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A Novel Predictive Technique for the MHC Class II
Peptide–Binding Interaction
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Antigenic peptide is presented to a T-cell receptor through the formation of a stable complex with a Major Histocompatibility
Complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide’s capacity to form a
stable complex with a given MHC Class II allele, a technique integral to the strategy of vaccine design. These have previ-
ously incorporated such computational techniques as quantitative matrices and neural networks. We have developed a
novel predictive technique that uses molecular modeling of predetermined crystal structures to estimate the stability of an
MHC Class II peptide complex. This is the 1st structure-based technique, as previous methods have been based on binding
data. ROC curves are used to quantify the accuracy of the molecular modeling technique. The novel predictive technique
is found to be comparable with the best predictive software currently available.

INTRODUCTION

Major Histocompatibility Complex (MHC) Class II mole-
cules are specialized glycoproteins found on the surface of antigen-
presenting cells (APCs). Their role is the presentation of anti-
genic peptides from foreign sources to the receptors of CD4+
T cells. This function forms part of the body’s adaptive immune
response to an invasion by a pathogen. The CD4+ T cells recog-
nize a complex of the MHC Class II molecule and a foreign pep-
tide fragment presented on the APC cell surface. The CD4+ T cells
fall into 2 categories. Inflammatory T cells respond by activating
macrophages to destroy the antigenic material, whereas helper
T cells stimulate B cells to generate antibodies specific to the
antigen. In the Class II pathway, peptides cleaved from extracel-
lular proteins either enter APCs via macrophage vesicles or are
internalized by phagocytosis (1). The peptides are colocalized
with MHC Class II molecules in intracellular membrane-bound
vesicles called MIICs (MHC Class II compartments). Once inside
the MIIC, the antigenic peptides will bind with MHC Class II
molecules to form 1:1 complexes. These are then transported to
the cell surface through direct fusion of the MIIC with the
plasma membrane. Once on the cell surface, an MHC-peptide
complex must interact with a T-cell receptor to stimulate a reac-
tion. A significant number of interactions between T-cell recep-
tors and MHC Class II peptide complexes will trigger a cas-
cade of intracellular signals that depend on the identity of both
the T cell and the APC.

A peptide’s ability to stimulate a T-cell response is depend-
ent partly upon its ability to from a stable complex with an MHC
Class II molecule (2). Most individuals will express between 6 to
8 alleles of MHC molecules, all of which are capable of binding
peptides. Polymorphism and polygeny both contribute to the

variety of molecular structures so that a large range of peptides
can be bound and displayed on the cell surface. A single MHC
allele may bind hundreds or thousands of different peptides,
and binding such a broad spectrum requires a compromise
between high affinity and broad specificity. It is known that the
presence or absence of a given residue at a given position in the
binding groove can be desirable to facilitate binding. However,
it is entirely possible that the characteristics of the whole sequence
are far more crucial to binding than the identity of the individ-
ual residues. Various predictive techniques have been devel-
oped to estimate a peptide’s capacity to form a stable complex
with a given MHC allele. Polymorphic variations cause different
allelic variants of the MHC Class II molecule to have varying
affinities for a given peptide. That a limited repertoire of MHC
molecules can bind such a large variety of antigenic peptides
implies that the recognition motif must be relatively unspecific;
hence it is difficult to predict whether a given peptide will or
will not bind a given allele.

The MHC Class II peptide–binding groove is composed of 2
α-helical regions that form a long cleft binding a single peptide
unit overlaid with an antiparallel β-pleated sheet (3). The pep-
tide is bound into the groove by a series of hydrogen bonds (4)
and also by the protrusion of the side chains into small cavities
along the peptide-binding site. These cavities are known as
pockets, and they define a core region of 9 amino acids known
to be essential for MHC binding. Pocket 1 (corresponding to
position 1 in the core region) is a large hydrophobic cavity near
the peptide N terminus that binds hydrophobic side chains,
particularly aromatics such as tyrosine and phenyalanine (5). It
appears to be the most crucial determinant of the binding inter-
action whereas pockets 4, 6, 7, and 9 are more permissive in
their binding (6).
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Sequence-based computational approaches such as quanti-
tative matrices (7–8) and neural networks (9) have had limited
success in developing predictive algorithms. Sequence-based
prediction systems weigh peptide residues by their independent
positions within the binding groove. We present here a novel
predictive method that uses molecular modeling of predeter-
mined crystal structures to estimate the stability of an MHC
Class II peptide complex by measuring the interaction energy of
the 2 molecules. This allows for the consideration of the whole
peptide structure rather than its component residues and is
therefore a structural rather than a sequence-based technique.

MATERIAL AND METHODS

Simulated annealing is a molecular dynamics technique that
can be used to determine the global energy minimum of a prede-
termined crystal structure (10). We have developed this technique
as a novel method of modeling the MHC Class II peptide–binding
interaction. The system is heated up very rapidly and then very
gradually kinetic energy is removed until there is none remaining
in the system (11). At sufficiently high temperatures all torsions
show high rotational frequencies, and thus the structure is able to
overcome large energy barriers and move freely between minima
in phase space. If the process is continued, the structure is gradu-
ally forced to move to lower energy conformations until it becomes
trapped near the global minimum. A structure of the MHC Class II
allele DR1-0101 bound to an endogenous peptide (PDB code:1AQD)
(12) has been elucidated by X-ray diffraction at a resolution of
2.45Å. The structure was remodeled using the crystallographic
modeling program ‘O’ (13) to generate the MHC alleles of DR1-
0401, DR1-0301, and DR1-1101. These 4 alleles are all common in
the Caucasian population. The polymorphic side chains of the
MHC were mutated and modeled into rotamer conformations
common for each residue. Energy minimization was then carried
out on the structures using the AMBER Version 6 suite of programs
(14). The AMBER force field 94 (15) was used to define the atomic
interactions. Hydrogen atoms were added to the structure, and the
system was fully solvated using water molecules in the TIP3 model
(16). This function was performed by the LEaP program (14). All
atoms in the simulation were explicitly represented. The energy of
the solvated molecular complex was minimized using a steepest
descent method that continued for 5000 one-femtosecond time
steps or until the root mean square deviation between successive
time steps had fallen below 0.01Å. The peptides were then remod-
eled and annealed by raising the temperature of the system from
0 to 500 K for a period of 4000 time steps and maintaining the sys-
tem at that temperature for a further 3000 time steps. The system
was then cooled to 0.2 K over a period of 23000 time steps before
being rested at 1 K for a further 30000 time steps. Both the mini-
mization and the annealing were performed using the sander pro-
gram (14). The simulation conditions were optimized using an
experimental binding data set (17) from annealing temperatures
ranging from 300 to 1000 K. Increasing the acidity of the binding
environment was found to be generally deleterious to the accuracy
of the simulation. The approximate CPU of each individual simu-
lation was 8 to 9 h on a 6-processor R12000 SGI Origin 2000.

Following annealing, the energetic interaction between the
MHC molecule and the bound peptide was analyzed using the anal
program (14). This calculates the enthalpic interaction energy
between the 2 molecules. A low-binding energy indicates a stable
complex, hence there is a good chance that the peptide could be dis-
played in sufficient quantities on the surface of the APC to stimulate
an immune response. We have used this energetic calculation as the
basis of a system capable of quantifying the binding stability of the
peptide and thus acting as a predictive technique. The accuracy of
the simulation was optimized by varying conditions such as anneal-
ing temperature, cooling time, and pH to produce energetic outputs
that correspond most strongly with the experimental data available.

To evaluate the viability of simulated annealing as a predic-
tive mechanism for the MHC Class II binding interaction, it is
necessary to provide some means of comparisons to the experi-
mental data set. Two sets of IC50 binding data were selected to
provide an effective assessment of the predictive technique
using Relative Operating Characteristic (ROC) curves (18). The
4 possible predictive outcomes are described in a contingency
table (Table 1). The 1st data set was generated from the subfrag-
ments of a bee venom protein (19) and the 2nd was generated
from a data set of peptides taken from the malarial parasite,
Plasmodium falciparum, and the fungi, Candida parapsilosis and
Candida albicans (20). Both data sets contained inhibitory con-
centraction (IC50) binding data for the MHC Class II alleles DR1-
0101, DR1-0401, DR1-1101, and DR1-0301, the only alleles for
which there are matrices available in both the quantitative
matrix-based programs SYFPEITHI (7) and TEPITOPE (8). The
overall accuracy of the simulated annealing technique was then
measured against both these to see which was the most precise
and reliable predictive system.

RESULTS

ROC Curves
To assess effectively the quality of the various techniques, it is

necessary to be able to compare both their sensitivity and speci-
ficity at predicting binding sequences. ROC curves are a diagnos-
tic technique requiring data that may be divided into positive and
negative results. To make this distinction, it is necessary to have a
defined threshold for the data. A positive and a negative test set
for MHC Class II binding has been generated from experimentally
determined IC50 binding data. Those peptides sequences that bind
with a concentration < 1000nM were considered to be able to gen-
erate a stable complex with a given MHC Class II molecule and are
therefore positive binders. Those with a concentration > 1000nM
are therefore considered to be negative binders (21). A contingency
table can illustrate the comparison between the known binders

Table 1. Contingency table to predict binding/nonbinding of peptides

Known Binders Known Nonbinders

Predicted Binders True Positive False Positive

Predicted Nonbinders False Negative True Negative
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(those determined through experimentation) against the predicted
binders (those calculated using predictive software).

It is the ratios of the diagonal terms for the column total that
allow us to determine the quality of the predictive technique. It is
necessary to calculate the specificity (Sp) and sensitivity (Se) of the
data set. These are defined as

Specificity (Sp) = Number of true positives/Number 
of peptides in positive test set

and

Sensitivity (Se) = Number of true negatives/Number 
of peptides in negative test set.

The generation of ROC curves allows for a consideration of
the technique’s capacity to maximize both the true positive pro-
portion (specificity) and true negative proportion (sensitivity). If
a high cutoff point is set, then the majority of peptides will be pre-
dicted to be nonbinders, thus reducing the number of true and
false positives so that the sensitivity increases while specificity
decreases. The opposite is true if the cutoff point is low, the num-
ber of true and false negatives is reduced so that sensitivity
decreases and specificity increases. A ROC curve may be gener-
ated by plotting specificity against sensitivity for a range of val-
ues calculated by varying the cutoff point.

The accuracy of the prediction technique may be quantified
by measuring the area under the ROC curve known as the a value.
The a value varies from 0.5 (indicating an entirely random pre-
diction) to 1.0 (indicating a perfect prediction system) (Figure 1).

Both data sets featured peptides between 17 and 19 amino
acids in length. The termini were unbound, and because the bind-
ing data does not indicate which alignment of the peptide within
the groove produces the most stable complex, it was necessary to

compute a binding score for every possible alignment of every
peptide within the data sets. From the set of binding scores gen-
erated for each alignment of a peptide, the highest score was
nominated as the predicted binding alignment, and the value for
that alignment was recorded for the peptide. From these values, a
set of scores was obtained for each predictive method with each
data set and was used to generate a corresponding ROC curve
(Figures 4 to 10).

Catherine Texier’s group used a recognized allergen, the bee
venom phospholipase A2, which is used in immunotherapy and
has been observed to cause a T-cell response involving multiple
epitopes (19). Seven alleles expressed prominently within Cau-
casian populations were selected, and binding assays performed
on overlapping subfragments of the bee venom peptide.

It can be observed that the experimental results for DR1-0301
are markedly different from the other 3 alleles and that the predic-
tive success of all 3 techniques is also much lower for this allele. In
the case of the quantitative matrices, this may be due to the
paucity of binding data available for that allele. The valine at posi-
tion β86 represents a significant change in the pocket environment
between DR1-0301 and the other 3 alleles, and it is possible the
molecular dynamics simulations have failed to properly optimize
the parameters for this allele.

Southwood and others performed similar binding assays on
peptide fragments taken from the malarial parasite, Plasmodium fal-
ciparum, and the 2 fungi, Candida parapsilosis and Candida albicans
(20). No significant binding was observed for DR1-0301 and so only
the DR1-0101, DRB1-0401, and DRB1-1101 alleles were analyzed.

The experimental data is unlike that generated by Texier in that
the majority of the sequences do contain an alignment capable of
forming a stable complex with DR1-0101 and DR1-0401. The ROC
curves generated are less consistent than those generated by the
Texier dataset. The DR1-0101 curve is of questionable value as all
but one of the sequences are binders. This unbalances the dataset to
the extent that generating a genuine curve was not possible. The
absence of a curve for SYFPEITHI in the DR1-0401 dataset indicates
that there was no correlation and the results it generated for the
allele were effectively random. Conversely SYFPEITHI proves to be
the most accurate for the DR1-1101 dataset but demostrates mas-

Figure 1. ROC curves corresponding to a values, 0.5, ∼0.75, and 1.0

Table 2. Table of a values for Texier and Southwood data sets

Texier Southwood

DR1-0101 SYFPEITHI 0.678 0.575

TEPITOPE 0.692 0.605

MD 0.755 0.555

DR1-0401 SYFPEITHI 0.600 0.500

TEPITOPE 0.625 0.650

MD 0.680 0.698

DR1-1101 SYFPEITHI 0.750 0.746

TEPITOPE 0.704 0.667

MD 0.688 0.635

DR1-0301 SYFPEITHI 0.678 —

TEPITOPE 0.755 —

MD 0.692 —
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sive inconsistency as a prediction system. The simulated annealing
was the most accurate in 3 of 7 cases and the 2nd most accurate in
1 case; it was the least accurate in 3 cases (Table 2). TEPTIOPE out-
performed SYFPEITHI in 5 of 7 cases. The mean a value of each pre-
dictive system is shown in Figure 2.

DISCUSSION

The most vital determinant of peptide-binding success for
HLA-DR molecules is the binding of the residue located in
pocket 1. The character of pocket 1 is most heavily influenced by
the identity of residue 86 on the β chain. This residue is Gly/Val
dimorphic, valine in the case of DR1-0301 and glycine in the case
of DRB1-0101, DRB1-0401, and DRB1-1101. The presence of a
valine in β86 significantly decreases the size of the binding pocket
relative to the presence of a glycine and thus makes it unfavorable
for aromatic residues such as tyrosine or phenylalanine (Figure 3).
Instead aliphatic residues such as methionine or isoleucine are
favored. It can also be seen how the 2 phenylalanines (α32 and
α54) and single tryptophan (α43) form a hydrophobic barrier at
the mouth of the cavity. The binding pockets 4, 6, 7, and 9 are
much more permissive as to the type of side chain they will
accommodate and do not make a significant contribution to the
binding energy (22). As the binding of the peptide is dependent
on the whole length of peptide, the interaction is not susceptible
to disruption by a single inappropriate side chain.

One advantage of simulated annealing over quantitative
matrices is that it does not require the implicit assumption that
the peptide residues bind independently of each other. This is not
known to be the case as adjacent side chains in a peptide
sequence do interact, and the directions of the Cα-Cβ bond will
change depending on the neighboring residue (23). Therefore the
energy contribution of a residue at a given position will not be
the same in peptides of different sequences and a prediction tech-
nique that allows an analysis of the complete binding groove
should have an intrinsic advantage over a system that considers
the residues individually.

Although no technique proved to have the degree of precision
necessary to be regarded as a reliable predictive mechanism, the
simulated annealing shows great potential for improvement. The
interaction energy calculated from simulated annealing was
found to equal the best of the public domain sequence-based
quantitative matrices for both accuracy and consistency, giving
validity to the technique as a predictive algorithm. The technique
will, however, need to be improved if it is to surpass the current
software. The raw binding data suggests that the technique has a
greater difficulty in eliminating false positives than false nega-
tives. Thus whereas a peptide sequence that is not known not to
bind experimentally may be predicted to form a stable complex,

Figure 4. ROC values of Texier DR1-0101 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.

Figure 5. ROC values of Texier DR1-0401 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.

Figure 2. Comparative a values of MHC Class II predictive techniques

Figure 3. The glycine/valine dimorphism of the DR1-0101 pocket, remod-
eled from PDB structure laqd.



ARTICLES

2 2 4 | M O L E C U L A R  M E D I C I N E  |  S E P T E M B E R – D E C E M B E R  2 0 0 3 V O L U M E  9 ,  N U M B E R  9 – 1 2

there are no occurrences of an experimental binder failing to form
a stable complex in the simulations. This is encouraging as the
most important use of the predictive software is to filter a given
sequence or genome to identify probable T-cell epitopes for fur-
ther experimental research. In this situation, accepting a sequence
incorrectly is preferable to eliminating one incorrectly.

There are several problems in using simulated annealing as a
predictive technique. First, the computational requirements for
running a set of simulations are large, and a great deal of time is
required to model the structures. This limits the number of struc-
tures that can be analyzed in a given period of time and compares
very poorly with the near instantaneous results than quantitative
matrices can produce. In addition, the results are not directly
based upon any experimental data and can only be considered
valid if the modeled environment in which the binding occurs is
considered accurate enough. A possible source of error is the
starting position of the peptide in the simulation. In vivo, the pep-
tide must enter the binding groove of an empty MHC molecule
and assume the polyproline type II helical formation. The simula-
tion starts from the position of the peptide having already formed
a helix within the groove. Therefore, all steric constraints that
would prohibit the peptide both from entering the groove or
forming into a helix are not accounted for by the simulation. If
possible repulsive forces are not being represented, that would
account for the simulation’s failure to eliminate false positives.

A possible way to improve the quality of the simulation
would be to incorporate the entropic estimates, allowing the cal-

culation of the free energy of interaction rather than just the
enthalpy. It is entirely possible that the unexpectedly high ener-
getic values for nonbinding sequences may be caused by a fail-
ure to incorporate the entropic contribution. The entropic
energy may be divided into the change to the conformational
entropy formation of the complex, the electrostatic contribution
to the solvation free energy, and the hydrophobic contribution to
the solvation free energy. Of these, the change in the conforma-
tional entropy may be considered the most important because it
relates directly to the residues of the bound peptide. However,
computation of the harmonic potential of the side chains will
require the use of normal mode analysis, which would cause a
large increase in the computational demands of the simulation.
The simulations already require considerable time and comput-
ing power to run in comparison to the quantitative matrices.
Incorporating the entropic contribution would further compro-
mise the simulated annealing as a practical predictive algorithm.
The application of GRID technology (24) to run simulations in
parallel would greatly reduce the required run time for a large
data set.

In this study the technique of simulated annealing does
not prove itself to be a precise method of predicting MHC-
binding affinity, although it does compare well with the best
currently available public domain software. Whereas the

Figure 6. ROC values of Texier DR1-1101 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.

Figure 7. ROC values of Texier DR1-0301 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.

Figure 8. ROC values of Southwood DR1-0101 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.

Figure 9. ROC values of Southwood DR1-0401 predictions. = random;
= SYFPEITHI; = TEPITOPE; = MD.
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quantitative matrix approach seems to have an inherent limi-
tation in that it considers the binding pockets individually
rather than the sequence as a whole, simulations have the
potential to generate a plausible model of the whole MHC-
peptide interaction. Currently, the technique is limited because
of its demands on the computational system, but the increas-
ing power and integration of computer systems may consider-
ably reduce the necessary runtime. In the future, we shall
develop techniques to include the entropic contribution in the
calculation of the MHC-peptide interaction in the hope that
they will significantly increase the accuracy of the prediction
technique. We also hope to improve the technique by simulat-
ing each peptide in both the groove and free solution as a way
to calculate its true affinity for the groove.
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