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Rewriting cellular fate: epigenetic 
interventions in obesity and cellular 
programming
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Abstract 

External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns 
that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions 
like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifica‑
tions, and RNA‑mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differenti‑
ated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators 
facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. 
Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing 
evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved 
in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epige‑
netic interventions influence obesity, focusing on DNA methylation, histone modifications, and non‑coding RNAs. We 
also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large‑scale 
screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly 
in the context of adipogenesis and metabolic homeostasis; Single‑cell RNA sequencing (scRNA‑seq) provides a high‑
resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics 
of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) 
assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription 
factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular program‑
ming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic 
reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These 
approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, 
providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay 
between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical manage‑
ment of obesity.
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Introduction
Epigenetics refers to the heritable changes in gene 
expression or cellular phenotype without alterations in 
the DNA sequence, involving chemical modifications to 
DNA and various RNAs. The epigenome’s patterns are 
influenced by external constraints such as development, 
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disease, and the environment, interacting with the 
underlying DNA sequence (Huang et  al. 2024). 
Epigenetics focuses on the regulation of when and 
where specific genes are expressed, while epigenomics 
involves analyzing genetic modifications on a cellular 
or organismal scale, and epigenetic modifications 
play a crucial role in cellular differentiation, gene 
regulation, and the development of various pathological 
conditions. Given the rapid accumulation of 
genome-wide epigenomic modification maps across 
cellular differentiation process, it is necessary to 
characterize epigenetic dynamics and reveal their 
impacts on differential gene regulation, i.e., DiffEM, 
a computational method for differential analysis of 
epigenetic modifications, could identify highly dynamic 
modification sites along cellular differentiation process 
(Zhang et al. 2019).

A deeper understanding of the Waddington energy 
landscape of embryogenesis and cell reprogramming 
processes at single-cell resolution as characterized 
by recent studies, provides that cell fate decision 
is progressively specified in a continuous process. 
Moreover, the transition of cells from one steady state 
to another in embryogenesis and cell reprogramming 
processes was dynamically simulated on the energy 
ladder (Li et  al. 2023). Deciphering the decisive factors 
that drive fate bifurcations in somatic cell reprogramming 
is essential for harnessing the therapeutic potential of 
regenerative medicine. The identification of specific 
signaling pathways and epigenetic modifiers that dictate 
the transition between cell states can inform strategies 
for redirecting cellular identity (Long et al. 2023).

Noticeably, obesity is a growing public health challenge 
worldwide, the World Health Organization reports that 
obesity has tripled in the last 50 years. In 2016, more than 
650 million adults aged 18 years and older were obese. It 
is estimated that by 2030, approximately 20% of the world 
population will be obese, and 38% will be overweight 
(Yadav and Jawahar 2023). The rapid increase in obesity 
rates is evident not only in high-income countries but 
also in low- and middle-income countries, making it a 
global epidemic with serious health consequences.

Recent advances in determining the regulatory mech-
anisms reveal that the compromised epigenomes are 
molecularly interlinked to altered cis-regulatory element 
activity and chromosome architecture in the adipose tis-
sue. Further, the emerging roles of DNA methylation in 
the maintenance of 3D chromosome conformation and 
its pathophysiological significance concern adipose tis-
sue function (Park et al. 2021). The different environmen-
tal cues can epigenetically reprogram adipocyte fate and 
function, mainly by altering DNA methylation and his-
tone modification patterns. Intriguingly, it appears that 

transcription factors and chromatin-modifying coregu-
lator complexes are the key regulatory components that 
coordinate both signaling-induced transcriptional and 
epigenetic alterations in adipocytes (Barilla et  al. 2021). 
Developmental pluripotency-associated 2 (Dppa2) and 
developmental pluripotency-associated 4 (Dppa4) as 
positive drivers were helpful for transcriptional regula-
tion of zygotic genome activation (ZGA). Moreover, the 
discovery that Dppa2/4 can act as a trigger for signaling 
pathways, promoting zygote genome activation by bind-
ing to CG-rich regions, highlights the intricate interplay 
between epigenetic regulators and genomic elements 
during early developmental stages (Li et  al. 2021). This 
finding is particularly relevant to understanding the ini-
tiation of cellular programming and the establishment 
of epigenetic marks that may predispose individuals to 
obesity.

The pathogenesis of obesity involves complex 
interactions between genetic predisposition, 
environmental factors, and metabolic processes. Key 
metabolic pathways include those related to lipid 
metabolism, insulin signaling, and energy homeostasis. 
Genes such as FTO (fat mass and obesity-associated 
gene), LEP (leptin), MC4R (melanocortin 4 receptor), 
and PPARG (peroxisome proliferator-activated 
receptor gamma) are well-established contributors to 
obesity susceptibility. These genes influence processes 
like appetite regulation, adipogenesis, and energy 
expenditure, leading to disruptions in energy balance and 
increased fat storage (Serra-Juhé et  al. 2020; Sarzynski 
et al. 2011).

Epigenetic modifications and their impact
Epigenetic modifications influence gene transcription 
and post-transcriptional regulation through various 
mechanisms. Studies have shown that parental 
environmental factors affect offspring gene expression 
through DNA methylation, histone covalent 
modifications, and chromatin remodeling, for example, 
the huge health burden accompanying obesity is not 
only attributable to inadequate dietary and sedentary 
lifestyle habits, since it is found that a predisposing 
genetic make-up and other putative determinants 
concerning easier weight gain and fat deposition 
(Martínez et  al. 2012). In addition, in conjunction with 
histone modifications, DNA methylation plays critical 
roles in gene silencing through chromatin remodeling, 
which is also interconnected with the DNA damage 
response, maintenance of stem cell properties, and 
cell differentiation programs (Bariar et  al. 2013). 
These modifications have long-lasting effects on gene 
expression patterns and cellular function, potentially 
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influencing an individual’s susceptibility to various 
diseases later in life.

DNA methylation, one of the most well-studied 
epigenetic modifications, involves the addition of a 
methyl group to cytosine residues in CpG dinucleotides 
(Valente et  al. 2023). This modification is generally 
associated with gene silencing and plays a crucial role in 
genomic imprinting, X-chromosome inactivation, and the 
regulation of tissue-specific gene expression (Waggoner 
2007). The enzymes responsible for DNA methylation, 
known as DNA methyltransferases (DNMTs), are 
essential for maintaining methylation patterns during cell 
division and establishing new methylation marks during 
development, i.e., the unique regions of the methylated 
genome by specific DNMT isoforms and its potential for 
dietary intervention to modify the epigenome (Sae-Lee 
et al. 2022).

Histone modifications represent another important 
class of epigenetic regulators. These covalent 
modifications to histone proteins can alter chromatin 
structure and accessibility, thereby influencing gene 
expression. Common histone modifications include 
acetylation, methylation, phosphorylation, and 
ubiquitination. The combination of these modifications, 
often referred to as the "histone code," can either 
promote or repress gene transcription depending on the 
specific marks and their location (Jeffers 2024).

RNA-mediated regulation involves various types 
of non-coding RNAs that play crucial roles in gene 
expression and cellular function. These include 
small RNAs (sRNAs), non-coding RNAs (ncRNAs), 
microRNAs (miRNAs), short interfering RNAs (siRNAs), 
PIWI-interacting RNAs (piRNAs), antisense RNAs, 
riboswitches, RNA methylation, editing, and splicing 
(Jiang et  al. 2017; Haggarty 2015). MicroRNAs, in 
particular, have emerged as important regulators of 
gene expression, acting post-transcriptionally to fine-
tune protein levels in various cellular processes (Xu et al. 
2024).

Genetic polymorphisms in DNA processing enzymes, 
such as DNA methyltransferases and ten-eleven 
translocation (TET) methylcytosine dioxygenases, also 
impact epigenetic states (Sharma and Rando 2017). These 
variations can lead to differences in epigenetic patterns 
between individuals and may contribute to disease 
susceptibility or resistance.

Epigenetic plasticity and environmental influences
Epigenetic modifications typically occurred during 
terminal differentiation into somatic cells; however, 
these cells possessed the ability to reprogram their 
epigenomes in response to environmental challenges like 
maternal stress (McCaughan et  al. 2012). Such changes 

induced organisms more adaptive or less suited to future 
challenges. This plasticity of the epigenome allows for 
rapid adaptation to environmental changes but can also 
lead to maladaptive responses in certain conditions. 
Epigenetic variations contributed to the onset of diseases, 
including cancer, neurological disorders, cardiovascular 
diseases, metabolic syndromes, immune disorders, and 
aging.

Notably, through epigenetic modifications, there may 
be infinite developmental benefits or harms for the fetus 
and newborn later on in adult life health status, e.g., obe-
sity (Fig.  1). The concept of developmental origins of 
health and disease (DOHaD) emphasizes the importance 
of early life experiences and environmental exposures in 
shaping long-term health outcomes (Frankenhuis et  al. 
2018). Regarding obesity, epigenetic modifications have 
been shown to play a significant role in the regulation of 
energy metabolism, appetite control, and adipocyte dif-
ferentiation, for example, studies have demonstrated that 
maternal nutrition during pregnancy can influence the 
epigenetic programming of offspring metabolism, poten-
tially predisposing them to obesity and related metabolic 
disorders later in life (Sinha et  al. 2021). Specific epige-
netic marks, such as DNA methylation patterns in genes 
involved in energy homeostasis, have been associated 
with obesity risk and metabolic dysfunction (Zhang et al. 
2021).

Cellular programming and obesity
It is concerned the cellular programming and obesity 
under the unifying umbrella of epigenetic regulation. 
Firstly, adipogenesis, the process by which preadipocytes 
differentiate into adipocytes, is a tightly regulated 
event influenced by epigenetic modifications. Aberrant 
epigenetic regulation can lead to an imbalance in 
adipocyte differentiation and function, contributing 
to obesity. Dysregulation in cellular programming can 
lead to an excess of adipocyte formation, contributing 
to obesity, such as leptin can regulate Plin5 M6A 
methylation by promoting FTO to affect the lipid 
metabolism and energy consumption (Wei et  al. 2021). 
This includes hyperplasia (increase in fat cell number) 
and hypertrophy (increase in fat cell size).

Secondly, there is growing evidence to suggest that 
epigenetic marks can be inherited across generations, 
potentially influencing the susceptibility to obesity, 
i.e., Maternal obesity enhanced Zfp423 expression and 
adipogenic differentiation during fetal development, at 
least partially through reducing DNA methylation in the 
Zfp423 promoter, which is expected to durably elevate 
adipogenic differentiation of progenitor cells in adult 
tissue, programming adiposity and metabolic dysfunction 
later in life (Yang et al. 2013).
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Thirdly, cellular reprogramming technologies, such as 
the induction of pluripotency, offer a promising avenue 
for reversing the pathogenic programming associated 
with obesity. By reprogramming white adipose tissue 
(WAT) to a brown adipose tissue (BAT)-like state, it 
is possible to enhance energy expenditure and reduce 
adiposity (Boström et al. 2012). This approach improves 

our understanding of epigenetic regulation to modulate 
metabolic health.

Fourthly, the development of targeted epigenetic drugs, 
such as DNA methyltransferase inhibitors and histone 
deacetylase inhibitors, provides a novel therapeutic 
strategy for obesity management. These compounds can 
modulate the epigenetic landscape of adipose tissue, 

Fig. 1 The impact of environmental factors on epigenetic programming for obesity. Environmental factors like poor maternal diet, chronic stress, 
or infection can disrupt the endocrine system, increasing pro‑inflammatory cytokines, stress hormones, and metabolic changes (glucose, insulin, 
free fatty acids). These maternal responses also impact placental development and function, changing energy metabolism, lipid metabolism, 
oxidative stress, growth factors, and methyl donors (folate, choline). Additionally, Trim28 haploinsufficiency causes obesity by disrupting Peg3 
and Nnat in an imprinted gene network. These factors, individually or combined, influence fetal somatic and germ cell epigenetic programming
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potentially normalizing aberrant gene expression patterns 
that contribute to obesity, i.e., miRNA-seq analysis of 
brown fat revealed a strong role for miRNAs in the 
downregulation of central metabolic processes necessary 
for metabolic rate suppression, and highlighted miRNAs 
that could be inhibited by antagomiRs to promote brown 
fat activity in potential obesity treatments, or that could 
be used to replicate torpor in non-hibernating mammals 
(Logan and Storey 2021).

Fifthly, the identification of epigenetic biomarkers in 
obesity offers a window into the molecular mechanisms 
underlying this condition. For instance, differential DNA 
methylation at specific loci has been associated with 
obesity and related metabolic disorders, providing a 
potential diagnostic and therapeutic target, and Andrade 
et  al. reported that DNA methylation patterns can 
potentially discriminate between metabolically unhealthy 
overweight/obesity  (MUHO) and metabolically healthy 

overweight/obesity (MHO), then provide new clues into 
why some people with obesity are less susceptible to 
dysglycemia (Andrade et al. 2021).

Reprogramming and the potential for reversing 
obesity
Cellular reprogramming refers to the process of chang-
ing a cell’s identity, often involving the erasure or modi-
fication of established epigenetic marks. Techniques 
used in cellular reprogramming include the induction of 
pluripotency, where differentiated cells are reverted to a 
more stem cell-like state (Fig. 2). In the context of obesity, 
reprogramming strategies focus on reversing the patho-
genic adipogenic programming. For example, induc-
ing a shift from WAT, which stores fat, to beige or BAT, 
which burns fat through thermogenesis, is a promising 
therapeutic avenue (Ong et al. 2020). This involves repro-
gramming cells to express genes associated with BAT-like 

Fig. 2 Reprogramming somatic cells to a pluripotent state and differentiation into functional cell types. In somatic nuclear transfer, a somatic 
cell nucleus is reprogrammed by placing it into an enucleated egg, using factors in the egg’s cytoplasm, which can lead to cloning. In cell fusion, 
somatic cells fuse with stem cells, creating hybrids with a pluripotent phenotype, shown by reactivation of pluripotency genes and the ability 
to form chimeric embryos. In inducing pluripotency, somatic cells are reprogrammed into iPSCs or CiPSCs, which can differentiate into functional 
cell types (neurons, B cells, hepatocytes, cardiomyocytes). Methods include microRNA delivery (nanoparticles, viral vectors, liposomes), paracrine 
signals (cytokines, inhibitors, growth factors), physical stimuli (electrical, mechanical), small‑molecule compounds, and gene transcription factors 
(Oct4, Sox2, Klf4, C‑myc)
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functions, for instance, glutamine activates thermogenic 
adipocyte differentiation and uncovers an unexpected 
role of C/EBPb-Prdm9-mediated H3K4me3 and tran-
scriptional reprogramming in adipocyte differentiation 
and thermogenesis (Pan et al. 2023).

Epigenetic reprogramming techniques also aim to alter 
the expression of obesity-associated genes, potentially 
reducing adiposity and improving metabolic profiles 
(Dalgaard et  al. 2016). Interventions may target specific 
histone modifications, non-coding RNAs and key genes 
involved in adipogenesis (Table 1).

Chemical reprogramming and small‑molecule 
compounds
Recent research reveals that the combinations of small-
molecule compounds can reprogram human somatic 
cells into chemically induced pluripotent stem cells 
(CiPSCs). Unlike plasmid and viral transfections that 
require exogenous regulatory mediators, potentially 
integrating external factors and posing safety risks, 
the chemically induced methods are safer and easier 
to operate. CiPSC processes are more controllable 
and standardizable, advancing regenerative medicine. 
Chemical reprogramming considers both signaling 
pathway regulation and epigenetic effects in selecting 
compounds (Mitchell et al. 2024).

The use of small-molecule compounds in 
reprogramming offers several advantages over traditional 
methods. These compounds can target specific epigenetic 
modifiers, such as histone deacetylases (HDACs) or DNA 
methyltransferases, to facilitate the remodeling of the 
epigenome during reprogramming. Additionally, small 
molecules can modulate key signaling pathways involved 
in pluripotency and cell fate determination, such as the 
Wnt, TGF-β, etc. (Pappas et al. 2020). Some examples of 
small molecules used in chemical reprogramming include 
Scriptaid, an HDAC inhibitor that improves chromatin 
reprogramming after nuclear transfer (Macedo et  al. 
2022); 5-Azacytidine, a DNA methyltransferase inhibitor 
that enhances DNA demethylation and activation of 
pluripotency genes (Albany et  al. 2017); CHIR99021, 
a specific inhibitor of GSK3β, induces Tcf7l1 protein 
degradation, which facilitates the maintenance of an 
undifferentiated state in mouse embryonic stem cells 
(Yu et  al. 2024). Therefore, the combination of these 
and other small molecules can synergistically promote 
reprogramming by targeting multiple epigenetic and 
signaling pathways simultaneously.

Noticeably, chemical reprogramming, while offering 
a great advantages over traditional reprogramming 
methods, is not devoid of challenges and limitations, 
whose key points are outlined in Table 2.

Advanced technologies for investigating 
epigenetic modifications
Current methods investigating epigenetic modifications 
in cell programming/reprogramming include high-
throughput sequencing technologies, reduced 
representation bisulfite sequencing (scRRBS), single-
cell DNA ChIP-seq, and single-cell RNA-seq (scRNA-
seq). These technologies elucidated transcriptional and 
epigenetic (chromatin) level regulatory processes in cell 
differentiation (Schmolka et  al. 2015; Stuart and Satija 
2019).

Single-cell technologies have revolutionized our 
understanding of cellular heterogeneity and the dynamics 
of epigenetic regulation during development and 
reprogramming. scRNA-seq allows for the profiling of 
gene expression at the individual cell level, providing 
insights into the transcriptional changes that occur 
during cellular transitions (Yue et  al. 2024). Similarly, 
single-cell epigenomic techniques, such as single-cell 
DNA methylation and single-cell ATAC-seq, enable the 
mapping of DNA methylation and chromatin accessibility 
patterns in individual cells, respectively (Danese et  al. 
2021). These advanced techniques have revealed the 
complex and dynamic nature of epigenetic regulation 
during cellular reprogramming, for example, studies 
using single-cell approaches have identified distinct 
epigenetic states and trajectories during iPSC generation, 
highlighting the heterogeneity and stochasticity of the 
reprogramming process (Wang et al. 2022).

Other methods for investigating epigenetic regulation 
in cell programming/reprogramming include the follow-
ing approaches, CRISPR-Cas9 and other genome editing 
tools are used to modify specific epigenetic regulators 
and study their effects on cellular plasticity and the tar-
geted mutagenesis (Yuan et  al. 2020); Electrophoretic 
mobility shift assay (EMSA) is analyzed for protein–DNA 
interactions to identify transcription factors involved 
in epigenetic regulation (Kalra et  al. 2022); Candidate 
gene ChIP is applied to investigate histone modifica-
tions and transcription factor binding at specific genomic 
loci (Cavalli et al. 2019); real-time fluorescent tagging of 
chromatin structures is showed in visualizing dynamic 
changes in chromatin organization during reprogram-
ming (Sardo et  al. 2017); Somatic cell nuclear transfer 
(SCNT) primary study the epigenetic reprogramming 
in the aspect of cloning and nuclear reprogramming 
(Li et  al. 2022); Cell fusion can explore the epigenetic 
changes that occur when somatic cells are fused with 
pluripotent stem cells (Cantone et  al. 2016); transcrip-
tion factor and microRNA-induced pluripotency may 
analyze the epigenetic changes induced by specific repro-
gramming factors (Krishnakumar and Blelloch 2013). 
Thus, these diverse approaches provide complementary 
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insights into the complex epigenetic mechanisms under-
lying cellular plasticity and reprogramming.

Noticeably, the challenges and limitations associated 
with these approaches are also concerned, i.e., scRNA-
seq generates vast amounts of data, requiring sophisti-
cated bioinformatics tools for analysis. The complexity 
of data processing is difficult for researchers without spe-
cialized computational expertise (Haque et al. 2017). Its 
limitation is sensitive to technical variability, such as dif-
ferences in library preparation and sequencing depth, 
which can introduce biases into the data (Luecken and 
Theis 2019); ChIP requires a significant amount of high-
quality chromatin and is technically demanding, with 
potential for low efficiency in immunoprecipitation, 
especially for histone modifications that are present 
at low abundance (Hu et  al. 2022). Its limitation may 
not be suitable for all cell types or tissues, particularly 
those that are difficult to cross-link or shear, and it may 
not capture the dynamic nature of chromatin interac-
tions (Kelley et  al. 2017); SCNT is technically complex 
and has low success rates. It also raises ethical concerns, 
particularly when applied to human cells. The method 
is limited by the availability of oocytes and the potential 
for reprogramming errors, which can result in abnormal 
gene expression patterns (Shufaro and Reubinoff 2017); 
cell fusion is challenging to control the risk of generat-
ing heterokaryons that do not fully reprogram. Its limita-
tion may not provide insights into the precise epigenetic 
changes that occur during reprogramming, as it involves 
the merging of two distinct cell types (Chen et al. 2006); 
the reprogramming efficiency of transcription factor 
and microRNA-induced pluripotency is variable, and 
the overexpression of transcription factors or micro-
RNAs lead to uncontrolled cell proliferation or tumo-
rigenesis. The limited use of viral vectors for introducing 

reprogramming factors result in insertional mutagenesis, 
and there are concerns about the immunogenicity of 
viral proteins (Masip et al. 2010); identifying the correct 
combination of small chemical molecules that can effec-
tively induce reprogramming is challenging and often 
requires extensive screening. Chemical reprogramming 
may not be as efficient as other methods, and the long-
term effects of small molecules on cellular epigenetics 
and genomic integrity are not fully understood (Wang 
et al. 2023; Liuyang et al. 2023); CRISPR-Cas9 can intro-
duce off-target effects, and the precision of genome edit-
ing is influenced by factors such as guide RNA design and 
delivery methods. The technology requires highly spe-
cific conditions for optimal efficiency, and the potential 
for unintended genomic alterations poses risks for thera-
peutic applications (Tang et al. 2018).

Future directions
The field of epigenetics is rapidly evolving, yet it faces 
several challenges that must be overcome to fully harness 
its potential in clinical applications. Firstly, current 
techniques such as scRNA-seq, ChIP, and bisulfite 
sequencing, while powerful, can be limited by their 
scalability, cost, and the depth of single-cell analysis. 
There is a need for more sensitive and high-throughput 
methods that provide comprehensive epigenomic profiles 
at the single-cell level; secondly, the integration of multi-
omics data (epigenomics, transcriptomics, proteomics) 
presents a significant challenge due to the complexity 
and heterogeneity of biological systems. Developing 
algorithms and computational frameworks that can 
effectively integrate these diverse data types is crucial for 
a comprehensive understanding of cellular states; thirdly, 
the development of more precise and targeted epigenetic 
editing tools is necessary to manipulate specific 

Table 2 The succinct summary of the challenges and limitations of chemical reprogramming

Challenge/Limitation Explanation References

Complexity of Epigenetic Regulation Small molecules may not fully replicate the complex interactions of native cellular 
signals, leading to incomplete reprogramming

Polak et al. (2016)

Off‑Target Effects Specificity of small molecules are compromised, interacting with unintended targets 
and causing unwanted phenotypic changes

Xiao et al. (2021)
Tang et al. (2018)

Scaling Up While controllable and standardizable, scaling chemical reprogramming for large‑
scale production of iPSCs or CiPSCs is challenging and requires optimization

Farzaneh et al. (2017)

Safety Concerns Use of small molecules at high concentrations or over extended periods may lead 
to genotoxicity or uncontrolled cellular proliferation

Hajra et al. (2018)

Efficiency and Consistency Chemical methods are not as efficient as viral or non‑integrating episomal methods, 
with variable reprogramming outcomes

Chen et al. (2024)

Cost and Availability The cost of small molecules and the need for multiple compounds are high, their 
availability and stability under different conditions limit the use

Wang et al. (2023); 
Liuyang et al. (2023)

Understanding of Molecular Mechanisms The mechanisms of small molecules inducing reprogramming are not fully 
understood, which is crucial for optimizing protocols and predicting outcomes

Rehman et al. (2024)



Page 9 of 11Li and Kang  Molecular Medicine          (2024) 30:169  

epigenetic marks in a cell-type-specific manner. This will 
help to avoid off-target effects and improve the safety and 
efficacy of epigenetic therapies; fourthly, the mechanisms 
of transgenerational epigenetic inheritance are not 
fully understood and require further investigation. 
Understanding these mechanisms could have profound 
implications for human health and evolution; fifthly, 
translating epigenetic research into clinical practice 
presents regulatory, ethical, and logistical challenges. It 
is vital to establish standardized protocols and guidelines 
for the clinical application of epigenetic therapies; Sixthly, 
the current state of drug delivery systems, including 
nanoparticles and liposomes, must be improved to ensure 
bioavailability, specificity, and to minimize potential 
side effects; Finally, the influence of environmental and 
lifestyle factors on the epigenome is an emerging area 
of research, on the other hand, the large-scale screening 
has been instrumental in identifying genes and pathways 
susceptible to epigenetic control, particularly in the 
context of adipogenesis and metabolic homeostasis. 
Understanding these interactions could lead to novel 
preventive strategies and interventions.

Conclusion
In summary, understanding the mechanisms behind 
cellular programming and reprogramming provides 
insights into novel therapeutic strategies for obesity. 
By manipulating these pathways, it may be possible to 
develop therapies that not only prevent obesity but also 
reverse its effects by altering the fundamental cellular 
processes involved in fat storage and metabolism, 
including a conversion from harmful fat-storing cells to 
beneficial fat-burning cells.
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