
INTRODUCTION
Genetic heterogeneity describes the bi-

ological complexities whereby appar-
ently similar inheritable characters result
from different genes or different genetic
mechanisms. In clinical settings, genetic
heterogeneity refers to the presence of a
variety of genetic defects that cause the
same disease as defined in the current
disease classifications (1), a finding com-
mon to a list of complex human diseases
such as cardiovascular disease, cancer,
diabetes, autoimmunity, psychiatric ill-

ness, and many others, and even
Mendelian disorders (2). Genetic hetero-
geneity has profound influences on mod-
ern clinical practice and biomedical re-
search of common human disease. In the
basic genomic sciences, it is a thorny
issue for genetic linkage analysis (3,4),
high-density admixture mapping of dis-
ease genes (5), and microarray data anal-
ysis (6). More accurate phenotyping of
genetic heterogeneous samples, either by
explicitly modeling stratified population
structure [for example, due to racial dif-
ference (7)] or by peeling off hidden ge-

netic heterogeneity (4), has been demon-
strated to result in increased power to
map disease genes. In clinical practice, it
is increasingly recognized that our cur-
rent categorization of human diseases
still lumps together molecularly distinct
diseases (for example, cancers) with the
same clinical phenotypes (8). Because the
clinical behaviors of some complex dis-
eases such as cancers cannot be ac-
counted for completely by morphological
or pretreatment clinical characteristics,
patients with the same phenotype, which
might be caused by different underlying
molecular mechanisms, often show dif-
ferent responses to drug treatment and
have different prognoses. Thus, a central
challenge to study and to improve effi-
cacy in treatment of complex diseases is
to resolve their molecular heterogeneity
mechanisms (9).

Genomic-scale molecular data rapidly
accumulating from biomedicine domains
offer opportunities to peel off genetic
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Discovering molecular heterogeneities in phenotypically defined disease is of critical importance both for understanding path-
ogenic mechanisms of complex diseases and for finding efficient treatments. Recently, it has been recognized that cellular phe-
notypes are determined by the concerted actions of many functionally related genes in modular fashions. The underlying mod-
ular mechanisms should help the understanding of hidden genetic heterogeneities of complex diseases. We defined a putative
disease module to be the functional gene groups in terms of both biological process and cellular localization, which are signifi-
cantly enriched with genes highly variably expressed across the disease samples. As a validation, we used two large cancer
datasets to evaluate the ability of the modules for correctly partitioning samples. Then, we sought the subtypes of complex dif-
fuse large B-cell lymphoma (DLBCL) using a public dataset. Finally, the clinical significance of the identified subtypes was verified
by survival analysis. In two validation datasets, we achieved highly accurate partitions that best fit the clinical cancer pheno-
types. Then, for the notoriously heterogeneous DLBCL, we demonstrated that two partitioned subtypes using an identified mod-
ule (“cellular response to stress”) had very different 5-year overall rates (65% vs. 14%) and were highly significantly (P < 0.007) cor-
related with the clinical survival rate. Finally, we built a multivariate Cox proportional-hazard prediction model that included 4
genes as risk predictors for survival over DLBCL. The proposed modular approach is a promising computational strategy for peel-
ing off genetic heterogeneities and understanding the modular mechanisms of human diseases such as cancers.
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heterogeneities at the molecular level.
The promise for molecular classification
and discovery of hidden disease sub-
types has been realized in successful
stratification of diffuse large B-cell lym-
phoma (DLBCL) (8), based on the ex-
pression profiles of thousands of genes
measured by microarrays and using
computationally clustering algorithms,
an approach aimed at defining geneti-
cally homogeneous novel cancer sub-
types among cancer patients. Although
traditional clustering analysis of the ex-
pression profiles of individual genes is a
successful approach to discovering dis-
ease subtypes, several significant short-
comings in this analysis strategy remain.
First, a traditional clustering analysis
often groups patients with overall simi-
lar gene expression profiles by the com-
plete set of thousands of genes repre-
sented on the arrays, and thus has low
ability to reflect the influence of the most
disease-relevant genes. When a large
number of irrelevant or weakly relevant
genes greatly influence the clustering re-
sults, spurious structure of disease ex-
pression patterns may appear out of the
high dimensionality of data. Second, and
more important, because a traditional
clustering analysis rarely uses the cur-
rent gene functional knowledge to the
groupings, the biological relevance and
interpretation of the patient groupings
by the traditional clustering analysis are
often unclear. It is obviously of great
value if we can discover and elaborate
disease subtypes at the functional mod-
ule level by explicitly yielding function-
ally compact gene sets with coherent ex-
pression across cancer samples.

A module describes a biologically co-
herent set of genes that tend to express
and perform their highly integrated cel-
lular functions in somewhat isolated and
interactive modular fashions (10,11), a
phenomenon that has inspired studies
for elucidating the high-order pathogenic
mechanisms of complex diseases (12,13).
For example, Mootha et al. (12) showed
that the modest but coordinate disease-
associated changes of a set of function-
ally related genes could be identified

even in the cases where the expression of
individual genes was not significantly
different. Segal et al. (14) defined “mod-
ules” as biologically meaningful gene
sets that are conditionally activated or re-
pressed across a wide variety of cancer
types, and identified some modules
deregulated in cancer. Our recent study
demonstrated that cancer types can be
precisely and robustly classified based
on functional modules enriched with
differentially expressed genes (15).
Nevertheless, nothing in the literature
exists for fully exploiting the power and
value of the modular approaches to sys-
tematically dissecting the molecular het-
erogeneities of human diseases.

Here, we further proposed a module-
based clustering approach for dissection
of cancer heterogeneity by using the dis-
ease-relevant functional modules. First,
we selected differentially expressed
genes under the disease conditions. It
should be noted that algorithms such as
t test or F test are not proper for selecting
genes under the disease heterogeneity
(subtypes), because the validity of these
tests relies on accuracy in describing the
disease population structure by the cur-
rent clinical disease categorizations, i.e.,
lack of phenotypic heterogeneity. Hence,
we took a robust metric, the overall vari-
ability of gene expressions, to guide gene
selection. Genes with top-ranked expres-
sion variations across samples, which ex-
plain most of the total variances poten-
tially contributed by known or unknown
factors (for example, the hidden disease
subtypes), were selected as “feature
genes.” This metric has been adapted by
several researchers for initial gene selec-
tion (16,17). Then, we identified cellular-
localized biological processes enriched
with feature genes as “putative signature
modules.” Finally, we partitioned sam-
ples to seek for hidden disease subtypes
using the expression profiles of the genes
annotated to these well-characterized
modules. As subcellular localization of
genes and proteins is a key functional
characteristic determining their ability to
interact with other proteins and small
metabolites in their local environment,

we characterized the modules in terms of
biological processes and cellular localiza-
tions based on Gene Ontology (GO) (18).
GO is a comprehensive ontological sys-
tem describing gene functions in three
directed acyclic graphs: biological pro-
cess (BP), molecular function (MF), and
cellular component (CC). In numerical
analyses, we first validated the proposed
modular approach for accurately parti-
tioning cancer phenotypes using two
publicly available large cancer datasets.
Then, we used the approach to explore
the hidden subtypes of a notoriously het-
erogeneous phenotype, DLBCL (8). The
results demonstrated that two parti-
tioned subtypes using an identified func-
tional module had very different 5-year
overall rates, and the partition was
highly significantly correlated with the
clinical survival rate.

MATERIALS AND METHODS

Description of Datasets
We used two large datasets to evaluate

the goodness-of-fit performance of the
proposed modular approach. The liver
cancer dataset (19) consists of 23,075
cDNAs measured in 105 primary hepato-
cellular carcinoma (HCC) samples and 76
normal liver tissues, a typical large dis-
ease-control example. Because the HCC
phenotype is specifically defined, it can
be reasonably assumed that the original
tissue phenotypes were well character-
ized. We further explored the reliability
of the proposed modular approach for
partitioning between various types of
cancers by analyzing a classical multiple-
class dataset, NCI60 (20), which consists
of 9,703 cDNAs measured in 60 cell lines
of 9 cancer types. The data for non–small
cell lung carcinoma and breast tumors
were not used in this study because of
the possible existence of heterogeneous
hidden subtypes (20) or misassigned la-
bels (21) for their samples. The data for
prostate cancer were also excluded be-
cause they consisted of only 2 samples.
Thus a subset of the NCI60 data (41 sam-
ples of 6 cancer types) was used in this
study, including 8 samples of renal can-
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cer (RE), 7 of colon cancer (CO), 6 of
leukemia (LE), 8 of melanoma (ME), 6 of
ovarian cancer (OV), and 6 of central
nervous system cancer (CNS). After eval-
uating its ability for accurately partition-
ing the two diverse data structures, we
used the proposed modular approach to
peel off the hidden subtypes of DLBCL,
which has been demonstrated to be noto-
riously heterogeneous (20,22,23). The
third dataset consists of 4,026 cDNAs
measured in 42 DLBCL samples (8). We
verified the identified hidden partitions
(DLBCL subtypes) by survival analysis
of the clinical profiles of patients in each
molecular-based partition.

For each of the above cDNA microar-
ray datasets, we screened out clones with
missing data in more than 5% of arrays
and applied a base-2 logarithmic trans-
formation. As in Alizadeh et al. (8), we
imputed remaining missing data with
zeros. Each experiment was standardized
to zero median across the genes. The
datasets of HCC, NCI60, and DLBCL fi-
nally comprised 10,516, 6748, and 2751
genes, respectively.

Selecting Putative Signature Modules
from Gene Ontology

Most current approaches to defining
modules use only BP categorization of
GO. However, a BP category may actu-
ally encompass the genes involved in
distinct processes occurring in different
cellular compartments, and genes even
within the same BP may show a clear ex-
pression distinction with respect to their
subcellular localizations (24,25).
Therefore, to identify modules contain-
ing the consistently coexpressed genes
potentially aroused by the disease condi-
tions, we sorted genes of a BP category
into CCs to form combined categories.
For example, genes whose protein prod-
ucts function in cell adhesion (BP) on
membrane (CC) are accommodated in a
combined GO category. We referred to all
the measured genes annotated to at least
one of the combined categories as “anno-
tated genes.”

For each dataset, the top x percent of
genes with the largest expression vari-

ances were selected as feature genes.
Then, we used a hypergeometric distri-
bution (26,27) to calculate the probability
P of a combined GO category having the
number of annotated feature genes by
chance; a smaller P value corresponds to
a higher likelihood of the feature genes
enriched in the category. We selected cat-
egories with P ≤ 0.001 and kept the cate-
gories containing at least 30 feature
genes to retain enough data for cluster-
ing. Owing to the hierarchical nature of
the GO-structured categories, there are
some redundancies in the selected cate-
gories; for example, BP function descrip-
tion is the same but a general-specific
(for example, parent-child) relationship
lies on the CC functional description. In
such a case, only the combined category
with the child category in cellular com-
ponent ontology was reserved, because
its functional description is more specifi-
cally defined. In the following text, we
refer to such GO categories as a “mod-
ule” for short. The identified modules
should be statistically robust to the dif-
ferences in the criterions for selecting
feature genes because the analysis results
are determined by the joint statistical be-
haviors of sets of genes (27). We demon-
strated the robustness of the modules by
comparing the modules identified at dif-
ferent top percentage levels (x = 10, 15,
20) of feature genes with the largest
variances.

Clustering Samples Based on
Individual Modules

For each identified module, we ex-
tracted the expression profiles of the
measured genes that were annotated to
it. By agglomerative hierarchical cluster-
ing (28), each sample was initially as-
signed to one cluster, then the distances
between all clusters were computed and
the two clusters with the smallest dis-
tance value were merged. Distance com-
putation and merging were repeated
until there was only one cluster left. In
this work, Pearson correlation was used
for the distance metric, and the centered
average linkage method was used for
merging. For the purpose of evaluating

the modular clustering approach, we
adopted the predefined cluster number
in the original data source for pruning
off the hierarchical tree and allocating
the samples into clusters. Because the ex-
pected value of the Rand index is not
constant for random partitions (29), we
used the adjusted Rand index (ARI) (30)
to measure the agreement between the
identified clusters and the original parti-
tions (for example, the clinical sample la-
bels). The expected value of the ARI is 0
when the partitions are drawn randomly,
and the ARI is 1 when two partitions
agree perfectly. A larger ARI dictates a
higher correspondence between two
types of partitions.

One general approach to assess the
significance of the observed ARI for a
module might be to compare the ARI
value with those of the same-sized gene
subsets randomly selected from the
whole microarrays that contained the
genes (and their coexpressed ones) in the
current modules. However, we are more
interested in finding whether the profiles
of the genes in the current modules were
significantly better at clustering than the
gene groups randomly selected from a
null (or contrast) population, where the
gene had no or less functional relation-
ship with the current modules. It is well
known that similarly expressed (coex-
pressed) genes tend to share the same or
similar functions (31,32), and in fact the
gene coexpression information is often
used for predicting gene functions
(33,34). Thus, we constructed the null
gene population using the silence genes
among all the annotated genes from the
original expression profiles, after exclud-
ing (i) the genes annotated to the identi-
fied modules and (ii) the genes signifi-
cantly coexpressed with at least one gene
in the identified modules. Here, two
genes were defined as coexpressed when
the absolute value of Pearson correlation
coefficient (γ) of their expressions was
larger than a threshold corresponding to
the significance level P ≤ 0.005, deter-
mined by using 10,000 gene pairs ran-
domly sampled from the original expres-
sion profiles.
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Then, for each identified module, 1000
gene subsets of the same size as the
module were randomly sampled from
the null population. Applying the same
clustering procedure to the 1000 random
gene subsets, we set the P value of the
ARI of the module as the fraction of 1000
random subsets having ARIs larger than
that of the module. The P value based on
such randomizations was used to assess
whether the observed ARI for a module
was achieved by chance or, in a more
specific sense, whether the module was
better at clustering (that is, more likely
relevant to the phenotypic partitions)
than gene subsets that were less likely to
be of close functional relationship with
the identified modules.

Clustering Based on Multiple Modules
Some samples can be possibly misallo-

cated by using one or a few modules.
One robust way to get improved parti-
tion results is to decide samples’ labels
in a collectively voting manner, by fus-
ing the results from the individual mod-
ules. Here, for each sample, based on its
membership labels obtained from differ-
ent modules, we applied a simple major-
ity rule to determine a sample’s mem-
bership. If the sample had the highest
votes across several classes, we ran-
domly assigned one of the class labels to
the sample.

Survival Analysis
To verify the clinical significance of the

identified hidden DLBCL subtypes, we
estimated survival curves by Kaplan-
Meier product-limit method and as-
sessed the differences between the sur-
vival curves of the subtypes of DLBCL
patients by log-rank test (35). To con-
struct a model for predicting the overall
survival time, univariate Cox proportion-
hazards model (36) was used to deter-
mine the significance (at P ≤ 0.05) of the
effects of the genes annotated to the
identified module or modules on the pa-
tients’ survival months. Subsequently,
genes past the above threshold were re-
analyzed using a multivariate Cox pro-
portional-hazards regression model, with

the overall survival months as the de-
pendent variable. Wald χ2 test was used
to determine the significance of each pre-
dictor’s hazard toward the survival time.

RESULTS

Validation of the Proposed Modular
Approach Using Two Large Microarray
Datasets

In the liver cancer dataset, we identi-
fied 41 combined categories significantly
(P ≤ 0.001) enriched with 10% top-ranked
genes with the largest expression vari-
ances. When two combined categories
had the same BP function description
and their CC descriptions were of a gen-
eral-specific relationship, only the com-
bined category with the more specific CC
description was retained. For example,
the combined category, “BP: develop-
ment” and “CC: cellular component,”
was removed because a more specifically
defined module (“BP: development” and
“CC: extracellular”) could be identified.
It should be noted that the purpose for
removing some redundant modules was
the promise of finding a set of more com-
pact and more specific functional mod-
ules that would provide sufficient infor-
mation for characterizing cancer
samples. The redundant modules that
overlapped in one or two dimensions
with the selected ones were often highly
enriched with feature genes, too, sug-
gesting that they were also good candi-
dates for separating disease samples. For
example, based on the gene expression
profiles in the module of “BP: develop-
ment” and “CC: cellular component,” an
ARI of 0.732 was obtained.

After the redundancy treatment, six
modules were left for the following
analysis. We used the expression pro-
files of the measured genes annotated in
each of the six modules to partition the
samples. The clustering results based on
each of the six modules agreed well
with the original clinical labels, and the
observed ARIs were 0.830, 0.871, 0.892,
0.790, 0.713, and 0.850. The average ARI
for the six modules was 0.824 (± 0.065),
and the module “BP: cell growth and/or

maintenance” occurring at “CC: extra-
cellular” achieved the best results, with
ARI 0.892. Then, for each module, we
randomly selected 1000 gene subsets of
the same size of the module from the
null population as described previously.
We found that no random subset
achieved an ARI larger than that of the
corresponding module, so the observed
ARIs of all six modules were signifi-
cantly (P < 0.001) better at clustering
than randomly selected gene subsets.
The sample memberships assigned by
the six individual modules show that
some samples were misallocated by one
or more modules (Supplement 1). By
using majority rule clustering, which as-
signs the majority membership labels to
samples, we obtained an ARI of 0.934,
where only 3 tumor samples were mis-
allocated (Table 1).

Accumulated biological experiments
provided rich evidence to support the
roles of some key proteins annotated to
the six modules. For example, it has been
reported that nucleoside transporters
and glutamine transporters are abnor-
mally expressed in hepatoma cells
(37,38), which supports that the module
of “BP: transport” occurring at “CC: inte-
gral to plasma membrane” is relevant to
HCC. The significant correlations of
serum IL-8 levels with tumor size and
tumor stage (39) suggest that two mod-
ules (“BP: G-protein coupled receptor
protein signaling pathway” and “BP: im-
mune response,” both occurring at “CC:
extracellular region”) may be directly or
indirectly involved in the progression of
HCC. Genes such as vascular endothelial
growth factor (VEGF), annotated to the
module “BP: cell development” and “BP:
signal pathway” occurring at “CC: extra-
cellular region,” have been suggested as
diagnostic markers or prognostic factors
of HCC (40). In addition, glypican 3
(GPC3) (in module “BP: G-protein cou-
pled receptor protein signaling pathway”
occurring at “CC: cell”) has been found
to be both a marker for HCC and a target
for HCC therapy (41).

Based on the NCI60 dataset, we iden-
tified 38 combined categories signifi-
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cantly (P ≤ 0.001) enriched with the 10%
top-ranked genes with the largest ex-
pression variances. After the redun-
dancy treatment, seven modules re-
mained. All the ARIs of the seven
modules were significantly larger than
those achieved by chance (P < 0.001 for
six modules and P < 0.010 for one), and
the average ARI of the seven modules
was 0.607 (± 0.073). The majority rule
clustering approach achieved an ARI
value of 0.697. Detailed results are listed
in Table 1 and Supplement 2. Numerous
reports (42,43) have documented the re-
lationships between cancers and the
seven selected modules: cell communi-
cation (modules “signal transduction”
and “cell-surface receptor linked signal
transduction” and “cell adhesion”), im-

mune response, cell development (mod-
ules “development” and “morphogene-
sis”), and so on.

In each dataset, based on the feature
genes selected as the top 10%, 15%, and
20% ranked genes with the largest vari-
ances, the identified modules largely
overlapped, suggesting the robustness of
such modules to the differences of the
thresholds for selecting feature genes. In
fact, for liver cancer, compared with the
results found when x = 10, two addi-
tional modules (“defense response” and
“cell-surface receptor linked signal trans-
duction”) were identified when x = 15,
and only one more module (“response to
wounding”) was identified when x = 20.
Similar trends were found in the NCI60
dataset.

Among the top 150 genes (about the
average size of the modules across this
study) with the largest variances in the
liver cancer or NCI60 datasets, there
were 120 and 130 genes, respectively, co-
expressed with at least 1 gene in the
identified modules at the significance
level P ≤ 0.005, determined using 10,000
gene pairs randomly sampled from the
original expression profiles. Thus, we ex-
pect that the set of the top-ranked genes
could achieve good clustering results. In
fact, the ARIs for the set of the top-
ranked 150 genes were estimated to be
0.871 and 0.728 for the two datasets (liver
cancer and NCI60), respectively, which
were comparable to those obtained using
the majority rule modular approach
(Table 1).
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Table 1. Selected modules for liver cancer dataset and NCI60 dataset.

Datasets BP categorya CC categoryb P (module)c Nd ARIe Sf P (ARI)g

Liver cancer GO:0006955: immune response GO:0005576: extracellular < 2.22E–16 82 0.830 8 < 0.001

GO:0007275: development GO:0005576: extracellular < 2.22E–16 127 0.871 6 < 0.001

GO:0008151: cell growth and/or GO:0005576: extracellular 2.90E–11 139 0.892 5 < 0.001
maintenance

GO:0007165: signal transduction GO:0005576: extracellular 7.78E–10 104 0.790 10 < 0.001

GO:0006810: transport GO:0005887: integral to 1.05E–06 168 0.713 14 < 0.001
plasma membrane

GO:0007186: G-protein coupled GO:0005623: cell 1.05E–04 133 0.850 7 < 0.001
receptor protein signaling 
pathway

Majority rule NAh NA NA NA 0.934 3 < 0.001

Top150_liver NA NA NA 150 0.871 6 < 0.001

NCI60 GO:0007155: cell adhesion GO:0005886: plasma 1.07E–08 77 0.585 8 < 0.001
membrane

GO:0009653: morphogenesis GO:0016020: membrane 6.30E–08 112 0.481 14 0.010
GO:0007155: cell adhesion GO:0016021: integral to 1.01E–07 87 0.649 11 < 0.001

membrane

GO:0007275: development GO:0016021: integral to 2.25E–06 104 0.596 14 < 0.001
membrane

GO:0007165: signal transduction GO:0016021: integral to 6.42E–05 180 0.715 10 < 0.001
membrane

GO:0007166: cell surface receptor GO:0016021: integral to 2.13E–04 106 0.580 11 < 0.001
linked signal transduction membrane

GO:0006955: immune response GO:0005623 : cell 8.16E–04 133 0.640 9 < 0.001

Majority rule NA NA NA NA 0.697 8 < 0.001

Top150_NCI NA NA NA 150 0.728 7 < 0.001

aThe biological process description of the module; bthe cellular component description of the module; cstatistical significance of the
selected module; dnumber of annotated genes; eadjusted Rand index; fnumber of misallocated samples; gstatistical significance of ARI
with exclusion of genes; hnot available.



Peeling Off the Hidden Genetic
Heterogeneities of DLBCL

Molecular heterogeneity in DLBCL
patients was extensively investigated
previously [for example, (8,22,23)].
Inspired by the successful results for
partitioning HCC and NCI60 datasets,
we then applied the proposed modular
approach to uncover the underlying
molecular subtypes of DLBCL. Based on
the DLBCL dataset, six modules were
identified, as shown in Table 2 and
Supplement 3. The most significant
module (annotated with 173 genes, and
P ≤ 9.25E–07) was “GO:0006950: cellular
response to stress” occurring at
“GO:0005623: cell.” By this module, two
distinct DLBCL subtypes were discov-
ered via unsupervised clustering of the
DLBCL patients based on the expression
profiles of the annotated genes. To eluci-
date the clinical implications of the
identified molecular module, we stud-
ied survival profiles for the two sub-
types (Figure 1A). As the data of the
survival months were not available for 2
patients in the original dataset, our re-
sults were based on the remaining 40
patient samples. For comparison, we
also gave the Kaplan-Meier curves of
overall survival for the phenotypic par-
titions revealed in the original clinic la-
bels (Figure 1B). The results demon-
strated that the partitions identified by
the “response to stress” module had
very different 5-year overall rates (65%
vs. 14%), and these partitions were
highly significantly (P = 0.007) corre-
lated with the clinical survival rate. The
original partitions (clinic labels), though
also highly significantly (P = 0.010) cor-
related with the survival data, had a
markedly lower caliber to map their dif-
ferential survival profiles. It was also
noted that both the partitions defined
by the majority rule of the six identified
modules and those defined by the coun-
terfactual module of 150 top-ranked
genes were significantly correlated with
the clinical survival time, but with less
significant values (P = 0.019 and 0.012,
respectively). The results imply that
these modules (or groups of genes)

might have revealed the molecular het-
erogeneity of DLBCL from different as-
pects or different pathways.

To explore a compact model for clini-
cal use, we selected a gene subset of high
prediction power. Multivariate Cox pro-
portional-hazards model was used to an-
alyze the genes in the module labeled
“response to stress.” To reduce the num-
ber of variables to be modeled, first, we
applied a univariate Cox proportional-
hazards model to identify the genes
whose marginal effects on the overall
survival time were significant. Fourteen
genes (BCL2, CHES1, ERCC5, HMGB2,
IRF4, LY64, SMAD7, OGG1, RPA3, TNF,
CD83, PDIR, TLK2, and FLJ10858) were
found at the significance level of 0.05.
Then, using the stepwise variable selec-
tion option (with the same inclusion and

exclusion P value of 0.05) for the multi-
variate Cox proportional-hazards regres-
sion model (36), we ended up with 4 pre-
dictors (genes) (Table 3). Two of the 4
genes, cell CLL/lymphoma 2 (BCL2) and
tumor necrosis factor (TNF), were previ-
ously reported as the prognostic factors
for lymphoma (44,45). It is interesting to
note that high-mobility group box 2
(HMGB2), a member of the nonhistone
chromosomal high-mobility group pro-
tein family, conferred a high hazard ratio
(20.04, with 95% CI 3.53-113.88) (see
Table 3). A previous study (46) demon-
strated that HMGB2 has the potential to
control cell- and promoter-specific down-
or upregulation of in vivo transcriptional
activity of different members of the
tumor suppressor gene p53 family.
Another predictor gene encoding CD83

3 0 |  X U  E T  A L .  |  M O L  M E D  1 2 ( 1 - 3 ) 2 5 - 3 3 ,  J A N U A R Y - M A R C H  2 0 0 6

F I N D I N G  C A N C E R  S U B T Y P E S  B A S E D  O N  F U N C T I O N A L  M O D U L E S

Table 2. Significant modules for DLBCL.

BP categorya CC categoryb P (module)c Nd

GO:0006950: response to stress GO:0005623: cell 9.25E–07 173
GO:0006955: immune response GO:0005623: cell 1.66E–06 145
GO:0006952: defense response GO:0005623: cell 3.81E–06 160
GO:0050874: organismal physiological GO:0005623: cell 6.35E–06 174
process

GO:0009607: response to biotic stimulus GO:0005623: cell 3.40E–05 177
GO:0050896: response to stimulus GO:0005623: cell 1.39E–04 279

aThe biological process description of the module; bthe cellular component description of
the module; cstatistical significance of the selected module; dnumber of measured
annotated genes.

Figure 1. Clinically distinct DLBCL subtypes defined by gene expression profiling.
(A) Kaplan-Meier plot of the overall survival of DLBCL patients grouped on the basis of
gene expression profiling in “cellular response to stress” module. (B) Kaplan-Meier plot of
the overall survival of DLBCL patients grouped from original clinic labels.



antigen was also found at elevated levels
in 20% of chronic lymphocytic leukemia
(CLL) and 5 of 7 mantle cell lymphoma
(MCL) patients (47), suggesting its func-
tional and/or prognostic significance in
hematologic malignancies, particularly
CLL and MCL.

Please note that supplementary informa-
tion is available on the Molecular Medicine
website (www.molmed.org).

DISCUSSION
In this article, we proposed a modular-

based clustering approach to find disease
subtypes based on modules defined by
cellular-localized biological processes. As
evaluated by the liver cancer and NCI60
datasets, based on a few measured genes
in an individual module, the sample par-
titions agreed well with the original clini-
cal labels. We thus deem that the disease-
relevant module may depict one of the
multiple functional facets leading to the
molecular pathogenic mechanisms.
Further studying the functional descrip-
tions of the identified modules suggests
that these modules enjoy explicit rele-
vancy to the current understanding of
disease mechanisms and thus are appeal-
ing for dissecting the underlying genetic
heterogeneity of cancers at the modular
level. It should be noted that the pro-
posed approach is also an efficient unsu-
pervised feature selection method that
yields multiple feature gene sets (i.e.,
genes annotated to the modules) of func-
tional compactness. The genes with top-
ranked expression variations across sam-
ples are selected as the initial feature
genes (16,17), and then are further filtered
or organized by functional modules. In
general, because the selected feature
genes by modular approach contain both
the gene expression signatures and the
functional module signatures of disease
subtypes, they may provide functional
guidance in experimental investigation of
the pathogenesis of the studied diseases.

It has been shown that using multiple
2-dimensional characterized modules in-
dividually or jointly could achieve com-
parable excellent partitioning results, in-

dicating that multiple molecular path-
ways may be involved in the complex
disease mechanisms. In addition, our
previous study (15) for classifying can-
cers using 1-dimensional (BP) characteri-
zation of modules demonstrated that the
modular approach to using the derived
modular functional expression profiles is
a powerful and robust alternative ap-
proach to analyzing high-dimensional
gene profiles of cancers. Although both
1- and 2-dimensional modular catego-
rization can perform equally well, we
recommend using 2-dimensional (BP and
CC) characterization of modules to
achieve more compact and detailed
knowledge in both functionality and cel-
lular location, data that are more useful
and revealing for further experimental
investigation (for example, by molecular
trafficking techniques).

In supervised classification, the choice
of the best module or modules for dis-
ease prediction should be relatively easy;
because the sample labels in training set
are given, the high accuracy rates of the
classifiers trained on the modules might
be used to filter more specific and critical
modules highly relevant to disease
pathogenesis. In unsupervised clustering
analysis, however, the ARI for evaluating
a clustering algorithm cannot be applied
directly to choose the best module, be-
cause no cross-validation can be done.
Nevertheless, according to the results in
this study, some general guidelines can
be given for choosing one or more mod-
ules for clustering analysis of diseases.
One way is to focus on one or more bio-
logically highly related modules to ex-
plore a specific functional facet that may
correspond to a unique genetic pathway.
Although this simple strategy may not

get the highest ARI, it has the advantage
of focusing on specific disease mecha-
nisms. Alternatively, disease samples
may be best partitioned based on “collec-
tively voting” from the identified mod-
ules, but with the loss of the detailed
functional characterization that each
module provides. Another way to use
the information from the identified mod-
ules in a collective manner is to put to-
gether all the measured genes contained
in the modules for clustering analysis.
For example, the ARI values achieved by
this approach for the liver cancer and
NCI60 datasets were 0.871 and 0.622, re-
spectively (Supplement 4).

Some early studies attempted to find
cancer subtypes based on expression
profiles of the genes grouped by a clus-
tering algorithm (8). The underlying as-
sumption is that genes with similar ex-
pression patterns are more likely to
have similar biological functions, but a
clustering algorithm itself does not pro-
vide proof of the best grouping of genes
in terms of biological functions (48).
Thus, the biological interpretation of
the disease clustering results relies
heavily on expert knowledge, which is
often subjective (49). Here we directly
used an external annotation database
such as Gene Ontology to extract multi-
ple functionally compact and coherent
gene sets (modules). The application of
the proposed modular approach to peel
off DLBCL identified two hidden sub-
types. In terms of the well-character-
ized modular functionality and based
on the significant different survival re-
sults for the patients defined by the two
hidden subtypes, the proposed compu-
tational approach is a feasible and
promising toolbox for peeling off mo-
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Table 3. Multivariate Cox proportional-hazard analysis based on signature genes relevant
to survival time.

Estimated
Variable coefficient Wald χ2 P value Hazard ratio (95% CI)

BCL2 –1.25 8.87 0.0029 0.29 (0.13-0.65)
HMGB2 3.00 11.43 0.0007 20.04 (3.53-113.88)
TNF 1.68 8.50 0.0035 5.36 (1.73-16.57)
CD83 2.04 6.82 0.0090 7.70 (1.67-35.60)



lecular heterogeneities of complex
human diseases.

In this study, we took the known clus-
ter number suggested by preassigned la-
bels as the basis to assess the validity of
the proposed approach. Although the
clustering results provided good fits to
the known phenotypic partitions, the as-
sumption of the lack of heterogeneity in
the two studied datasets might not be
true. Likewise, the problem to estimate
the correct number of clusters for peeling
off hidden disease subtypes is largely
unsolved. Recently, some methods for
obtaining the best number of sample par-
titions by optimizing some validity in-
dices have been published (50,51), which
would provide additional insights on im-
proving the proposed modular approach.
By its nature, an extension of the pro-
posed modular approach could also fur-
ther refine the functional modules by in-
tegrating multiple sources of functional
information at different molecular levels.
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