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INTRODUCTION
Despite increasing experimental re-

search regarding the pathophysiological
mechanism of primary or secondary cen-
tral nervous system (CNS) tumors in re-
cent years, the underlying molecular
and cellular changes (both in the tumor
area and its surrounding tissue) remain
only partially understood (1–6). To date,
very little work has been done for spinal

tumors (7–10); consequently most of our
knowledge about spinal tumors is
adapted from similar tumors in the
brain; however, it is well documented
that there are substantial molecular and
cellular differences between brain and
spine (7). For this reason, much experi-
mental attention has been directed
 toward understanding the cellular and
molecular mechanism of CNS tumor

genesis and the development of non -
invasive, high resolution in vivo imaging
technology, especially in vivo molecular
imaging (MI) (11). These findings also
are used to explain the positron emis-
sion tomography (PET) findings for
spinal tumors. The advantage of using
PET in neurooncology is not only its
greater sensitivity when compared with
magnetic resonance imaging (MRI), but
also its greater specificity (12). PET has
been applied extensively to cerebral neo-
plasms, especially high-grade glial tumors
(13–15). Tumoral uptake of 18F-fluoro-2-
deoxy-glucose (FDG) has been shown to
correlate with histological aggression
and prognosis in both primary and re-
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Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed
only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of
basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from
precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of
this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism.
Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop ex-
perimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after sur-
gery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or second-
ary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of
viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While
spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations
observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may
be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover,
an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to
image the function of targets without disturbing them or as treatment to modify the target’s function. MI therefore closes the gap
between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of
metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may
better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a
unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental expe-
rience and research to find new indications for primary or secondary spinal tumors.
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current gliomas (16–20). Hypermetabo-
lism has also been reported variably in
primary cerebral lymphoma, menin-
gioma, medulloblastoma and non-CNS
brain metastasis (21–24). Relatively low
glucose metabolic rates have been
demonstrated in cerebral involvement
with primitive neuroectodermal tumor
(PNET) (25). In addition to FDG metabo-
lism, other metabolic pathways have
been studied extensively in brain tu-
mors. One of the most promising results
is the use of amino acids or amino acid
analogues for visualization of amino
acid transport and, depending on avail-
able tracers, protein synthesis in brain
tumors (26). The main tracer used was
carbon-11 (11C)-methionine (MET) fol-
lowed by fluorine-18 (18F)-labeled tyro-
sine compounds. There is rapidly in-
creasing evidence that radiolabeled
amino acids may have superior proper-
ties compared with FDG in delineation
of tumor borders, biopsy and treatment
planning, evaluation of treatment effects,
and in the differentiation of recurrent
tumor and reactive posttherapeutic
changes including radiation necrosis
after conventional treatment in gliomas
(27–28). But there are also first reports
on using amino acids or amino acid ana-
logues for other tumor entities including
ependymoma, chordoma or even metas-
tases of other tumor entities. In recent
years, 18F- labeled amino acid tracers
such as 18F-fluoroethltyrosine (FET)
have gained importance based on the
possibility of their widespread use in
hospitals lacking an onsite cyclotron
(29). Furthermore, (68Ga)-labeled
 somatostatin analogues have garnered
increasing interest for MI meningiomas
since the majority of these tumors
strongly express somatostatin receptors
and, therefore, can be precisely visual-
ized by PET (30). Somatostatin receptor
imaging is  especially useful for target
definition prior to radiation therapy of
skull base meningiomas (31).

At present, PET has rarely been used
to assess neoplastic spinal tumors. This
was originally due to limitations of spa-
tial resolution. But owing to the im-

provement of PET techniques, such tu-
mors are now also being imaged by MI.
However, in conventional MRI, intratu-
moral heterogeneity of primary spinal
tumors may not adequately be reflected,
and evaluation of a contrast-enhancing
lesion may either under- or overestimate
the amount of tumor tissue (32). In
spinal metastases, the problem is some-
what similar: the exact extent of paraver-
tebral tumoral involvement is often
 difficult to assess. The sensitivity of con-
ventional imaging methods is sometimes
insufficient to detect the clinically impor-
tant spinal micrometastases. However,
these conventional imaging methods are
sometimes nonspecific, and difficulties in
differentiating from degenerative end-
plate abnormalities or postoperative
changes can occur. Moreover, in contrast
to MRI, 18F-FDG uptake in PET is not
hampered by metallic implant-associated
artifacts (9–10).

MI by PET may be performed to gain
additional information on metabolic and
molecular tumor markers (5,13,33–34).
PET measures and visualizes cellular bio-
chemical processes non-invasively and
quantitatively by a pattern of in vivo up-
take of molecular probes into the CNS
tissue (35). Since biochemical changes
may be related to the growth rate of
tumor cells (32,35), they may be viewed
as markers of tumor cell proliferation. It
may be assumed that the behavior of
such surrogate markers differs in brain
and spinal tumors, indicating a need for
further research, especially in MI of
spinal tumors. However, in spinal tu-
mors, MI may allow, comparatively to
CNS tumors, (i) earlier detection of
tumor genesis at “pre-disease states,” (ii)
evaluation of the pharmacodynamic and
neurotoxicity of chemotherapeutic
agents, (iii) evaluation of the response to
treatment and (iv) differentiation be-
tween iatrogenic lesions and residual or
recurrent tumor tissue (11,36–38).

This article reviews the potential role
of MI, particularly PET, in spinal tumors
including spinal cord tumors, but also
the spinal metastases which often come
along with spinal cord involvement.

PRINCIPLES OF MOLECULAR IMAGING
IN NEUROLOGICAL SCIENCES

A detailed review about the principles
of MI in neurological sciences and the
principles of PET were described earlier
in extensive detail by our group (13–15).
Although these principles are described
for brain tumors, they also are valuable
for spinal tumors.

PET IMAGING AND ITS RELATIONSHIP
TO SPINAL TUMORS IN CLINICAL
MEDICINE

Techniques for human spinal imaging
have undergone rapid developments in
recent years. With technical improve-
ments, the MI is being used more in pri-
mary and secondary spinal tumor imag-
ing. Such technological progress also has
enabled the assessment of many physio-
logical parameters in vivo that are highly
relevant for (i) primary and secondary
spinal tumor grading, (ii) tissue charac-
terization, (iii) definition of the extent
and infiltration of tumors and (iv) plan-
ning as well as (v) monitoring of therapy
(see Table 1).

Evaluation of the spinal cord with PET
is, in part, limited by scanner spatial reso-
lution, with compromised sensitivity for
the detection of hypermetabolic lesions
smaller in size than approximately 2.5
times the scanner spatial resolution
(39,40). With newer PET scanners, this
technical problem is increasingly dimin-
ished, so that spinal PET also has gained
clinical interest. However, MRI is still the
imaging modality of choice when search-
ing for spinal cord lesions in patients. In
this context, it is extremely important to
recognize and differentiate non-neoplastic
from neoplastic processes of the spinal
cord as the differentiation of these two en-
tities is extremely crucial to the neurosur-
geon. Proton MR spectroscopy currently is
performed in a limited number of such
cases, usually to distinguish post-treatment
changes from recurrent tumor in the post-
therapeutic setting, or, occasionally, when
the neoplastic nature of a primary lesion is
in question.

Screening MRI frequently registers os-
seous spine lesions with high morphologi-
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cal details in patients with spinal tumors
(41). Differentiation of benign lesions from
spine metastases still presents a challeng-
ing problem. The spine is the most fre-
quent site of skeletal metastases (42); how-
ever, MRI changes from poor bone quality
due to chemotherapy, osteoporosis and
degenerative disease are frequently regis-
tered in patients with spinal tumors (43).
Thus, the high likelihood of finding a
metastatic lesion is balanced by the fre-
quent occurrence of benign signal changes
in the vertebral column. Distinguishing
between benign and malignant lesions in
imaging of focal indeterminate spinal le-
sions is crucial in determining the treat-
ment paradigm for the patient. In addi-
tion, MRI often fails to detect minimal
tumor agglomerations (micrometastases)
(41). New techniques such as PET, and the
development of specific contrast agents
may reveal changes at the physiological,
cellular or molecular levels.

PET IMAGING AND SPINAL CORD
PHYSIOLOGY

Since the normal spinal cord is com-
prised of a relatively large amount of
 axonal white matter, it manifests lower
FDG uptake than cortical brain tissue on
PET imaging. The glucose metabolic rate
of white matter is approximately one-third
to one-fourth that of gray matter (44);
therefore, tumor-to-background contrast
should be more favorable in the spinal
cord than in cortical brain regions. This
has been verified by Di Chiro et al. (25),
who reported a glucose metabolic rate of
1.7 mg/100 gm neuronal  tissue/mm for

normal spinal cord (compared with values
of 6.0–7.0 for midbrain pons area) using a
tomography.

Prior radiation therapy to the entire
neural axis may have diffusely lowered
baseline FDG uptake in all nontumor
CNS tissue, further contributing to in-
creased lesion-to-spinal cord contrast.
For all other mentioned tracers which are
increasingly used for brain tumor imag-
ing (for example, amino acids or ana-
logues, somatostatin analogues), no liter-
ature data exist so far on their uptake in
the normal spinal cord. We know, how-
ever, from our personal, but not yet pub-
lished experience that for spinal cord up-
take is very low both tracer classes,
similar to their low uptake in normal
brain, especially in the white matter.
Therefore, it could be hypothesized that
spinal tumor-to-background contrast
should also be favorable for these tracers.

PET IMAGING AND ITS RELATIONSHIP
TO SPINAL CORD TUMORS

Generally, 18F-FDG-PET is a well-
 recognized tool used to predict the
growth rate of a neoplasm. Although no
established consensus in interpretation of
18F-FDG-PET findings for spinal tumors
exists, Wilmshurst et al. (45) reported cor-
relation with histological malignancy in
spinal gliomas. The same authors sug-
gested performing a prospective study of
a larger number of patients with a wider
range of tumors, although this might be
difficult to achieve given the rarity of
spinal cord tumors (46,47). In our experi-
ence, 18F-FDG-PET imaging is useful in

evaluating tumor progression and identi-
fying the most metabolically active com-
ponents in spinal cord tumors. It is also
used for monitoring unusually slow
growing metastases of brain stem tumors.

Some case reports exist on the amino
acid methionine, showing high uptake in
some special tumor-like ependymoma
(48–49) or chordoma (50). For 18F-FET,
we have personal experience in MI
spinal cord tumors in some individual
cases showing no or only minor uptake
in low grade gliomas (diffuse astrocy-
tomas WHO II), but positive uptake in
high grade tumors such as medulloblas-
toma or anaplastic glioma. Even though
there is increasing experience with amino
acids, choline and somatostatin ana-
logues in cerebral meningiomas, no data
exist so far on imaging spinal menin-
gioma using these radiopharmaceuticals.

18F-FDG-PET has been shown to be su-
perior to skeletal scintigraphy and 18F-
fluoride- PET in detecting bone metas-
tases (51–52). Whereas 18F-fluoride
uptake depends on bone reaction, the up-
take of 18F-FDG depends on the tumor’s
metabolic rate, thereby more accurately
representing tumor viability (51,53). 18F-
FDG-PET is already considered an impor-
tant component in staging melanoma,
lung and esophageal cancer, and its role
in other cancers, including spinal tumors,
is being actively explored (54).

The lack of sensitivity of 18F-FDG-PET
in detection of sclerotic osseous lesions
in patients with prostate (55) and breast
(56–59) cancer was published previously.
Uptake of FDG is probably decreased in
sclerotic lesions owing to their acellular
nature with a correspondingly low gly-
colytic rate (60). These findings empha-
size that sclerotic lesions in the spine re-
quire particular attention and close
 follow-up, even if negative results are
found with 18F-FDG-PET or even biopsy.

Owing to the lack of sensitivity of 18F-
FDG-PET in prostate cancer, choline de-
rivates are preferably used for MIs of this
tumor entity. Besides evaluation of pri-
mary tumor and lymph node involve-
ment, choline derivates also are useful
for detecting spinal metastases showing

Table 1. Indication of the use of positron emission tomography studies in spinal tumors
related to (patho)physiological factors.

18F-FDG-PET
Ninety percent accurate for tumor grading and prognosis.
First choice for spinal infection.
Can be used for grading and monitoring for progression to a higher tumor grade of 
malignancy and for differentiation radionecrosis and recurrence.

L-amino acid PET
Only partly accurate for tumor grading and prognosis.
Provides good separation of spinal tumor tissue from surrounding normal spinal tissue.
Good for monitoring for progression to a higher degree of malignancy.
Useful in differentiating stable tissue from tumor regrowth.

Other radionuclides
Only used in single cases.



R E V I E W  A R T I C L E

M O L  M E D  1 7 ( 3 - 4 ) 3 0 8 - 3 1 6 ,  M A R C H - A P R I L  2 0 1 1  |  S A N D U E T  A L .  |  3 1 1

high sensitivity, specificity and accuracy
of 18F-Choline (FCH)-PET/CT of 79%,
97% and 84%, respectively (61). For pa-
tients with high-risk prostate cancer
which often presents with osteoplastic
bone metastases, 18F-PET/CT is a highly
sensitive and specific modality for detec-
tion of bone metastases (62).

Other tumors, which are diagnosed in-
sufficiently with 18F-FDG-PET, are well-
differentiated neuroendocrine tumors
(NET) which also often present with
spinal metastases. The majority of NET
express somatostatin receptors on their
cell surface which can be targeted by
(68Ga)-labeled peptides like DOTA(0)-
Phe(1)-Tyr(3)octreotid (DOTA-TOC),
DOTA-(Tyr3)Octreotat (DOTA-TATE) or
DOTA-1-NaI3-octreotide (DOTA–NOC).
These somatostatin analogues are ideal
for diagnosing and staging NET and are
much more sensitive for detection of
spinal metastases compared with CT
which often fails to detect nonsclerotic
lesions.

Surprisingly, 18F-FET-PET was
strongly inferior to 18F-FDG-PET in eval-
uating the amino acid analogue FET in
peripheral tumors outside the brain or
spinal cord, showing no or only minor
uptake in most peripheral tumors such
as colorectal, pancreatic, prostatic, ovar-
ian cancer and lymphomas, with the
only exception of squamous cell carcino-
mas (63). We found, however, in correla-
tion with individual cases described in
the literature (28,29,64), high metabolic
rates in cerebral lymphoma and also in
most brain metastases, even in those
originating from peripheral 18F-FET neg-
ative tumors. These findings suggest that
18F-FET is transported via different
amino acid transporters within the brain
compared with the periphery. Therefore,
in contrast to 11C-MET, which also
showed high uptake in peripheral lym-
phomas (65), 18F-FET might be valuable
in spinal cord tumors, but probably not
in osseous spinal metastases. However,
no published data exist on this topic to
date. Therefore, current experience tends
to open a new horizon for the clinical
utility of spinal tumor MI by PET in fu-

ture. We have therefore summarized, in
the following sections, the current MI
knowledge about specific spinal lesions.

SPECIFIC TUMORS

Schwannomas
Schwannomas generally have a high

tumor-to-background ratio on 18F-FDG-
PET (66). Semiquantitative analysis with
standardized uptake values (SUVs) re-
veals a wide variation in SUVs that can
be explained by variations in the degree
of cellularity (66–67). The situation is
somewhat different for cranial and spinal
nerve schwannomas (67): The spinal le-
sions are extracerebral, occurring in re-
gions normally devoid of 18F-FDG-uptake
(67). No correlation is found between
18F-FDG-uptake and tumor size or
tumor proliferation rate (Ki-67 index)
(66). Because these tumors often have a
high level of 18F-FDG-uptake, distin-
guishing schwannomas from malignant
peripheral nerve sheath tumors before
biopsy or even surgery is not possible
(66). Therefore, schwannoma should be
included in the differential diagnosis of
peripheral nerve sheath tumors with low,
intermediate or high SUVs (66–67).

For cerebral schwannomas, develop-
ments were made for 11C-MET-PET; 
to the best of our knowledge, such de-
velopments do not exist for spinal
schwannomas (68).

Meningiomas
A variety of tracers seem to be useful

for MI meningiomas. 1-11C-acetate and
11C-choline were found to be useful for
detecting meningiomas and evaluating
the extent of meningiomas and are po-
tentially useful for monitoring tumor re-
sponse to surgery (69–70).

However, 1-11C-acetate was not found
to be useful for evaluating the tumor
grade (69). 18F-FDG is found to be of
lower worth than both membrane
biosynthesis markers for evaluating the
extent of meningiomas and the response
to surgical treatment, but 18F-FDG may
be useful for differentiating benign from
malignant meningiomas (69–70). 18F-

FDG and 1-11C-acetate are complemen-
tary for assessing diverse cell metabo-
lism of meningiomas (69). One case re-
port exhibits moderately increased
 metabolism despite findings of high-
grade malignancy on biopsy (71).

Amino acids also have been used for
MI of meningiomas. In a comparative
study, Iuchi et al. (72) tested 18F-FDG and
methionine with regard to their potential
to predict proliferative activity uptake of
11C-MET, significantly correlating not
only with the count of nucleolar organizer
regions, a histological index of protein
synthesis, but also with proliferation
index Ki-67. In this study, 18F-FDG-
 uptake showed no significant correlation
with Ki-67 index or clinical malignancy
(72). Histopathology reveals somatostatin
receptor expression in most meningiomas
and, therefore, somatostatin receptors cur-
rently represent a good target for MI by
using somatostatin receptor ligands (73).
However, present studies on this topic
only address cerebral meningiomas, so far
no data exist on spinal meningiomas.

Gliomas
The PET uptake is in keeping with the

low-grade histology of the astrocytomas
(45,74). However, one case report about a
primary spinal glioblastoma exists and
the 18F-FDG-PET findings were consis-
tent with a malignant neoplasm (75).
Even though amino acids gain more and
more importance for MI of cerebral
gliomas, to the best of our knowledge no
studies exist on their use in spinal cord
gliomas. We have seen only a few indi-
vidual cases with predominantly diffuse
low-grade astrocytoma showing no sig-
nificant 18F-FET uptake. Only a few
cases with high-grade spinal cord glioma
(medulloblastoma, anaplastic glioma)
showed increased amino acid uptake
(personal unpublished data). However,
more data is necessary to give recom-
mendations for the use of amino acid MI
by PET in spinal cord gliomas.

Spinal Metastases
Few articles have specifically ad-

dressed the accuracy of 18F-FDG-PET in
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diagnosing spine metastases (60,76–77).
In the study of Laufer et al. (76), 18F-
FDG-PET had 96% sensitivity and 50%
specificity in all patients with cancer, 97%
sensitivity in nonsclerotic lesions, and
92% sensitivity in sclerotic lesions. Both
osteolytic and osteoblastic processes are
important for bone metastases, so the dif-
ference between bone scan and 18F-FDG-
PET for the detection of bone tumor is
likely related to the difference in the
mechanism by which disease is detected
by these two modalities. Bone scan de-
tects the osteoblastic response to bone de-
struction by tumor cells, and 18F-FDG-
PET detects the metabolic activity of the
tumor cells. It is probable that for breast
and lung carcinoma, 18F-FDG-PET has
similar sensitivity; however, poorer speci-
ficity, when compared with the isotope
bone scan; hovever, there is conflicting
evidence with several articles suggesting
that it is less sensitive than conventional
imaging in breast cancer (51,53). In our
institution, PET/CT has already replaced
bone scintigraphy in staging of nonsmall
cell lung cancer (NSCLC) patients with
PET–positive primary lung tumors. Only
in patients with 18F-FDG-inactive pri-
mary NSCLC, such as bronchoalveolar
carcinomas, should an additional bone
scan be considered. There is convincing
evidence that, for prostate cancer, 18F-
FDG-PET is less sensitive than the bone
scan and this may be tumor specific
(51,53). Because of this generally low up-
take of 18F-FDG in prostate cancer, other
PET tracers have been developed. 18F-
FCH-PET seems to be a promising tool in
the evaluation of patients with elevated
prostate-specific antigen (PSA) and suspi-
cion for bone metastases (53). In a study
by Langsteger et al. (78) using 18F-FCH-
PET in 49 patients, PET downstaged two
(4%) patients because suspicious bone le-
sions in bone scan could be excluded
with 18F-FCH-PET; in six (12%) patients,
18F-FCH-PET upstaged the patients with
a resulting change in management from
surgery to radiation therapy or hormone
therapy (78).

In a study comparing 18F-fluoride and
18F-FCH, the sensitivity, specificity and

accuracy of PET/CT for the detection of
bone metastases in prostate cancer was
81%, 93% and 86% for 18F-fluoride, and
74% (P = 0.12), 99% (P = 0.01) and 85%
for 18F-FCH, respectively (79). 18F-FCH-
PET/CT led to a change in the manage-
ment in 2 out of 38 patients owing to the
early detection of bone marrow metas-
tases. 18F-fluoride PET/CT identified
more lesions in some patients when com-
pared with 18F-FCH PET/CT but did not
change patient management. The authors
concluded that 18F-FCH PET/CT may be
superior for the early detection (that is,
bone marrow involvement) of metastatic
bone disease. In patients with FCH-
 negative suspicious sclerotic lesions, a
second bone-seeking agent (for example,
18F-fluoride) might demonstrate a higher
sensitivity. However, 18F-fluoride PET
also could be negative in highly dense
sclerotic lesions, which presumably re-
flects the effect of treatment. It will be
important to clarify in future studies
whether these lesions are clinically rele-
vant when compared with metabolically
active bone metastases.

For the subgroup of well-differentiated
neuroendocrine tumors, 18F-FDG is also
not capable to detect spinal metastases
because of their low proliferation activity
and, in consequence, their low glucose
consumption. (68Ga)- and 18F-labeled
somatostatin analogues (80–81) as well as
18F-DOPA (82) have shown promising
results for this special tumor entity with
even higher sensitivities compared with
morphological computed tomography
(CT) imaging. In the study of Ambrosini,
(68Ga)-DOTANOC PET led to a change
in clinical management in nine patients
with a negative CT scan (80).

There are, however, several other im-
portant variables that should be consid-
ered. The type of the metastasis itself ap-
pears to be relevant. At least in breast
cancer, different patterns of 18F-FDG up-
take have been shown in sclerotic le-
sions, lytic lesions, or lesions with a
mixed pattern (51,53). Furthermore, the
precise localization of a metastasis in the
skeleton may be important with regard
to the extent of the metabolic response

induced (51,53). Previous treatment is
highly relevant, and it has been found
that although the majorities of untreated
bone metastases are positive on PET
scans and have a lytic pattern on CT,
after treatment, incongruent CT-posi-
tive/PET-negative lesions are signifi-
cantly more prevalent and generally are
blastic, which presumably reflects a di-
rect effect of treatment.

Incidental findings on PET suggestive
of degenerative spinal disease are not
uncommon, most commonly in the lum-
bosacral spine (83). The severity of PET
findings correlates with the severity of
degenerative disk and facet disease as
graded by CT, likely owing to the fact
that the inflammatory process that ac-
companies degenerative spinal disease is
evident on PET (83). Increased 18F-FDG
uptake in degenerative spinal disease
should not be confused with metastatic
disease (83).

The clinical role for 18F-FDG-PET in
monitoring the response of bone metas-
tasis remains undefined at this time (84).
Chemotherapy in conjunction with gran-
ulocyte colony-stimulating factor (GCSF)
can lead to increased FDG uptake by hy-
perplastic bone marrow, which can be
difficult to distinguish from diffuse mar-
row involvement by tumor.

Lymphoma
There is very little data relating to

lymphoma, but 18F-FDG-PET seems to
perform better than the bone scan. In a
study by Ghanem et al. (55), PET was
shown to be a fairly poor modality for
detecting lymphoma infiltration of the
vertebral bone marrow, yielding four
false negative and two false positive re-
sults compared with MRI and clinical
follow-up data (55). An examination of
the accuracy of 18F-PET in patients with
multiple myelomas also revealed several
false negative results with PET com-
pared with spine MRI and CT scans
(85–87). These results are consistent with
the study of Laufer et al. (76), for which
2 of 3 false negative results with 18F-
FDG-PET results were in patients with
hematological malignancies. 18F-FET-
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PET has also shown to be insufficient for
the detection of peripheral lymphomas
(63), however, not including cases with
spinal involvement. Surprisingly, the
amino acid 11C-MET showed promising
results for peripheral tumors with high
uptake in most Hodgkin and non-
Hodgkin lymphoma (65).

Myeloma
There is an increasing body of evi-

dence relating to the valuable role of 18F-
FDG-PET in myeloma, where it is clearly
better than the bone scan, presumably
because 18F-FDG is identifying marrow-
based disease at an early stage (51,53).

At present, it is not clearly defined to
what extent MI may influence therapeu-
tic decisions. PET and SPECT seem to be
useful complementary tools in the moni-
toring of spinal metastases as they may
integrate topographic and biological ac-
tivity. However, large clinical studies are
necessary to assess their exact value. An-
other remaining question is whether the
magnitude of biochemical alterations
demonstrated by MI may have prognos-
tic value with respect to (neurological)
function and survival.

Differential Diagnosis of Spinal Tumor
by PET

Differentiation between malignant
and benign fractures may be difficult,
particularly in elderly patients who
commonly suffer from osteoporotic frac-
tures. Radiography, CT, MRI and bone
scintigraphy may be nonspecific. Some
reports suggest that 18F-FDG-PET may
be useful in differentiating between ma-
lignant and benign fractures (88–91), al-
though there are only a few case reports
regarding the clinical efficacy of fusion
PET/CT on differentiating malignant
from benign fractures (92–93). Overlap
of benign and malignant lesions has
been shown (94). The partially contra-
dicting results published in the litera-
ture may relate to the time interval be-
tween the fractures and the PET
examination (89–90). In bone scintigra-
phy, increased uptake persists for many
months after fracture and depends on

the site of injury (90). Although the du-
ration of abnormal 18F-FDG uptake in
benign fractures is unknown, Zhuang et
al. (95) reported that 18F-FDG uptake
rapidly decreased with time after frac-
ture and that it should be normal within
a maximum of 3 months. Shon and Fo-
gelman (90) reported that the most in-
tense 18F-FDG uptake was observed
when MI by PET was performed 17
days after fracture, among the four-case
series where imaging was performed
from 17 days to 8 weeks.

In addition, because sclerotic lesions
have been shown to be problematic in
18F-FDG-PET detection, and correct di-
agnosis was based on needle biopsy, one
may expect a much stronger association
between hypermetabolism on PET and a
positive cancer diagnosis in patients with
nonsclerotic lesions. This expectation is
confirmed by the results of Laufer et al.
(76). When the analysis was focused on
nonsclerotic lesions in patients with solid
tumors, 18F-FDG-PET became 100% sen-
sitive and specific when the SUV cutoff
of two was used. It seems that 18F-FDG-
PET using the semiquantitative parame-
ter SUV improves the diagnostic ability
to differentiate between single bone ma-
lignant and benign lesions (96).

Evaluation of Therapy by PET
The development and clinical testing

of targeted biological therapies for spinal
tumors present new opportunities and
new challenges. The efficacy of tradi-
tional cytotoxic agents, which may pro-
duce detectable tumor regression, is typi-
cally measured by response rate or
survival (97–98). However, new biologic
therapies have led to targeted molecular
therapies that may permit improvement
in therapeutic efficacy and reduced toxic-
ity, thus requiring new measures of activ-
ity (99–100): For example, signal trans-
duction pathways that are regulated
inappropriately in brain tumors include
growth factors and their receptors (for
example, epidermal growth factor recep-
tor [EGFR], vascular endothelial growth
factor receptor [VEGFR] or platelet de-
rived growth factor receptor [PDGFR]),

which regulate cellular interactions with
the microenvironment and intracellular
oncogenic pathways. Improved func-
tional neuropathology and molecular im-
aging may therefore permit identification
of patient subgroups for which clinical
responses may be enriched (15).

In the early postoperative period, 18F-
FDG-PET can be used to differentiate
residual tumor tissue from postoperative
surgical effects (101–102). It seems clear
that a decline in tumor tissue uptake of
18F-FDG weeks or months after therapy
is suggestive of a good response to treat-
ment, indicating either a reduced num-
ber of viable cells or reduced metabolism
of damaged cells (16,103).

After intensive irradiation or chemo-
therapy for malignant CNS tumors, MRI
is not able to distinguish tumor progres-
sion from radiation damage or necrosis.
Some PET methods appear promising as
relatively specific indices of therapeutic
response. 18F-FDG uptake suggests the
presence of viable CNS tumor tissue (at
least when high tumor uptake of 18F-
FDG was noted before therapy), while
absence of 18F-FDG uptake suggests
that necrosis may be present (104–105).
An increase in CNS tumor metabolism
compared with studies before therapy
predicts longer survival (106). This is ex-
plained by predominant killing of low
energy-consuming cells or stimulation of
quiescent cells, either tumor or normal,
to become metabolically more active. In
other terms, the increased regional me-
tabolism means that within a certain vol-
ume of a specific tissue, the ratio and
density of normal cells to tumor cells
improved.

Pharmacoselective Potential of
Molecular Imaging in Neuroncology
Drug Development

Novel targeted drugs such as small
molecular inhibitors of receptors and sig-
naling pathways in the biology of pri-
mary CNS tumors are showing some ac-
tivity in initial studies (107). As we learn
more about these drugs and how to opti-
mize their use as single agents and in
combination with radiation, chemother-
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apy and other targeted molecular agents,
they will likely play an increasing role in
the management of this devastating dis-
ease, as such molecules can be labeled
with positron emitting isotopes and the
emitted radiation is detected using sensi-
tive PET cameras.

It is now possible to measure in vivo
and normal tissue pharmacokinetics of
anticancer drugs and to investigate their
mechanism of action. Radiolabeling of
tracers can be used to measure specific
pharmacodynamic endpoints and to tar-
get identification. Increasing evidence
shows how these technologies, when
added to early drug development, can
rapidly reduce the time for entry into pa-
tients and provide early identification of
mechanisms of action. With the move to-
ward more segmented markets and the
identification of specific subgroups,
PET’s use for noninvasive biomarkers
will become increasingly important.

CONCLUSION
Spinal PET is an evolving and promis-

ing method for the clinical management
of spinal tumors. However, not every pa-
tient can be studied by MI, and it is not
necessary to do so in every case. MI tech-
nologies should be used in selected pa-
tients to advance our understanding of
the complex pathophysiology of spinal
tumors. This use will allow the develop-
ment and assessment of new therapeutic
modalities including molecular targeted
and gene therapies (imaging-guided
therapies). The functional-anatomic dis-
cordance between PET and MRI in spinal
tumors needs to be examined further,
which might open up new insights into
the disease process and might generate
further subgroups within this entity.
Both modalities complement each other
in spinal tumors, and frequently, abnor-
malities noted on PET images can pro-
vide additional clinical information
which is of great value in further clinical
patient management.
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