. 
Within this context, Tph cells in the presence of ele-
vated IFN-α demonstrate a heightened sensitivity to IL-2 
stimulation. Consequently, activating the IL-2 signaling 
pathway results in the preferential binding of STAT5 to 
the BCL6 locus at the expense of STAT1. This preferen-
tial binding pattern negatively impacts the concurrent 
expression of histone H3 lysine 4 trimethylation and sub-
sequently leads to the downregulation of CXCR5 expres-
sion, an essential marker for Tph cells (Jiang et al. 2022). 
Furthermore, the elevated levels of IFN-λ in SLE patients 
(Barnas et al. 2021) contribute to the differentiation of 
Tph cells, along with B cells, thereby exacerbating the 
pathological progression of the disease (Tanemura et al. 
2022a, b). However, it is noteworthy to mention that one 
study reported no significant alterations in Tph cell levels 
following rituximab treatment, indicating a potential lack 
of responsiveness of Tph cells to disease activity modula-
tion (Faustini et al. 2022). (Fig. 3)

Fig. 3 The role of Tph cells in the pathogenesis of lupus nephritis and diabetic nephropathy. In lupus nephritis, pDC cells and macrophages can provide 
the necessary cytokines to facilitate the differentiation of T cells into Tph cells. These Tph cells can then secrete IL-21, succinic acid, and other factors to 
promote the differentiation of autoantibody-producing B cells. Additionally, Tph cells in this context exhibit cytotoxic activity. In diabetic nephropathy, 
an autoimmune response at the pancreatic islets leads to the proliferation of Tph cells within the islets, resulting in their destruction. This impairs insulin 
secretion, leading to hyperglycemia and subsequent renal involvement
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Tph and cGVHD affected the kidney
Chronic graft-versus-host disease (cGVHD) stands as a 
significant and formidable complication following trans-
plantation, with its primary impact directed towards the 
skin, gastrointestinal tract, liver, lungs, and mucosal sur-
faces (Li and Zhang 2019). The pathogenesis of cGVHD 
entails intricate interactions involving immune cells from 
both the donor and the host (Nasr et al. 2022). It has 
come to light that GVHD could potentially contribute to 
various glomerular pathologies. Moreover, cGVHD has 
the capacity to incite renal inflammation reminiscent of 
SLE, as evidenced by a murine model (Zhang et al. 2023; 
He et al. 2012). Consequently, a thorough exploration 
into the role of Tph cells within the context of cGVHD 
is paramount in our quest to alleviate renal ailments trig-
gered by cGVHD.

Among individuals grappling with cGVHD, a discern-
ible expansion of Tph cells has been observed, accom-
panied by the heightened expression of surface markers 
such as PD-1, TIGHT, ICOS, and HLA-DR. However, 
markers like CD160, LAG3, or 2B4 have not exhibited an 
upregulation. Furthermore, an examination of the intra-
cellular domain of Tph cells has revealed marked eleva-
tions in the expression of transcription factors, including 
BLIMP1, MAF, and IRF4. This subgroup of Tph cells 
also displays a substantial secretion of IFN-γ, IL-21, and 
IL-4 while not displaying an upregulation of CXCL13 
and IL-2. An additional noteworthy phenomenon is the 
capacity of Tph cells to migrate from the circulatory 
system to anatomical locales such as the liver or lungs, 
where they undergo a transition into T regulatory helper 
(Trh) cells. Within the inducible bronchus-associated 
lymphoid tissue (iBALT), CD4+ cells predominantly pres-
ent as PSGL1loCD69+ Trh cells, engaging in intricate 
interactions with B cells. Notably, the process hinges on 
the IL-21R-BCL6 signalling pathway, in tandem with the 
pivotal role of T-bet, orchestrating the differentiation and 
expansion of both Tph and Trh cells. The influence of 
IL-21 extends to developing T cells, prompting their dif-
ferentiation into Tph and Trh cells, subsequently inten-
sifying the development and proliferation of high-affinity 
centre B cells marked by Fas+GL7+IgG+IgD− memory 
B cells and CD27+CD138+ plasma cells. This cascading 
effect leads to an elevation in the overall concentration of 
total IgG alongside anti-double-stranded DNA (dsDNA) 
IgG, thereby exacerbating the autoimmune inflammatory 
response (Kong et al. 2022; Chen et al. 2023).

Tph and acute virus-affected kidney
The influence of the COVID-19 pandemic on renal 
health has emerged as a prominent subject of inves-
tigation. Beyond its respiratory impact, the immune 
response incited by the virus possesses the potential 
to inflict enduring and severe damage upon various 

organs, including the kidneys (Dadson et al. 2020). More-
over, viral infections have been implicated in develop-
ing kidney-related disorders (Iwata and Tanaka 2022). 
Thus, comprehending the intricate role played by Tph 
cells in acute viral infections carries substantial scien-
tific significance. In COVID-19 patients, the pheno-
type of Tph cells is typified by the distinctive markers 
PD1hiCXCR5−CD38+HLA-DR+ and CTLA4lo. This Tph 
cell population displays a notable male-biased cellular 
network configuration (Søndergaard et al. 2023). Within 
the acute phase of COVID-19, a marked surge in the Tph 
cell count has been observed, displaying a direct corre-
lation with the frequency of plasma cells. Noteworthy 
is the array of genes associated with Tfh cell’s function 
expressed by Tph cells, encompassing MAF, TIGIT, 
SLAMF6, and IL-21. Phenotypically, these Tph cells 
exhibit heightened levels of CCR5 and CCR2 compared 
to conventional Tfh. These Tph cells can secrete both 
IL-21 and CXCL13, factors pivotal in steering B cell dif-
ferentiation toward the plasma cell lineage (Asashima et 
al. 2023).

Significantly, the secretion of IFN-γ by Tph cells, at 
appropriate levels, hinges on the expression of tissue-
homing receptors such as CXCR3 on plasma cells. This 
phenomenon further reinforces the directed congre-
gation of plasma cells within tissues. In line with this 
observation, a substantial positive correlation between 
CXCR3 + plasma cells and Tph cells is evident. These 
activated plasma cells can synthesize immunoglobulins, 
most notably IgG (Asashima et al. 2021).

Tph and autoimmune liver disease affected the 
kidney
Primary Biliary Cirrhosis (PBC) stands as a chronic 
inflammatory autoimmune disorder, the intricacies of 
its onset being orchestrated by a multifaceted interplay 
between genetic predispositions and environmental 
factors (Xie et al. 2016). Within the domain of PBC, an 
observable renal manifestation takes the form of asymp-
tomatic Distal Renal Tubular Acidosis (DTA), bearing 
the potential ramifications of inciting tubulointerstitial 
nephritis (Bansal et al. 2012; Komatsuda et al. 2010).

Notably, in PBC patients, a notable augmentation 
in the population of Tph cells marked by heightened 
expressions of CD28 and TIGHT is evident within the 
peripheral blood milieu. Following treatment initiation, 
a discernible trend towards gradually reducing these Tph 
cells comes into view. Of particular import is the intimate 
association between these two distinct subsets of cells 
and the activation status of CD19+CD38hiCD138+ plasma 
cells. Additionally, this association extends to the intri-
cate orchestration of the transformation process, wherein 
CD27−IgD+ primary B cells evolve into the CD27+IgD− 
profile characteristic of memory B cells, concomitantly 
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contributing to an elevated synthesis of IgG antibodies. A 
compelling observation is the significant positive correla-
tion between ICOS+ Tph cells and both IgG antibody lev-
els and the serum marker AMA-M2 within the context of 
PBC patients (Yong et al. 2021).

Autoimmune Hepatitis (AIH) emerges as a persistent 
inflammatory disorder characterized by elevated lev-
els of gamma globulins, the presence of autoantibodies 
in serum, and histopathological indications of interface 
hepatitis. Untreated, this disorder possesses the potential 
to escalate into cirrhosis and advanced liver dysfunction. 
Moreover, compelling research underscores a robust 
linkage between autoimmune hepatitis and renal afflic-
tions (Muratori et al. 2023).

In individuals who have autoimmune hepatitis, Tph 
cells emerge as the principal peripheral reservoir housing 
autoreactive CD4 T cells that specifically target Soluble 
Liver Antigens (SLA). Notably, the co-expression of PD-1 
and CD38 within CD45RA−CXCR5−CD127−CD27+ 
T cell subsets assume a pivotal role as an immunologi-
cally informative marker of active autoimmune hepatitis. 
These Tph cells hold the capacity to guide B cells through 
pathways reliant on IL-21, thereby steering their dif-
ferentiation trajectory towards the plasma cell lineage. 
Remarkably, the population of these Tph cells demon-
strates a positive correlation with the levels of IgG in 
autoimmune hepatitis patients (Renand et al. 2020).

Conclusion
The role of Tph cells is extremely important in renal dis-
eases. A large body of evidence suggests that in the devel-
opment of autoimmune diseases, the activation of Th0 
cells or the downregulation of Tfh cells’ CXCR5 expres-
sion in peripheral blood cells leads to the generation of 
Tph cells. Tph cells influence the differentiation of other 
Th cells and B cells by producing CXCL13 and various 
leukocyte cytokines in different regions, thereby playing 
an indispensable role in the pathogenic mechanisms of 
various autoimmune renal diseases and other nephritis. 
Inhibiting the excessive activation of Tph cells to reduce 
the release of pro-inflammatory factors and suppress 
excessive immune activity of other T cells is a potential 
approach to alleviate autoimmune diseases.
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