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Histone deacetylase (HDAC) inhibitors are currently used clinically as anticancer drugs. Recent data have demonstrated that
some of these drugs have potent antiinflammatory or immunomodulatory effects at noncytotoxic doses. The immunomodula-
tory effects have shown potential for therapeutic benefit after allogeneic bone marrow fransplantation in several experimental
models of graft versus host disease (GVHD). These effects, at least in part, result from the ability of HDAC inhibitors (HDACIH) to sup-
press the function of host antigen presenting cells such as dendritic cells (DC). HDACI reduce the dendritic cell (DC) responses,
in part, by enhancing the expression of indoleamine 2,3-dioxygenase (IDO) in a signal fransducer and activator of transcription-3
(STAT-3) dependent manner. They also alter the function of other immune cells such as T regulatory cells and natural killer (NK)
cells, which also play important roles in the biology of GVHD. Based on these observations, a clinical frial has been launched to
evaluate the impact of HDAC inhibitors on clinical GVHD. The experimental, mechanistic studies along with the brief preliminary
observations from the ongoing clinical trial are discussed in this review.
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INTRODUCTION

Allogeneic hematopoietic cell trans-
plantation (HCT) is an important thera-
peutic option for a variety of malignant
and nonmalignant conditions. The thera-
peutic potential of allogeneic HCT relies
on the graft-versus-leukemia (GVL) ef-
fect, which eradicates residual malignant
cells by immunologic mechanisms (1).
However, graft versus host disease
(GVHD) remains the most frequent and
serious complication following allo-
geneic HCT and limits the broader appli-
cation of this important therapy. GVHD
results from immunologically mediated
injury to host tissues (2,3). Consequently,
GVHD and GVL reactivity are tightly
linked (4). As the number of allogeneic
HCT continues to increase, a greater un-
derstanding of the pathogenesis of
GVHD is being made that may lead to

the development of more effective thera-
pies and treatment strategies.

The pathophysiology of GVHD is
known to involve donor T-cell interac-
tions with host antigen presenting cells
(APCs) and the subsequent induction of
proinflammatory cytokines and cellular
effectors that cause target organ damage
(5). Because host APCs are critical for in-
duction of GVHD by priming donor
CD4" and CD8" T, targeting host APCs
may be a promising strategy to prevent
GVHD (6). Clinical observations also
support the role of APCs in the develop-
ment of GVHD and the attractiveness of
an approach that targets the role APCs
play (7, 8).

Acetylation of histones represents one

of several epigenetic modifications (9,10).

Altering gene expression through chro-
matin modifications induced by acetyla-
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tion and deacetylation of histone tails
has gained wide attention (11). Histone
deacetylase inhibitors (HDAC]) cause re-
versible inhibition of HDAC enzymes,
remodel chromatin, regulate gene ex-
pression (12) and have shown efficacy
in vitro and in vivo as antitumor agents
(13-16). Phase I/1I clinical trials have
demonstrated that HDAC inhibition is
well tolerated and suberoylanilide hy-
droxamic acid (SAHA) or vorinostat is
now a Food and Drug Administration
(FDA) approved drug (15,16). The im-
munomodulatory effects of HDAC in-
hibitors, however, have been largely un-
recognized until recently. Burgeoning
evidence demonstrates that these agents
have potent antiinflammatory effects at
noncytotoxic doses and concentration
(17,18).

In this review, we discuss the clinical
features and pathophysiology of GVHD
briefly and discuss the exciting and
novel observations pertaining to the im-
munoregulatory effects of HDACi on
GVHD. We summarize our current
knowledge of the role of HDACsS in the
complex regulation of GVHD and GVL,
and discuss several other studies offering
potential molecular mechanisms of ac-



Figure 1. Acute GVHD of the skin.
Photograph courtesy U of Michigan,
BMT program.

tion for HDAC inhibition and prevention
of alloresponses. Finally, we describe an
ongoing Phase II clinical trial that at-
tempts to translate the preclinical studies
on HDAC inhibition and GVHD into a
proof-of-concept clinical trial.

Clinical Features of GVHD

GVHD occurs when donor T cells re-
spond to histoincompatible antigens on
the host tissues and clinically presents in
an acute or chronic form. Historically,
acute and chronic forms were defined ar-
bitrarily on the basis of the time frame
after transplant. Classically, acute GVHD
develops within the first 100 days of
transplant or can occur beyond 100 days
after transplant with persistent, recurrent
or late-onset symptoms. The principle
target organs include the skin, liver and
GI tract. The signs and symptoms can be
characterized by diffuse maculopapular
rash (Figure 1), anorexia, profuse diar-
rhea, nausea, vomiting, ileus and
cholestatic hepatitis (Table 1). Despite
HLA identity between a patient and
donor and the current immunoprophy-
laxis, about 40% of patients with acute
GVHD require treatment with high-dose
steroids (1). The incidence of acute
GVHD is even higher in patients who re-

ceived mismatched donor grafts.
Chronic GVHD is a complex, multisys-
tem disorder with myriad manifesta-
tions that can involve essentially any
organ and, typically, is characterized by
fibrosis (Table 2) (19). Chronic GVHD
may emerge from acute disease (pro-
gressive type), develop following a pe-
riod of resolution from acute disease
(quiescent or interrupted type), or occur
de novo. Some patients may experience
overlap syndrome in which clinical fea-
tures of acute and chronic GVHD appear
together (20). The incidence of chronic
GVHD is 60% to 70%, depending on the
type of donor (19). Specific signs and
symptoms, including erythematous rash,
nausea, vomiting, diarrhea and liver
dysfunction are shared between the two
(Table 2).

Pathophysiology of GVHD

The pathophysiology of GVHD is com-
plex and can be considered as a normal
immune response that has gone awry.
GVHD also can be considered as a com-
plex immune response that has gone
awry and can be understood as a path-
way that consists of triggers, sensors,
mediators and effectors of GVHD.

Triggers for induction of GVHD

As with all immune responses, certain
triggers are critical for induction of acute
GVHD.

(a) Disparities between Histocompati-
bility Antigens. Antigen disparity can be
at the level of major histocompatibility
complex (MHC), that is, MHC mis-
matched or at the level of minor histo-
compatibility antigens (miHA) that is,
MHC matched but miHA mismatched.

Table 1. Acute GVHD symptoms.

Skin Maculopapular skin rash
Upper GI' Nausea and/or anorexia plus
fract positive histology
Lower GI  Watery diarrhea = 500 mL +
tfract severe abdominal pain +
bloody diarrhea or ileus (after
exclusion of infectious etiology)
Liver Cholestatic hyperbilirubinemia
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In humans, the MHC gene is on chromo-
some 6 and encodes the human leuko-
cyte antigens (HLA) (21). The severity
of acute GVHD is directly related to the
degree of MHC mismatch (22). In bone
marrow transplants (BMT) that are
MHC matched but miHA disparate,
donor T cells still recognize MHC pep-
tide derived from the products of recipi-
ent polymorphic genes, the miHAs
(23-25). The expression of miHAs is
wide and variable. Some miHAs such as
HA-1, HA-2, HB-1 and BCL2A1 are
found primarily on hematopoietic cells,
whereas some others such as the H-Y
antigens, HA-3, HA-8, and UGT2B17 are
ubiquitous (26).

(b) Damage induced by conditioning
regimens and underlying diseases.
Under most circumstances, the initiation
of an adaptive immune response is trig-
gered by the innate immune response.
The innate immune system is triggered
by certain exogenous and endogenous

Table 2. Chronic GVHD symptom:s.

Skin Dyspigmentation, new-onset
alopeciaq, poikiloderma, lichen
planuslike eruptions or
scleroticfeatures

Nails Nail dystrophy or loss

Mouth Xerostomiaq, ulcers, lichen-type
features, restrictions of mouth
opening from sclerosis

Eyes Dry eyes, sicca syndrome,
cicatricial conjunctivitis

Muscles,  Fasciitis, myositis, or joint
fascia, stiffness from contractures
joints

Female Vaginal sclerosis, ulcerations
genitalia

Gl tract Anorexia, weight loss,

esophageal web or strictures

Liver Jaundice, fransaminitis

Lungs Restrictive or obstructive

defects on pulmonary function
tests, bronchiolitis obliterans,
pleural effusions

Kidneys Nephrotic syndrome (rare)

Heart Pericarditis

Marrow Thrombocytopenia, anemiaq,

neutropenia
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molecules. This is likely the case in the
induction of acute GVHD. Pattern recog-
nition receptors such as Toll-like recep-
tors (TLRs) and nucleotide-binding
oligomerization domain containing 2
(NOD2) (27) play an essential role in in-
nate immunity by recognizing conserved
damage or pathogen-associated molecu-
lar patterns (PAMPs) and initiating the
cellular signaling pathways that activate
cytokine secretion, such as NF-«xB (28,29).
The PAMPs such as lipopolysaccharide
(LPS), CpG, and MDP2 which are recog-
nized by TLR-4, TLR-9 and NOD2 re-
spectively, are released during the
chemotherapeutic and radiotherapeutic
conditioning regimens performed before
the infusion of BMT donor cells (30-34).
In this way, the conditioning regimens
amplify the secretion of proinflammatory
cytokines such as IL-1, TNFa (31,35,36),
IL-6 (37) and other interferon family
members in a process described as a “cy-
tokine storm.” In addition to the exoge-
nous microbial associated molecules, en-
dogenous triggers as a consequence of
damage, called damage-associated mo-
lecular patterns (DAMPs) might also
play a critical role in GVHD (29). In fact
the proinflammatory cytokines them-
selves might serve as DAMPs.

Sensors of GVHD

The triggers that initiate an immune
response have to be sensed and pre-
sented. Antigen presenting cells (APCs)
might be considered the sensors for
acute GVHD. The APCs sense the
DAMPs (i.e., present the MHC-disparate
or miHA-disparate protein and provide
the critical secondary (costimulatory)
and tertiary (cytokine) signals for activa-
tion of the alloreactive T cells), the medi-
ators of acute GVHD. APCs sense al-
lodisparity through MHC and peptide
complexes. Dendritic cells (DCs) are the
most potent APCs and the primary sen-
sors of allodisparity (38). Recipient DCs
that have been primed by the condition-
ing regimen will process and present
MHC and peptide complexes to donor
T cells at the time of transplant (39). At
later time points, donor DCs may take

over this role (40,41). In the case of
hematopoietic cell transplants (HCT), re-
cipient DCs present the endogenous and
the exogenous antigens to donor CD8"
and CD4" T cells, respectively. There is
no predilection for allopeptides to be rec-
ognized by either CD4" or CD8" medi-
ated presentation. As noted earlier, DCs
are important initiators of GVHD. The
role of DC subsets in GVHD is just be-
ginning to be understood (42—-44). How-
ever, the kinetics of the switch from re-
cipient to donor APCs, the contributions
of different APC subsets, the importance
of direct alloantigen presentation, and
the magnitude of indirect alloantigen
presentation in GVHD remain to be
determined.

APCs provide the critical costimula-
tion signals for turning on the acute
GVHD process. The interaction between
the MHC /allopeptide complex on APCs
and the TCR of donor T cells along with
the signal via T-cell costimulatory mole-
cules and their ligands on APCs is re-
quired to achieve T-cell activation, prolif-
eration, differentiation, and survival
(45,46) and the in vivo blockade of posi-
tive costimulatory molecules (such as
CD28, ICOS, CD40, CD30 and so on)
(47-52), or inhibitory signals (such as
PD-1 and CTLA-4) mitigate or exacerbate
acute GVHD respectively (53).

As mentioned above, the inflammatory
cytokines and DAMP ligands released
during pretransplant conditioning regi-
mens act as a third signal to enhance re-
cipient APC and donor T-cell interactions.
In addition, various modulations of APCs
can influence GVHD development. Re-
cent data show that exposure to granulo-
cyte colony-stimulating factor (G-CSF)
shortly after HCT, in combination with a
TBI-conditioning regimen, significantly
worsened GVHD in mice (54). Histone
deacetylase inhibitors such as suberony-
lanilide hydroxamic acid (SAHA) and ITF
2357 have been shown to reduce develop-
ment of GVHD in murine models by
modulating host DC functions (55-57)
(discussed below).

Mediators of GVHD. These primarily
include the donor T-cell subsets and the
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donor NK cells. Evidence suggests that
alloreactive donor T cells consist of sev-
eral subsets with different stimuli re-
sponsiveness, activation thresholds, and
effector functions. The alloantigen com-
position of the host determines which
donor T-cell subsets differentiate and
proliferate. As mentioned previously, in
the majority of HLA-matched HCT, acute
GVHD may be induced by either or both
CD4" and CD8" subset responses to
MiHAs (58). The repertoire and immun-
odominance of the GVHD-associated
peptides presented by MHC class I and
class IT molecules has not been defined
(59). Donor naive CD62L* T cells are the
primary alloreactive T cells that drive the
GVHD reaction, while the donor effector
memory CD62L" T cells do not (60,61).
Interestingly, donor Tregs expressing
CD62L are also critical to the regulation
of GVHD (62,63). We now know that it is
possible to modulate the alloreactivity of
naive T cells by inducing anergy with
costimulation blockade, deletion via cy-
tokine modulation or mixed chimerism.
Donor effector memory T cells that are
nonalloreactive do not induce GVHD,
yet are able to transfer functional mem-
ory (60) and mediate GVL (64). In addi-
tion, lymphopenia-induced proliferation
gives rise to cells that are like memory

T cells and enhance the graft-versus-
tumor effect after donor leukocyte injec-
tion (DLI) (65). In contrast, memory

T cells that are alloreactive can cause se-
vere GVHD (66-68).

GVHD is regulated negatively by reg-
ulatory T cells (Tregs). Distinct subsets of
Tregs exist: the naturally occurring CD4"
CD25" Tregs that express the Forkhead
Box Protein P3 (FOXP3), CD4" CD25~
IL10" Tr cells, yd T cells, double negative
(DN) T cells, and NKT cells (69-74). In
mouse BMT models, naturally occurring
donor-derived Tregs suppress the prolif-
eration of conventional T cells, prevent
GVHD and preserve GVL effects de-
pending upon the ratio of effector T cells
to Tregs (75-80). Furthermore, viral im-
munity is preserved in the presence of
Tregs after allogeneic HCT (81). Mecha-
nisms that enhance Treg numbers and



function might therefore be very effective
in enhancing alloBMT. HDAC]i have been
shown to have such salutary effects of
natural Tregs (discussed further below).
In addition, based on the dominant cyto-
kines that are produced upon activation,
T cells can be distinguished into various
subsets such as Th1, Th2 and Th17 cells.
The Th1 cytokines (IFN-y, IL-2 and
TNF-a) have been implicated in the
pathophysiology of acute GVHD (82-84).
IL-2 production by donor T cells remains
the main target of many current clinical
therapeutic and prophylactic approaches,
such as cyclosporine, tacrolimus and
monoclonal antibodies (mAbs) against
the IL-2 and its receptor to control acute
GVHD (85,86). But emerging data indi-
cate an important role for IL-2 in the gen-
eration and maintenance of CD4'CD25"
Foxp3" Tregs, suggesting that prolonged
interference with IL-2 may have an unin-
tended consequence in the prevention of
the development of long-term tolerance
after allogeneic HCT (87-90). Further-
more the role of Th1/Th2 and Th17 cy-
tokines is complex and might be model
dependent (91-103). Moreover these cells
are required for the GVL effects.

Donor natural killer (NK) cells which
are inhibited by recognition of class I al-
leles on target cells via their killer cell
immunoglobulin-like receptors (KIR) are
emerging as key effectors in the GVH
process. They have been shown to specif-
ically downregulate host APC-mediated
activation of alloreactive T cells perhaps
by directly killing APCs without losing
the beneficial effects (104-106).

Effectors and Amplifiers of GVHD.
The effector phase that leads to GVHD
target organ damage is a complex cas-
cade that involves cytolytic cellular effec-
tors such as CD8 CTLs, CD4 T cells, NK
cells and inflammatory molecules such
as IL-1b, TNFa, IFNy and reactive oxy-
gen species. The cellular effectors require
cell-to-cell contact to kill the cells of the
target tissues via activation of perforin-
granzyme, Fas-FasL (CD95-CD95L), or
TNFR-TRAIL pathways. Other CTL-
killing mechanisms such as TWEAK, and
LTR/LIGHT pathways also have been
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Figure 2. Pathophysiology of GVHD. Three phases of GVHD pathophysiology. From: Reddy P,
Ferrara JLM. (2009 Feb 28) Mouse models of graff-versus-host disease. In: StemBook
(Internet). Cambridge (MA): Harvard Stem Cell Institute; 2008-. Available at:

http://www.stembook.org/node/548

implicated in GVHD (107-114). It is im-
portant to note that CTL pathways are
essential for GVL effects as well. Inflam-
matory pathways, by contrast, based on
animal models, do not require cell-to-cell
contact to kill target cells and are not
particularly critical of GVL. GVHD dam-
age by the cellular effectors is amplified
by these inflammatory mediators includ-
ing IFNy produced by T cells, TNFa (115)
and IL-1 (116) produced by T cells and
monocytes/macrophages, and nitric
oxide (NO) produced by monocytes/
macrophages (117,118).

All of the above aspects of the biology
of acute GVHD may be summarized in a
cyclical three-step model: (step 1) condi-
tioning regimen-related damage and the
release of DAMPs such as LPS, (step 2)
donor T-cell proliferation and (step 3)
target organ damage by effectors (Fig-
ure 2). While this allows for accessing the
biology of GVHD, it is important to note
that GVHD is a complicated systemic
process with many unknowns and is not
a simplified, linear or cyclical process.
Nonetheless, based on our current un-
derstanding, agents that reduce inflam-
matory cytokines such as TNF and IL-1,
but spare T-cell CTL functions and en-
hance donor Tregs and NK cell functions

MOL MED 17(5-6)404-416, MAY-JUNE 2011

may be ideal for reducing GVHD with-
out compromising GVL significantly. Ex-
perimental data suggests that HDACi
may be able to provide such an effect
(see Figure 3 and discussion).

Histone Deacetylase Inhibitors
(HDACI)

Histones are major structural proteins
that package DNA into chromatin and
play an important role in gene regula-
tion. DNA wraps around a histone oc-
tamer composed of histones H2A, H2B,
H3 and H4 to form a nucleosome and the
histone H1 links the octameric core into
chromatin. Covalent modification on the
amino terminal of the core histones
through methylation, ADP-ribosylation,
phosphorylation, ubiquitylation and
acetylation (10,119,120) affect nuclear
replication, chromatin assembly and
transcription (121-123), and thus provide
insight into the epigenetic regulation of
gene expression (10,124).

Histone acetylation is tightly regulated
by the balance of histone acetyltrans-
ferases (HATs) and histone deacetylases
(HDACs). HAT enzymes, which now in-
clude more than 20 members (125), act
by acetylating specific lysine residues of
the histone components of chromatin
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Figure 3. The regulation of immune cells by histone deacetylase inhibitors (HDACIH). HDACi have direct and indirect effects on various im-
mune cellular subsets: HDACI play an important role in the negative regulation of APCs, reduce the secretion of inflammatory cytokines, in-
crease the numbers and function of naturally occurring regulatory T cells (Tregs), and activate natural killer (NK) cell-mediated activity.

while HDACs deacetylate the lysine
residues. HDACs comprise a family of 18
genes subdivided into four distinct
classes: Class I (HDACI, 2, 3, and 8),
class IT (HDACS, 6, 7,9, and 10), and
class IV (HDAC 11) share sequence simi-
larity and require Zn" dependent enzy-
matic activity (126-128). Class IIl is a
structurally unrelated NAD" dependent
subfamily and belongs to the Sirtuin
family (127). Much research on these en-
zymes has focused on their ability to
modulate acetylation of histones and the
regulation of chromatin (129,130).
Emerging data demonstrate that HDACs
can also target nonhistone cellular pro-
teins (127). It is now becoming increas-
ingly known that acetylation of several
nonhistone proteins by the HATs and
HDAGC:sS is an important posttranslational
modification that regulates their func-
tion, stability, protein-protein/protein-
DNA interactions, signaling and func-
tions (131) and that disruption in the
balance of acetylation and deacetylation

affects a broad range of human disorders,
including oncogenesis and immune dys-
function (132). However, not all HDACs
are expressed in all cells; even in those
that express them, their location, target
proteins and functions might thus vary.
Thus, the specificity of different HDACs
and their nonhistone proteins, and more
importantly, the consequences of target-
ing specific HDACs in modulating cellu-
lar growth, differentiation and immune
responses are poorly understood.
However, HDAC inhibitors have
emerged as an important class of anti-
cancer agents (133-135). HDAC] are di-
verse and can be divided into six classes
based on their chemical structure, which
include hydroxamic acid derivatives, car-
boxylates, benzamides, electrophilic ke-
tones, cyclic peptides and miscellaneous
compounds (136,137). These agents in-
hibit the enzymatic activity of primarily
class I and I HDACs with varying effi-
ciency (126,138,139), thereby causing in-
creased histone acetylation and gene tran-
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scription. Two of them, SAHA and ITF
2357, are hydroxamic-containing agents,
and the former was approved by the FDA
for treatment of cutaneous T-cell lym-
phoma (135,140,141). The HDAC], includ-
ing SAHA and ITF 2357, have differential
effects on various zinc-dependent HDAC
enzymes, that is, class I and II HDACs
(18,142). Thus, the specific HDACs that
are critical for the various biological and
clinical effects observed upon treatment
with HDAG] are not known (126). While a
large range of different HDACi have been
studied and developed for cancer therapy,
we and others have demonstrated that
HDAC: at lower and noncytotoxic con-
centrations possess a novel and potent an-
tiinflammatory and immunoregulatory ef-
fect (17,18). Emerging data from multiple
laboratories demonstrate that HDACi can
suppress several inflammatory and
immune-mediated diseases such as lupus,
sepsis, inflammatory bowel disease,
rheumatoid arthritis, autoimmune dia-
betes, allograft tolerance and GVHD in



preclinical models (17,18,55,56,143-148).
Several of these are discussed in accom-
panying articles. Here we will focus on
GVHD and discuss potential mecha-
nisms of regulation by HDACi (Fig-

ure 3).

Impact of HDAC Inhibition on
Experimental GVHD

Insights into the cellular and molecular
pathogenesis of GVHD implicate proin-
flammatory cytokines and host APCs,
such as DCs, as important targets for re-
ducing GVHD (3,149). SAHA or ITF 2357
are such agents that are currently in clini-
cal trials for treatment of cancers (150).
Micromolar concentrations of SAHA are
required for antitumor effects, whereas
nanomolar concentrations of SAHA re-
duce the secretion of inflammatory cy-
tokines such as TNF-a, IEN-y, IL-1p and
IL-12 (17,143). Given the antiinflamma-
tory properties of these agents, and
based on the central role of proinflamma-
tory cytokines in the pathogenesis of
acute GVHD, we investigated the role of
SAHA in a well-characterized murine
model of allogeneic HCT. SAHA or ITF
2357 were administered during the am-
plification of the proinflammatory cas-
cade early in the time course of trans-
plant without interrupting the initial
donor T-cell interaction with host APCs
(35,151,152). SAHA significantly reduced
serum levels of TNF-a, IL-1, and IFN-y
after alloBMT (55). Furthermore, this re-
duction in the proinflammatory cy-
tokines was associated with a reduction
in the GVHD mortality and GVHD-
specific target organ damage in multiple
murine models (55). SAHA administra-
tion following allogeneic HCT did not af-
fect donor T-cell responses to host anti-
gens as determined by their proliferative
and CTL responses (55). In addition, the
inhibition of cytokines by SAHA tempo-
rally correlated with enhanced acetyla-
tion of histone H3 and was associated
with the downregulation of TNF-a and
IFN-y mRNA after allogeneic HCT (55).
Thus the reduction in GVHD likely was
primarily due to the inhibition of the in-
flammatory cytokines and not due to a

direct effect on donor T-cell responses in
these models.

It is often challenging to separate the
toxicity from GVHD with the beneficial
GVL effects, a well-recognized and po-
tent form of immunotherapy for malig-
nancies (1). While inflammatory cy-
tokines contribute to the toxicity of
GVHD, they have a more limited role in
the eradication of residual leukemia,
which is primarily mediated by donor
CTLs and NK cells (76,95,153-155). Con-
sistent with the preservation of donor T-
cell functions, we have found that SAHA
administration led to the disruption of
inflammatory cytokine cascades, but
maintained CTLs, thereby attenuating
GVHD mortality and preserving GVL ef-
fects and improving leukemia-free sur-
vival (55). By contrast, the syngeneic ani-
mals that received SAHA did not
eliminate the tumor completely, demon-
strating the requirement of GVL for
tumor eradication. These observations
were confirmed in additional tumor and
alloBMT murine models, thus ruling out
any tumor- or model-specific artifacts.
Thus, the maintenance of donor T-cell re-
sponses to host antigens after SAHA
treatment also preserved the beneficial
GVL effect in multiple mouse models of
allogeneic HCT. Similar observations on
GVHD reduction were made by other
groups in other different models (148).

HDAC inhibition modulates the
function of APCs. DCs serve as the sen-
tinels of the immune response and func-
tion as the most potent APCs (156). They
initiate innate immune responses prima-
rily through PRRs, and shape adaptive
immunity through the modulation of T-
cell responses (157). Because host APCs
are critical for the induction of allore-
sponses and are the major sources of
proinflammatory cytokines, following
our initial observation that SAHA ad-
ministration suppressed proinflamma-
tory cytokines and reduced GVHD (55),
we investigated the effect of SAHA and
ITF 2357 on the function of DCs (56).
Bone marrow—derived DCs treated with
SAHA or ITF 2357 and then stimulated
with TLR agonists such as LPS or other
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TLR ligands (lipoteichoic acid, peptido-
glycan, dsRNA poly[IC] and CpG DNA)
(158,159), secreted significantly reduced
amounts of proinflammatory cytokines
such as IL-1b, TNF-a, IL-12, and IL-6 in a
dose-dependent manner (56). DCs
treated with SAHA and ITF 2357 also
demonstrated reduced in vitro allostimu-
latory responses. This was due to de-
creased proliferation of the allogeneic
T cells and not a consequence of en-
hanced apoptosis. More importantly, de-
spite the reduction in proliferation of the
T cells, their CTL functions were pre-
served against the allotargets. Consistent
with the decreased in vitro alloprolifera-
tive responses and reduced amounts of
cytokines, when the host type DCs were
treated with SAHA and infused in the
alloBMT recipients early after BMT, they
reduced both CD4 and CDS8 driven
GVHD (56). The reduction in GVHD was
once again associated with reduced lev-
els of proinflammatory cytokines (56).
HDAC:i induce IDO and regulate
DCs. Indoleamine 2,3-dioxygenase
(IDO) is an intracellular enzyme that
degrades tryptophan, an amino acid
that is essential for T-cell activation
(160). Treatment of DCs with SAHA in-
creased IDO expression at the protein
and mRNA levels (56). The increase in
IDO expression was associated with hi-
stone (H4) acetylation in the IDO pro-
moter region (56). Utilizing three com-
plementary approaches, siRNA,
pharmacologic inhibition by 1-MT, and
genetically deficient IDO™/~ mice, the
importance of IDO induction in the
DCs by HDAC] was investigated. IDO-
specific siRNA silenced the mRNA ex-
pression of IDO in the SAHA-treated
DCs and significantly reversed the sup-
pression of the proinflammatory cy-
tokine, TNF-a, upon LPS stimulation.
Likewise, LPS-stimulated DCs from
IDO™~ animals or those treated with
1-MT also demonstrated the loss of sup-
pression of proinflammatory cytokine
secretion by HDAC]. Consistent with
our data from murine BM DCs, HDACi
also reduced the innate and allostimula-
tory responses of DCs derived from
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healthy human volunteers (56). Further-
more, when bone marrow chimeras gen-
erated by utilizing IDO-deficient ani-
mals (IDO™/~ — B6) (such that only host
hematopoietic-derived APCs were inca-
pable of generating IDO), were used as
recipients in alloBMT, these animals were
not protected by administration of
SAHA or ITF 2357, demonstrating a loss
of HDACi-induced reduction in GVHD.
These data indicate a key role for IDO in-
duction by host APCs in the HDACi in-
duced GVHD protection.

STAT-3 is necessary for induction of
IDO by HDAC:. The critical pathways
responsible for the induction of IDO fol-
lowing treatment with HDACi was fur-
ther dissected. Signaling via Janus kinase
(JAK)-signal transducer and activator of
transcription (STAT) pathways positively
and negatively regulate all cell types in-
volved in immune responses (161,162).
There are seven STAT transcription fac-
tors (161) and while each of the STAT
proteins have distinct and overlapping
functions, STAT-3 is critical for negative
regulation of proinflammatory cytokine
secretion by monocyte/DCs but for en-
hancing T-cell function (163). Data from
lethal STAT-3 knock-out mice (164),
tumor immunotherapy models (165-167),
and, more importantly, humans with loss
of function mutations of STAT-3 (Hyper
IgE syndrome patients) show enhanced
inflammatory phenotype (168-170), dem-
onstrating an essential role for STAT-3 in
suppressing immune responses. These
findings indicate that STAT-3 plays a crit-
ical role in negative regulation of DCs
(171). Posttranslational modification of
STAT-3 either by phosphorylation
and/or acetylation activates its functions
(172-178). We therefore, reasoned that
HDACIi might activate STAT-3 by acety-
lation and that may be critical for induc-
tion of IDO and regulation of DCs (174).
STAT-3 was acetylated following SAHA-
or ITF 2357-treatment of DCs. Although
HDAC: acetylated STAT-3 it did not alter
its phosphorylation status (174). Further-
more, when the effects of SAHA and ITF
2357 were tested on the induction of IDO
in cell lines expressing pcDNA3 empty
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Figure 4. The regulation of DCs by histone deacetylase inhibitors (HDAC!).

vector (STAT-3 null), wild type STAT-3,
and STAT-3 mutant®®®® (that contains
Lys685-to-Arg substitution and therefore
cannot be acetylated-K685R), HDAC in-
hibition enhanced IDO expression in the
WT STAT-3 transfected cells but not in
the null control or the acetylation resist-
ant STAT-3 mutant“®*®. These data sug-
gest a critical role for STAT-3 acetylation
in the induction of IDO. The relevance of
STAT-3 in altering DC function by
HDAC I was evaluated further by utiliz-
ing a drug that disrupts STAT-3 DNA
complex formation, JSI-124 specifically
(179). Murine DCs, when treated with
JSI-124 and then conditioned with SAHA
and ITF 2357, did not show suppression
of LPS-induced secretion of proinflam-
matory cytokines such as TNF-a. secre-
tion or a reduction in allogeneic T-cell
proliferation when compared with dilu-
ents treated DCs. Thus, the disruption of
STAT-3 activity with JSI-124 mitigated
the suppressive effects of HDAC inhibi-
tion on DCs. Other studies have demon-
strated that STAT3 acetylation by the
HAT CBP has been correlated with in-
creased DNA-binding and transactiva-
tion activity (174,180,181,182). Con-
versely, deacetylation of STAT3 by the
HDAC Sirtuin 1 correlates with de-
creased STAT3 tyrosine phosphorylation
and activity (183). Nonetheless, collec-
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tively, these data demonstrate that acety-
lation of STAT-3 is necessary for its acti-
vation and for the regulation of DCs.
However, whether acetylation alone is
sufficient in the absence of phosphoryla-
tion remains to be investigated. These
and other potential effects of HDACi on
DCs are summarized in Figure 4.
Specific HDAC enzymes in the regu-
lation of DCs. HDACi mediated sup-
pression of DCs demonstrate the overall
impact on DCs from global suppression
of class I/I HDAC:s. The role of specific
HDAC enzymes in the regulation of DCs
is being evaluated currently. To this end,
recent studies by Sotomayor and col-
leagues have evaluated the impact of
HDAC11 and HDAC6 on DCs (184,185).
HDACI11 is a newly characterized mem-
ber of the HDAC family (186). Villagra et
al. (184), showed that HDAC11 regulates
the expression of IL-10 negatively in
mouse and human APCs (DCs and
macrophages), primarily by interacting
with the distal segment of the promoter
of the gene encoding this cytokine. IL-10
is an antiinflammatory cytokine that is
an important mediator in influencing the
function of APCs at the site of antigen
encounter, and, thus, serves a key role in
tolerance induction and regulation of in-
flammation (187-189). Overexpression of
HDACI1 abrogated the expression of



IL-10 mRNA in LPS-treated macro-
phages. When HDAC11 was “knocked
down” by the transduction of primary
mouse macrophages with short hairpin
RNA, LPS stimulation resulted in higher
expression of IL-10 mRNA. These find-
ings were confirmed in additional exper-
iments using two macrophage cell lines
(derived from RAW?264.7) lacking
HDACI11 expression. Furthermore, in
RAW?264.7 cells transfected with an enzy-
matically inactive mutant HDAC11 with
deletion of its deacetyltransferase do-
main, demonstrated increased expression
of IL-10 mRNA, suggesting that intact
deacetylase activity was required for
HDAC11-mediated inhibition of IL-10 in
APCs. APCs overexpressing or lacking
HDAC11 altered CD4" T-cell prolifera-
tion. Specifically, overexpression of
HDACI11 in APCs activated naive anti-
gen-specific CD4" T cells and restored
the responsiveness of tolerant T cells,
whereas APCs lacking HDAC11 func-
tionally impaired CD4" T-cell prolifera-
tion and they produced less IL-2 and
IFN-y. More recently, Dubovsky ef al.
(185) report that overexpression of
HDACS6 induced transcriptional activa-
tion of IL-10 gene expression, the oppo-
site effect seen with HDACI11. These data
demonstrate the role of specific HDACs,
HDACI11 and HDACS®, and the inflam-
matory response of APCs. They demon-
strate that, in contrast to global inhibition
of HDAC s, the inhibition of specific
HDACSs might lead to a distinct and/or
opposite effect on DC responses.
Nonetheless, they collectively demon-
strate that HDACs could serve as poten-
tial therapeutic targets for influencing
APC/DC-mediated immune responses.
HDAC inhibition and regulatory
T-cell (Tregs) function. As noted above,
donor Tregs reduce GVHD, but do not di-
minish GVL significantly after alloBMT.
Recently, Tao et al. (147) reported that
HDACi expands in vivo Treg cell popula-
tion and also increased the activity of
these cells. Several mouse models of al-
loimmunity and autoimmunity were
studied for the in vivo analysis of HDAC
inhibition. Namely, the recombination-ac-

tivating gene-2 (Rag?2)-deficient mouse
model and two adoptive transfer models.
In each model, HDAC inhibition in-
creased the absolute numbers and pro-
portion of Treg cells, primarily in the
CD4" CD25" Foxp3" T-cell subset. When
the effects of HDACi therapy were evalu-
ated in vivo, there was increased expres-
sion and acetylation of FOXP3" and also
an increase in the Treg associated genes,
such as CTLA4 and GITR, while IL-2 was
repressed. Thus, the expression of multi-
ple Treg-associated genes was increased
with HDACi. HDAC inhibition promoted
acetylation of histones in Treg cells and
increased acetylation on several lysines in
the forkhead domain of FOXP3". When
these lysines were mutated, FOXP3*
could not repress IL-2 expression and
was less able to suppress conventional T-
cell activity in vitro, demonstrating that
the enhanced function of Tregs is in part
due to direct targeting (acetylation) of
nonhistone protein Foxp3. They also
demonstrate that HDACY, expressed in
higher amounts in Treg cells than con-
ventional T cells, was critical for modu-
lating Tregs. They further demonstrated
that the beneficial effects of HDACi on al-
lograft rejection and IBD models. The di-
rect impact of HDACi on donor Tregs
after alloBMT is under active investiga-
tion currently by our group. Nonetheless,
data extrapolated from Tao et al.’s obser-
vation suggest that HDACi might also
have Treg enhancing effects after al-
1oBMT and that this may be another po-
tential GVHD protective effect of HDACi.
HDAC inhibition on NK-cell func-
tion and tumor immunogenicity. Donor
NK cells reduce GVHD by eliminating
host APCs while promoting GVL by di-
rect elimination of the host tumors. Acety-
lation and deacetylation also may play an
important role in NK-cell activity (186).
HDAC inhibition with SAHA treatment
has been reported to increase the func-
tional expression of NK cell-mediated
killing through NKG2, member D
(NKG2D) ligands including MHC class
I-related chain A and B (MICA/B) in
Jurkat T-cell leukemia, thereby making
them more sensitive to NK cell-mediated
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lyses (190). The effect of HDACi on NK-
cell activity also was investigated by
Armeanu et al. (191) who showed that
treatment of human hepatocellular carci-
noma cells with the HDACi sodium val-
proate (VPA) mediated the lyses of ma-
lignant cells via NKG2D expressed on
cytotoxic lymphocytes. VPA induced the
transcription of MICA /B in hepato-
cellular carcinoma cells, which led to in-
creased cell surface expression, followed
by lyses of the cancer cells. These data
support a role for HDACi in stimulating
NK cell-mediated activity, which may
contribute to antitumor immune re-
sponses while regulating GVHD. This,
however, remains to be demonstrated di-
rectly in experimental GVHD models.
Skov et al. (190) demonstrated en-
hanced NK cell-mediated killing on mul-
tiple types of cancer cells following
HDACI treatment, which included B-cell
acute lymphoblastic leukemia, acute
myelogenous leukemia, multiple mye-
loma, malignant non-Hodgkin lym-
phoma, T-cell acute lymphoblastic
leukemia, mantle cell lymphoma, multi-
ple myeloma, epithelial breast adeno-
carcinoma, epithelial cervix adeno-
carcinoma, and epithelial colorectal
adenocarcinoma. This was consistent
with other studies, which have shown a
range of different cancer types character-
ized by constitutive expression of
MICA/B (192-194). Interestingly, Skov et
al. (190) showed that two other cancer cell
lines tested did not respond to HDACi
treatment by increased MICA /B expres-
sion. Therefore, the molecular basis for
the selective expression of MICA /B on
different cancer cells by HDACi treat-
ment remains unknown. In any event,
another study demonstrated that HDACi
enhanced the immune susceptibility of
two specific forms of primary human
acute myeloid leukemia (195). HDACi
also induced apoptosis of leukemic blasts
AML expressing the PML-RAR or AML1-
ETO oncoproteins, independent of p53,
through activation of a specific death re-
ceptor pathway (TRAIL and Fas signaling
pathways) (196). Collectively, these re-
sults suggest that HDACi regulate GVHD
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by modulating proinflammatory cytokine
secretion, host APC function and perhaps
by enhancing Tregs. However, they still
may preserve GVL by preservation of
donor T-cell CTL functions, increasing
NK reactivity and the immunogenicity of
the tumor cells.

The impact of HDAC inhibition on
other allograft models. The effects of
HDACI on other allograft models, in-
cluding rat and canine transplant mod-
els, also have been investigated (197,198).
FR276457, a hydroxamic derivative
HDAC inhibitor, was shown to prevent
allograft rejection in a rat cardiac trans-
plant model. When administered alone
as monotherapy, the drug demonstrated
strong efficacy and demonstrated dra-
matic allograft survival when used in
combination with tacrolimus. Another
HDAC inhibitor, FR235222, also pro-
longed graft survival in rat cardiac trans-
plant model (199). HDACi therapy allo-
graft survival of rapamycin in murine
cardiac and islet cell transplant models
(40). The data support the role for
HDACI as potential therapeutic agents in
mitigating alloresponses after BMT and
solid organ allografting and, perhaps,
can be used as useful adjuncts to current
standard immunoprophylaxis drugs
such as the CNI and mTOR inhibitors.

Ongoing Translation of HDAC
Inhibition for GVHD Prevention

The literature reviewed herein suggests
that HDACi have direct and indirect ef-
fects on various immune cellular subsets,
depicted in Figure 3. HDACi play an im-
portant role in the negative regulation of
APCs (56), reduce the secretion of inflam-
matory cytokines, such as TNF-a, IFN-y,
IL-1p and IL-12 (17,55,143), increase the
numbers and function of natural CD4"
CD25" FOXP3" Tregs (147, 200), and acti-
vate NK cell-mediated activity (190,191).
HDAC inhibition reduced GVHD and
preserved GVL in murine models (55)
and regulated both murine and human
APCs (57,147,200,201). The HDAC;],
SAHA and ITF 2357 thus appear to ex-
hibit the desirable regulatory effects on
multiple mediators of GVHD (that is, in-

hibit proinflammatory secretion, host
APCs but promote donor Treg and NK-
cell responses) (3,202, see Figure 3). In ad-
dition, the pharmacokinetics of oral
ITF2357 recently has been studied (203)
and both oral SAHA (vorinostat) and
ITF2357 (givinostat) have good safety
profiles in humans.

Therefore, given these preclinical ob-
servations and the good therapeutic
index of the oral preparations of some of
these agents, such as SAHA and ITF2357,
a clinical trial has been launched at the
University of Michigan and at Washing-
ton University to test the concept that
deacetylase inhibition, when used as an
adjunct with standard prophylaxis with
CNI, will reduce the incidence and sever-
ity of acute GVHD after reduced inten-
sity conditioning (RIC) in a matched re-
lated donor allogeneic HCT. This trial is
based on the institutional experience of
GVHD with RIC regimens. Prior experi-
ence with this approach showed a 42%
incidence of grades II-IV GVHD, with a
50% two-year survival rate (204). The
trial is now built on this experience to
evaluate whether adding HDACi, SAHA
(vorinostat) will reduce the incidence of
grade II-IV GVHD to 25%. It is an open
label, nonrandomized, Phase II clinical
trial using the same RIC regimen (flu-
darabine and busulfan) that has been uti-
lized for approximately 10 years at our
institution. The GVHD prophylaxis back-
bone consists of tacrolimus (day 3 to day
56, followed by a taper over 4 months)
and mycophenolate mofeitil (day 0 to
day 28). Vorinostat currently is being ad-
ministered orally from day 10 to day 100
at 100 mg twice daily. So far, 20 patients
have been treated on this trial. Because
SAHA has not been tested previously in
this setting, it was started at 100 mg
twice daily based on clinical data dem-
onstrating that this dose of induced
acetylation in circulating PBMCs. Be-
cause the 100 mg dose appeared safe in
the first cohort of 10 patients, the dose
was escalated to 200 mg twice daily in an
attempt to enhance efficacy. However,
even though no dose limiting toxicities
were reached on the 200 mg twice daily
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dose, there appeared to be a greater inci-
dence of thrombocytopenia on the in-
creased dose. Therefore the study dose
has been deescalated back to the 100 mg
twice daily after 19 patients, and this
dosing will be used for the remainder of
the study. Thus far, all 20 patients on the
trial have engrafted successfully. There
have been no dose-limiting toxicities. No
serious adverse events related to drugs,
including myelosuppression, liver or
kidney toxicities have been observed in
this early cohort of patients. Only four
patients have developed grade 2 GI
GVHD, and in all four of these patients,
GVHD resolved with systemic and topi-
cal therapy. To our knowledge, this is the
first human study of HDAC inhibition in
allogeneic BMT patients. If successful, it
could lead to the development of an en-
tirely new class of immunomodulatory
therapy for GVHD, and perhaps for im-
mune/inflammatory diseases. Alterna-
tively, even if the primary endpoint of
the clinical trial is not met, this study
will generate data that likely will allow
for new lines of laboratory investigation
that may foster a better understanding
of the biology and role of HDACs in
GVHD and immune responses.

ACKNOWLEDGMENT
Supported by NIH grants: AI075284,
HL090775 and CA143379 to PR.

DISCLOSURES

The authors declare that they have no
competing interests as defined by Molecu-
lar Medicine, or other interests that might
be perceived to influence the results and
discussion reported in this paper.

REFERENCES

1. Appelbaum FR. (2001) Haematopoietic cell trans-
plantation as immunotherapy. Nature. 411:385-9.

2. Blazar BR, Murphy WJ. (2005) Bone marrow
transplantation and approaches to avoid graft-
versus-host disease (GVHD). Philos. Trans. R. Soc.
Lond. B. Biol. Sci. 360:1747-67.

3. Welniak LA, Blazar BR, Murphy WJ. (2007) Im-
munobiology of allogeneic hematopoietic stem cell
transplantation. Annu. Rev. Immunol. 25:139-70.

4. Nash RA, et al. (2000) Phase III study comparing
methotrexate and tacrolimus with methotrexate
and cyclosporine for prophylaxis of acute graft-



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

versus-host disease after marrow transplantation
from unrelated donors. Blood. 96:2062-8.

Antin JH, Ferrara JL. (1992) Cytokine dysregula-
tion and acute graft-versus-host disease. Blood.
80:2964-8.

Duffner UA, et al. (2004) Host dendritic cells
alone are sufficient to initiate acute graft-versus-
host disease. J. Immunol. 172:7393-8.

Mohty M. (2007) Dendritic cells and acute graft-
versus-host disease after allogeneic stem cell
transplantation. Leuk. Lymphoma. 48:1696-701.
Nachbaur D, Kircher B. (2005) Dendritic cells in
allogeneic hematopoietic stem cell transplanta-
tion. Leuk. Lymphoma. 46:1387-96.

Esteller M. (2007) Cancer epigenomics: DNA
methylomes and histone-modification maps. Nat.
Rev. Genet. 8:286-98.

Jenuwein T, Allis CD. (2001) Translating the his-
tone code. Science. 293:1074-80.

Villagra A, Sotomayor EM, Seto E. (2010) Histone
deacetylases and the immunological network:
implications in cancer and inflammation. Onco-
gene. 29:157-73.

Johnstone RW. (2002) Histone-deacetylase in-
hibitors: novel drugs for the treatment of cancer.
Nat. Rev. Drug. Discov. 1:287-99.

Marks PA, Miller T, Richon VM. (2003) Histone
deacetylases. Curr. Opin. Pharmacol. 3:344-51.
Richon VM, O'Brien JP. (2002) Histone deacety-
lase inhibitors: a new class of potential therapeu-
tic agents for cancer treatment. Clin. Cancer Res.
8:662—4.

Kelly WK, et al. (2003) Phase I clinical trial of his-
tone deacetylase inhibitor: Suberoylanilide hy-
droxamic acid administered intravenously. Clin.
Cancer Res. 9:3578-88.

Kelly WK, et al. (2005) Phase I study of an oral
histone deacetylase inhibitor, suberoylanilide hy-
droxamic acid, in patients with advanced cancer.
J. Clin. Oncol. 23:3923-31.

Leoni F, et al. (2002) The antitumor histone
deacetylase inhibitor suberoylanilide hydroxamic
acid exhibits antiinflammatory properties via
suppression of cytokines. Proc. Natl. Acad. Sci.

u. S. A. 99:2995-3000.

Leoni F, et al. (2005) The histone deacetylase in-
hibitor ITF2357 reduces production of pro-
inflammatory cytokines in vitro and systemic in-
flammation in vivo. Mol. Med. 11:1-15.

Pavletic SZ, et al. (2005) Prognostic factors of
chronic graft-versus-host disease after allogeneic
blood stem-cell transplantation. Am. J. Hematol.
78:265-74.

Filipovich AH, et al. (2005) National Institutes of
Health consensus development project on criteria
for clinical trials in chronic graft-versus-host dis-
ease: I. Diagnosis and staging working group re-
port. Biol. Blood Marrow Transplant. 11:945-56.
Petersdorf EW, Malkki M. (2006) Genetics of risk
factors for graft-versus-host disease. Semin.
Hematol. 43:11-23.

Flomenberg N, et al. (2004) Impact of HLA class I
and class II high-resolution matching on out-

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

comes of unrelated donor bone marrow trans-
plantation: HLA-C mismatching is associated
with a strong adverse effect on transplantation
outcome. Blood. 104:1923-30.

Den Haan JM, et al. (1995) Identification of a graft
versus host disease-associated human minor his-
tocompatibility antigen. Science. 268:1476-80.
Goulmy E, et al. (1996) Mismatches of minor his-
tocompatibility antigens between HLA-identical
donors and recipients and the development of
graft-versus-host disease after bone marrow
transplantation. N. Engl. |. Med. 334:281-5.
Murata M, Warren EH, Riddell SR. (2003) A
human minor histocompatibility antigen result-
ing from differential expression due to a gene
deletion. J. Exp. Med. 197:1279-89.

Bleakley M, Riddell SR. (2004) Molecules and
mechanisms of the graft-versus-leukaemia effect.
Nat. Rev. Cancer. 4:371-80.

Inohara N, Nunez G. (2003) NODs: intracellular
proteins involved in inflammation and apopto-
sis. Nat. Rev. Immunol. 3:371-82.

Medzhitov R. (2007) Recognition of microorgan-
isms and activation of the immune response. Na-
ture. 449:819-26.

Chen GY, Tang J, Zheng P, Liu Y. (2009) CD24
and Siglec-10 selectively repress tissue damage-
induced immune responses. Science. 323:1722-5.
Cooke KR, et al. (1998) Tumor necrosis factor-
alpha production to lipopolysaccharide stimula-
tion by donor cells predicts the severity of exper-
imental acute graft-versus-host disease. J. Clin.
Invest. 102:1882-91.

Hill GR, Ferrara JL. (2000) The primacy of the
gastrointestinal tract as a target organ of acute
graft-versus-host disease: Rationale for the use of
cytokine shields in allogeneic bone marrow
transplantation. Blood. 95:2754-9.

Taylor PA, et al. (2008) TLR agonists regulate al-
loresponses and uncover a critical role for donor
APCs in allogeneic bone marrow rejection. Blood.
112:3508-16.

Holler E, et al. (2006) Prognostic significance of
NOD2/CARD15 variants in HLA-identical sib-
ling hematopoietic stem cell transplantation: ef-
fect on long-term outcome is confirmed in 2 in-
dependent cohorts and may be modulated by the
type of gastrointestinal decontamination. Blood.
107:4189-93.

Holler E, et al. (2004) Both donor and recipient
NOD2/CARD15 mutations associate with trans-
plant-related mortality and GvHD following allo-
geneic stem cell transplantation. Blood. 104:889-94.
Hill GR, et al. (1997) Total body irradiation and
acute graft-versus-host disease: The role of gas-
trointestinal damage and inflammatory cy-
tokines. Blood. 90:3204-13.

Xun CQ, Thompson JS, Jennings CD, Brown SA,
Widmer MB. (1994) Effect of total body irradia-
tion, busulfan-cyclophosphamide, or cyclophos-
phamide conditioning on inflammatory cytokine
release and development of acute and chronic
graft-versus-host disease in H-2-incompatible
transplanted SCID mice. Blood. 83:2360-7.

MOL MED 17(5-6)404-416, MAY-JUNE 2011 |

37.

38.

39.

40.

41.

42

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

REVIEW ARTICLE

Chen X, et al. (2009) Blockade of interleukin-6
signaling augments regulatory T cell reconstitu-
tion and attenuates the severity of graft versus
host disease. Blood. 114:891-900.

Banchereau J, Steinman RM. (1998) Dendritic
cells and the control of immunity. Nature.
392:245-52.

Shlomchik WD, et al. (1999) Prevention of graft
versus host disease by inactivation of host anti-
gen-presenting cells. Science. 285:412-5.

Reddy D, et al. (2005) A crucial role for antigen-
presenting cells and alloantigen expression in
graft-versus-leukemia responses. Nat. Med.
11:1244-9.

Matte CC, et al. (2004) Donor APCs are required
for maximal GVHD but not for GVL. Nat. Med.
10:987-92.

Hadeiba H, et al. (2008) CCR9 expression defines
tolerogenic plasmacytoid dendritic cells able to
suppress acute graft-versus-host disease. Nat. Im-
munol. 9:1253-60.

Koyama M, et al. (2009) Plasmacytoid dendritic
cells prime alloreactive T cells to mediate graft-
versus-host disease as antigen-presenting cells.
Blood. 113:2088-95.

. Banovic T, et al. (2009) Graft-versus-host disease

prevents the maturation of plasmacytoid den-
dritic cells. . Immunol. 182:912-20.

Sharpe AH, Freeman GJ. (2002) The B7-CD28
superfamily. Nat. Rev. Immunol. 2:116-26.

Li XC, Rothstein DM, Sayegh MH. (2009) Cos-
timulatory pathways in transplantation: chal-
lenges and new developments. Immunol. Rev.
229:271-93.

Blazar BR, et al. (2001) Ligation of 4-1BB
(CDw137) regulates graft-versus-host disease,
graft-versus-leukemia, and graft rejection in allo-
geneic bone marrow transplant recipients. J. In-
munol. 166:3174-83.

Blazar BR, et al. (2004) CD30/CD30 ligand
(CD153) interaction regulates CD4" T cell-
mediated graft-versus-host disease. . Immunol.
173:2933-41.

Blazar BR, ef al. (2003) Ligation of OX40 (CD134)
regulates graft-versus-host disease (GVHD) and
graft rejection in allogeneic bone marrow trans-
plant recipients. Blood. 101:3741-8.

Blazar BR, Taylor PA, Linsley PS, Vallera DA.
(1994) In vivo blockade of CD28/CTLA4:
B7/BB1 interaction with CTLA4-Ig reduces lethal
murine graft-versus-host disease across the
major histocompatibility complex barrier in mice.
Blood. 83:3815-25.

Blazar BR, ef al. (1997) Blockade of CD40 ligand-
CD40 interaction impairs CD4" T cell-mediated
alloreactivity by inhibiting mature donor T cell
expansion and function after bone marrow trans-
plantation. J. Immunol. 158:29-39.

Hubbard VM, et al. (2005) Absence of inducible
costimulator on alloreactive T cells reduces graft
versus host disease and induces Th2 deviation.
Blood. 106:3285-92.

Blazar BR, et al. (2003) Blockade of programmed
death-1 engagement accelerates graft-versus-host

CHOI AND REDDY | 413



LYSINE DEACETYLATION AND GRAFT VERSUS HOST DISEASE

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

414 |

disease lethality by an IFN-gamma-dependent
mechanism. J. Immunol. 171:1272-7.

Morris ES, et al. (2009) Induction of natural killer
T cell-dependent alloreactivity by administration
of granulocyte colony-stimulating factor after

bone marrow transplantation. Nat. Med. 15:436—41.

Reddy P, et al. (2004) Histone deacetylase in-
hibitor suberoylanilide hydroxamic acid reduces
acute graft-versus-host disease and preserves
graft-versus-leukemia effect. Proc. Natl. Acad. Sci.
u. S. A.101:3921-6.

Reddy P, et al. (2008) Histone deacetylase inhibi-
tion modulates indoleamine 2,3-dioxygenase-
dependent DC functions and regulates experi-
mental graft-versus-host disease in mice. J. Clin.
Invest. 118:2562-73.

SunY, et al. (2009) Cutting edge: Negative regu-
lation of dendritic cells through acetylation of
the nonhistone protein STAT-3. J. Immunol.
182:5899-903.

Wu (], Ritz J. (2006) Induction of tumor immu-
nity following allogeneic stem cell transplanta-
tion. Adv. Immunol. 90:133-73.

Spierings E, et al. (2006) A uniform genomic
minor histocompatibility antigen typing method-
ology and database designed to facilitate clinical
applications. PLoS ONE. 1:e42.

Anderson BE, et al. (2003) Memory CD4" T cells
do not induce graft-versus-host disease. J. Clin.
Invest. 112:101-108.

Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ.
(2004) Transfer of allogeneic CD62L" memory

T cells without graft-versus-host disease. Blood.
103:1534-41.

Ermann J, et al. (2005) Only the CD62L" subpop-
ulation of CD4"CD25" regulatory T cells protects
from lethal acute GVHD. Blood. 105:2220-6.
Taylor PA, et al. (2004) L-Selectin(hi) but not the
L-selectin(lo) CD4*25" T-regulatory cells are po-
tent inhibitors of GVHD and BM graft rejection.
Blood. 104:3804-12.

Zheng H, et al. (2008) Effector memory CD4" T cells
mediate graft-versus-leukemia without inducing
graft-versus-host disease. Blood. 111:2476-84.
Miller JS, et al. (2007) Lymphodepletion followed
by donor lymphocyte infusion (DLI) causes sig-
nificantly more acute graft-versus-host disease
than DLI alone. Blood. 110:2761-3.

Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG.
(2005) Alloreactive memory T cells are responsi-
ble for the persistence of graft-versus-host dis-
ease. J. Immunol. 174:3051-8.

Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG.
(2005) Host-reactive CD8" memory stem cells in
graft-versus-host disease. Nat. Med. 11:1299.
Dutt S, ef al. (2007) Naive and memory T cells in-
duce different types of graft-versus-host disease.
J. Immunol. 179:6547-54.

Blazar BR, Taylor PA. (2005) Regulatory T cells.
Biol. Blood Marrow Transpl. 11:46-9.

Cohen JL, Boyer O. (2006) The role of
CD4'CD25hi regulatory T cells in the phys-
iopathogeny of graft-versus-host disease. Curr.
Opin. Immunol. 18:580-5.

CHOI AND REDDY |

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Maeda Y, et al. (2005) Critical role of host gam-
madelta T cells in experimental acute graft-
versus-host disease. Blood. 106:749-55.

Roncarolo MG. (1997) The role of interleukin-10
in transplantation and GVHD. In: Graft-vs.-host
disease. Ferrara JLM, Deeg HJ and Burakoff SJ
(eds.) Marcel Dekker Inc., New York, pp 693-715.
Young KJ, DuTemple B, Phillips MJ, Zhang L.
(2003) Inhibition of graft-versus-host disease by
double-negative regulatory T cells. J. Immunol.
171:134-41.

Zeng D, et al. (1999) Bone marrow NK1.1(-) and
NK1.1(+) T cells reciprocally regulate acute graft
versus host disease. ]. Exp. Med. 189:1073-81.
Cohen JL, Trenado A, Vasey D, Klatzmann D,
Salomon BL. (2002) CD4(+)CD25(+) immunoreg-
ulatory T Cells: new therapeutics for graft-
versus-host disease. ]. Exp. Med. 196:401-6.
Edinger M, et al. (2003) CD4"CD25" regulatory

T cells preserve graft-versus-tumor activity while
inhibiting graft-versus-host disease after bone
marrow transplantation. Nat. Med. 9:1144-50.
Hoffmann P, Ermann J, Edinger M, Fathman CG,
Strober S. (2002) Donor-type CD4(+)CD25(+) reg-
ulatory T cells suppress lethal acute graft-versus-
host disease after allogeneic bone marrow trans-
plantation. J. Exp. Med. 196:389-99.

Jones SC, Murphy GF, Korngold R. (2003) Post-
hematopoietic cell transplantation control of
graft-versus-host disease by donor CD425 T cells
to allow an effective graft-versus-leukemia re-
sponse. Biol. Blood Marrow Transpl. 9:243-56.
Taylor PA, Lees CJ and Blazar BR. (2002) The in-
fusion of ex vivo activated and expanded
CD4(+)CD25(+) immune regulatory cells inhibits
graft-versus-host disease lethality. Blood.
99:3493-9.

Coghill JM, Carlson MJ, Moran TP, Serody JS.
(2008) The biology and therapeutic potential of
natural regulatory T-cells in the bone marrow
transplant setting. Leuk. Lymphoma 49:1860-9.
Nguyen VH, et al. (2008) The impact of regulatory
T cells on T-cell immunity following hematopoi-
etic cell transplantation. Blood. 111:945-53.
Ferrara JL, Krenger W. (1998) Graft-versus-host
disease: the influence of type 1 and type 2 T cell
cytokines. Transf. Med. Rev. 12:1-17.

Ferrara JLM. (1994) The cytokine storm of acute
graft-versus host disease. Haematol. Rev. 8:27.
Reddy P. (2003) Pathophysiology of acute graft-
versus-host disease. Hematol. Oncol. 21:149-61.
Ratanatharathorn V, ef al. (1998) Phase III study
comparing methotrexate and tacrolimus (prograf,
FK506) with methotrexate and cyclosporine for
graft-versus-host disease prophylaxis after HLA-
identical sibling bone marrow transplantation.
Blood. 92:2303-14.

Liu EH, Siegel RM, Harlan DM, O’Shea JJ. (2007)
T cell-directed therapies: lessons learned and fu-
ture prospects. Nat. Immunol. 8:25-30.

Zeiser R, et al. (2006) Inhibition of CD4"CD25"
regulatory T-cell function by calcineurin-
dependent interleukin-2 production. Blood.
108:390-9.

MOL MED 17(5-6)404-416, MAY-JUNE 2011

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Zhang H, et al. (2005) Lymphopenia and inter-
leukin-2 therapy alter homeostasis of CD4'CD25"
regulatory T cells. Nat. Med. 11:123843.

Liston A, Rudensky AY. (2007) Thymic develop-
ment and peripheral homeostasis of regulatory
T cells. Curr. Opin. Immunol. 19:176-85.

Gavin MA, et al. (2007) Foxp3-dependent pro-
gramme of regulatory T-cell differentiation. Na-
ture. 445:771-5.

Fowler DH, Kurasawa K, Smith R, Eckhaus
MA, Gress RE. (1994) Donor CD4-enriched cells
of Th2 cytokine phenotype regulate graft-
versus-host disease without impairing allo-
geneic engraftment in sublethally irradiated
mice. Blood. 84:3540-9.

Krenger W, Snyder KM, Byon JC, Falzarano G,
Ferrara JL. (1995) Polarized type 2 alloreactive
CD4+ and CD8+ donor T cells fail to induce
experimental acute graft-versus-host disease.

J. Immunol. 155:585-93.

Pan L, Delmonte J, Jalonen C, Ferrara J. (1995)
Pretreatment of donor mice with granulocyte
colony-stimulating factor polarizes donor
T-lymphocytes toward type-2 cytokine produc-
tion and reduces severity of experimental graft-
versus-host disease. Blood. 86:4422-9.

Hill GR, et al. (1998) Interleukin-11 promotes

T cell polarization and prevents acute graft-
versus-host disease after allogeneic bone mar-
row transplantation. J. Clin. Invest. 102:115-23.
Reddy D, et al. (2003) Pretreatment of donors
with interleukin-18 attenuates acute graft-ver-
sus-host disease via STAT6 and preserves graft-
versus-leukemia effects. Blood. 101:2877-85.
Foley JE, et al. (2005) Ex vivo rapamycin gener-
ates donor Th2 cells that potently inhibit graft-
versus-host disease and graft-versus-tumor ef-
fects via an IL-4-dependent mechanism.

J. Immunol. 175:5732-43.

Jung U, et al. (2006) Ex vivo rapamycin gener-
ates Th1/Tcl or Th2/Tc2 effector T cells with
enhanced in vivo function and differential sen-
sitivity to post-transplant rapamycin therapy.
Biol. Blood Marrow Transpl. 12:905-18.

Fowler DH, Gress RE. (2000) Th2 and Tc2 cells
in the regulation of GVHD, GVL, and graft re-
jection: considerations for the allogeneic trans-
plantation therapy of leukemia and lymphoma.
Leuk. Lymphoma 38:221-34.

Tawara I, et al. (2008) Combined Th2 cytokine
deficiency in donor T cells aggravates experi-
mental acute graft-vs-host disease. Exp. Hema-
tol. 36:988-96.

Nikolic B, Lee S, Bronson R, Grusby M, Sykes
M. (2000) Th1 and Th2 mediate acute graft-
versus-host disease, each with distinct end-
organ targets. ]. Clin. Invest. 105:1289-98.

Yi T, et al. (2008) Absence of donor Th17 leads
to augmented Th1 differentiation and exacer-
bated acute graft-versus-host disease. Blood.
112:2101-10.

Kappel LW, et al. (2009) IL-17 contributes to
CD4-mediated graft-versus-host disease. Blood.
113:945-52.



103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

11e.

117.

Carlson MJ, et al. (2009) In vitro-differentiated
TH17 cells mediate lethal acute graft-versus-host
disease with severe cutaneous and pulmonary
pathologic manifestations. Blood. 113:1365-74.
Asai O, et al. (1998) Suppression of graft-versus-
host disease and amplification of graft-versus-
tumor effects by activated natural killer cells
after allogeneic bone marrow transplantation.

J. Clin. Invest. 101:1835-42.

Baker J, Verneris MR, Ito M, Shizuru JA, Negrin
RS. (2001) Expansion of cytolytic CD8(+) natu-
ral killer T cells with limited capacity for graft-
versus-host disease induction due to interferon
gamma production. Blood. 97:2923-31.
Nishimura R, et al. (2008) In vivo trafficking
and survival of cytokine-induced killer cells re-
sulting in minimal GVHD with retention of an-
titumor activity. Blood. 112:2563-74.

Brown GR, Lee E, Thiele DL. (2002) TNF-
TNEFR2 interactions are critical for the develop-
ment of intestinal graft-versus-host disease in
MHC class II-disparate (C57BL/6]—>C57BL/6]
x bm12)F1 mice. J. Immunol. 168:3065-71.
Brown GR, Lee EL, El-Hayek J, Kintner K, Luck
C. (2005) IL-12-independent LIGHT signaling
enhances MHC class II disparate CD4" T cell al-
loproliferation, IFN-gamma responses, and in-
testinal graft-versus-host disease. J. Immunol.
174:4688-95.

Kagi D, et al. (1994) Fas and perforin pathways
as major mechanisms of T cell-mediated cyto-
toxicity. Science. 265:528-30.

Sato K, et al. (2005) TRAIL-transduced dendritic
cells protect mice from acute graft-versus-host
disease and leukemia relapse. J. Immunol.
174:4025-33.

Schmaltz C, et al. (2002) T cells require TRAIL
for optimal graft-versus-tumor activity. Nat.
Med. 8:1433-7.

van den Brink MR, Burakoff SJ. (2002) Cytolytic
pathways in haematopoietic stem-cell trans-
plantation. Nat. Rev. Immunol. 2:273-81.

Xu, et al. (2006) Selective targeting of the
LIGHT-HVEM costimulatory system for the
treatment of graft-versus-host disease. Blood.
109:4097-104.

Zimmerman Z, et al. (2005) Effector cells de-
rived from host CD8 memory T cells mediate
rapid resistance against minor histocompatibil-
ity antigen-mismatched allogeneic marrow
grafts without participation of perforin, Fas lig-
and, and the simultaneous inhibition of 3 tumor
necrosis factor family effector pathways. Biol.
Blood Marrow Transpl. 11:576-86.

Piguet PF, Grau GE, Allet B, Vassalli P. (1987)
Tumor necrosis factor/cachectin is an effector of
skin and gut lesions of the acute phase of graft
versus host disease. |. Exp. Med. 166:1280-9.
Abhyankar S, Gilliland DG, Ferrara JL. (1993)
Interleukin-1 is a critical effector molecule dur-
ing cytokine dysregulation in graft versus host
disease to minor histocompatibility antigens.
Transplantation. 56:1518-23.

Krenger W, et al. (1996) Interferon-gamma sup-

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

presses T-cell proliferation to mitogen via the
nitric oxide pathway during experimental acute
graft-versus-host disease. Blood. 88:1113-21.
Nestel FP, Greene RN, Kichian K, Ponka P,
Lapp WS. (2000) Activation of macrophage cy-
tostatic effector mechanisms during acute graft-
versus-host disease: release of intracellular iron
and nitric oxide-mediated cytostasis. Blood.
96:1836—43.

Sterner DE, Berger SL. (2000) Acetylation of his-
tones and transcription-related factors. Micro-
biol. Mol. Biol. Rev. 64:435-59.

Lachner M, O’Sullivan RJ, Jenuwein T. (2003)
An epigenetic road map for histone lysine
methylation. J. Cell Sci. 116:2117-24.

Grunstein M. (1997) Histone acetylation in chro-
matin structure and transcription. Nature.
389:349-52.

Thompson JS, Ling X, Grunstein M. (1994) His-
tone H3 amino terminus is required for telom-
eric and silent mating locus repression in yeast.
Nature. 369:245-7.

Durrin LK, Mann RK, Kayne PS, Grunstein M.
(1991) Yeast histone H4 N-terminal sequence is
required for promoter activation in vivo. Cell.
65:1023-31.

Allfrey VG, Pogo BG, Littau VC, Gershey EL,
Mirsky AE. (1968) Histone acetylation in insect
chromosomes. Science. 159:314-6.

Marmorstein R, Roth SY. (2001) Histone acetyl-
transferases: function, structure, and catalysis.
Curr Opin Genet Dev 11:155-61.

Bolden JE, Peart MJ, Johnstone RW. (2006) Anti-
cancer activities of histone deacetylase in-
hibitors. Nat. Rev. Drug. Discov. 5:769-84.

Yang X-J, Seto E. (2008) The Rpd3/Hdal family
of lysine deacetylases: From bacteria and yeast to
mice and men. Nat. Rev. Mol. Cell. Biol. 9:206-18.
Yang X-J, Seto E. (2008) Lysine acetylation: Cod-
ified crosstalk with other posttranslational
modifications. Mol. Cell 31:449-61.

Narlikar GJ, Fan HY, Kingston RE. (2002) Cooper-
ation between complexes that regulate chromatin
structure and transcription. Cell. 108:475-87.
Kouzarides T. (2007) Chromatin modifications
and their function. Cell. 128:693-705.

Kim SC, et al. (2006) Substrate and functional
diversity of lysine acetylation revealed by a
proteomics survey. Mol. Cell. 23:607-618.
Redner RL, Wang J, Liu JM. (1999) Chromatin
remodeling and leukemia: new therapeutic par-
adigms. Blood. 94:417-28.

Bhalla KN. (2005) Epigenetic and chromatin
modifiers as targeted therapy of hematologic
malignancies. J. Clin. Oncol. 23:3971-93.

Byrd JC, et al. (2005) A phase 1 and pharmaco-
dynamic study of depsipeptide (FK228) in
chronic lymphocytic leukemia and acute
myeloid leukemia. Blood. 105:959-67.

Mann BS, Johnson JR, Cohen MH, Justice R,
Pazdur R. (2007) FDA approval summary:
Vorinostat for treatment of advanced primary
cutaneous T-cell lymphoma. Oncologist.
12:1247-52.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

MOL MED 17(5-6)404-416, MAY-JUNE

REVIEW ARTICLE

Mai A, et al. (2005) Histone deacetylation in epi-
genetics: an attractive target for anticancer ther-
apy. Med. Res. Rev. 25:261-309.

Miller TA, Witter DJ, Belvedere S. (2003) Histone
deacetylase inhibitors. J. Med. Chem. 46:5097-16.
Kelly WK, Marks PA. (2005) Drug insight: His-
tone deacetylase inhibitors—development of
the new targeted anticancer agent suberoy-
lanilide hydroxamic acid. Nat. Clin. Pract. Oncol.
2:150-7.

Finnin MS, et al. (1999) Structures of a histone
deacetylase homologue bound to the TSA and
SAHA inhibitors. Nature. 401:188-93.

Duvic M, et al. (2007) Phase 2 trial of oral
vorinostat (suberoylanilide hydroxamic acid,
SAHA) for refractory cutaneous T-cell lym-
phoma (CTCL). Blood. 109:31-9.

Mann BS, et al. (2007) Vorinostat for treatment
of cutaneous manifestations of advanced pri-
mary cutaneous T-cell lymphoma. Clin Cancer
Res. 13:2318-22.

Marks PA. (2007) Discovery and development
of SAHA as an anticancer agent. Oncogene.
26:1351-6.

Mishra N, Reilly CM, Brown DR, Ruiz P, Gilke-
son GS. (2003) Histone deacetylase inhibitors
modulate renal disease in the MRL-1pr/Ipr
mouse. J. Clin. Invest. 111:539-52.

Skov S, et al. (2003) Histone deacetylase in-
hibitors: a new class of immunosuppressors tar-
geting a novel signal pathway essential for
CD154 expression. Blood 101:1430-8.

Glauben R, et al. (2006) Histone hyperacetyla-
tion is associated with amelioration of experi-
mental colitis in mice. J. Immunol. 176:5015-22.
Glauben R, et al. (2008) Histone deacetylases:
Novel targets for prevention of colitis-
associated cancer in mice. Gut. 57:613-22.

Tao R, et al. (2007) Deacetylase inhibition pro-
motes the generation and function of regulatory
T cells. Nat. Med. 13:1299-307.

Leng C, et al. (2006) Reduction of graft-versus-
host disease by histone deacetylase inhibitor
suberonylanilide hydroxamic acid is associated
with modulation of inflammatory cytokine mi-
lieu and involves inhibition of STAT1. Exp.
Hematol. 34:776-87.

Shlomchik WD. (2007) Graft-versus-host dis-
ease. Nat. Rev. Immunol. 7:340-52.

Minucci S, Pelicci PG. (2006) Histone deacety-
lase inhibitors and the promise of epigenetic
(and more) treatments for cancer. Nat. Rev. Can-
cer. 6:38-51.

Reddy P, et al. (2001) Interleukin-18 regulates
acute graft-versus-host disease by enhancing
Fas-mediated donor T cell apoptosis. J. Exp.
Med. 194:1433-40.

Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emer-
son SG. (2002) Preterminal host dendritic cells
in irradiated mice prime CD8" T cell-mediated
acute graft-versus-host disease. J. Clin. Invest.
109:1335-44.

Riddell SR, Murata M, Bryant S, Warren EH.
(2002) Minor histocompatibility antigens—targets

2011 | CHOI AND REDDY | 415



LYSINE DEACETYLATION AND GRAFT VERSUS HOST DISEASE

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

416 |

of graft versus leukemia responses. Int. |. Hema-
tol. 76 Suppl 2:155-61.

Teshima T, et al. (1999) IL-11 separates graft-
versus-leukemia effects from graft-versus-host
disease after bone marrow transplantation.

J. Clin. Invest. 104:317-25.

Yang YG, Dey B, Sergio JJ, Sykes M. (1997)
Interleukin-12 prevents severe acute graft-
versus-host disease (GVHD) and GVHD-
associated immune dysfunction in a fully
major histocompatibility complex haplotype-
mismatched murine bone marrow transplanta-
tion model. Transplantation. 64:1343-52.
Banchereau J, et al. (2000) Immunobiology of
dendritic cells. Annu. Rev. Immunol. 18:767-811.
Medzhitov R, Janeway CA Jr. (2002) Decoding
the patterns of self and nonself by the innate
immune system. Science. 296:298-300.

Akira S. (2003) Mammalian Toll-like receptors.
Curr. Opin. Immunol. 15:5-11.

Kobayashi K, et al. (2002) RICK/Rip2/
CARDIAK mediates signalling for receptors
of the innate and adaptive immune systems.
Nature. 416:194-9.

Mellor AL, Munn DH. (2004) IDO expression
by dendritic cells: Tolerance and tryptophan ca-
tabolism. Nat. Rev. Immunol. 4:762-74.

Murray PJ. (2007) The JAK-STAT signaling
pathway: Input and output integration. J. Im-
munol. 178:2623-9.

Schindler C, Plumlee C. (2008) Inteferons pen
the JAK-STAT pathway. Semin. Cell. Dev. Biol.
19:311-8.

Stepkowski SM, Chen W, Ross JA, Nagy ZS,
Kirken RA. (2008) STAT3: An important regula-
tor of multiple cytokine functions. Transplanta-
tion. 85:1372-7.

Takeda K, et al. (1997) Targeted disruption of
the mouse Stat3 gene leads to early embryonic
lethality. Proc. Natl. Acad. Sci. U. S. A. 94:3801-4.
Kortylewski M, et al. (2005) Inhibiting Stat3 signal-
ing in the hematopoietic system elicits multicom-
ponent antitumor immunity. Nat. Med. 11:1314-21.
Cheng F et al. (2003) A critical role for Stat3 sig-
naling in immune tolerance. Immunity. 19:425-36.
Yu H, Kortylewski M, Pardoll D. (2007)
Crosstalk between cancer and immune cells:
Role of STAT3 in the tumour microenviron-
ment. Nat. Rev. Immunol. 7:41-51.

Milner JD, et al. (2008) Impaired T(H)17 cell dif-
ferentiation in subjects with autosomal domi-
nant hyper-IgE syndrome. Nature. 452:773-6.
Holland SM, et al. (2007) STAT3 mutations in the
hyper-IgE syndrome. N. Engl. ]. Med. 357:1608-19.
Minegishi Y, et al. (2007) Dominant-negative mu-
tations in the DNA-binding domain of STAT3
cause hyper-IgE syndrome. Nature. 448:1058-62.
Barton BE. (2006) STAT3: A potential therapeu-
tic target in dendritic cells for the induction of
transplant tolerance. Expert Opin. Ther. Targets.
10:459-70.

Yang J, et al. (2005) Novel roles of unphos-
phorylated STAT3 in oncogenesis and transcrip-
tional regulation. Cancer Res. 65:939-47.

CHOI AND REDDY |

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

Nadiminty N, et al. (2006) Stat3 activation of
NF-{kappa}B p100 processing involves
CBP/p300-mediated acetylation. Proc. Natl.
Acad. Sci. U. S. A. 103:7264-9.

Yuan ZL, Guan Y], Chatterjee D, Chin YE. (2005)
Stat3 dimerization regulated by reversible acetyla-
tion of a single lysine residue. Science. 307:269-73.
Ray S, Boldogh I, Brasier AR. (2005) STAT3
NH2-terminal acetylation is activated by the he-
patic acute-phase response and required for
IL-6 induction of angiotensinogen. Gastroenterol-
ogy. 129:1616-32.

Yang J, et al. (2007) Unphosphorylated STAT3
accumulates in response to IL-6 and activates
transcription by binding to NFkappaB. Genes.
Dev. 21:1396-408.

Sehgal PB. (2008) Paradigm shifts in the cell bi-
ology of STAT signaling. Semin. Cell. Dev. Biol.
19:329-40.

Hou T, Ray S, Lee C, Brasier AR. (2008) The
STAT3 NH2-terminal domain stabilizes en-
hanceosome assembly by interacting with the
p300 bromodomain. J. Biol. Chem. 283:30725-34.
Blaskovich MA, et al. (2003) Discovery of JSI-
124 (cucurbitacin ), a selective Janus kinase/
signal transducer and activator of transcription
3 signaling pathway inhibitor with potent anti-
tumor activity against human and murine can-
cer cells in mice. Cancer Res. 63:1270-9.

Wang R, Cherukuri P, Luo J. (2005) Activation of
Stat3 sequence-specific DNA binding and tran-
scription by p300/CREB-binding protein-
mediated acetylation. J. Biol. Chem. 280:11528-34.
Hu X, Ivashkiv LB. (2009) Cross-regulation of
signaling pathways by interferon-gamma: im-
plications for immune responses and autoim-
mune diseases. Immunity. 31:539-50.

Melillo JA, et al. (2010) Dendritic cell (DC)-
specific targeting reveals Stat3 as a negative reg-
ulator of DC function. J. Immunol. 184:2638-45.
Nie Y, et al. (2009) STAT3 inhibition of gluconeo-
genesis is downregulated by SirT1. Nat. Cell
Biol. 11:492-500.

Villagra A, et al. (2009) The histone deacetylase
HDACT11 regulates the expression of interleukin 10
and immune tolerance. Nat. Immunol. 10:92-100.
Dubovsky JA, et al. ( Circumventing immune
tolerance through epigenetic modification. Curr.
Pharm. Des. 16:268-76.

Gao L, Cueto MA, Asselbergs F, Atadja P. (2002)
Cloning and functional characterization of
HDACT1, a novel member of the human histone
deacetylase family. J. Biol. Chem. 277:25748-55.
Moore KW, de Waal Malefyt R, Coffman RL,
O’Garra A. (2001) Interleukin-10 and the inter-
leukin-10 receptor. Annu. Rev. Immunol.
19:683-765.

Li MO, Flavell RA. (2008) Contextual regulation
of inflammation: A duet by transforming
growth factor-beta and interleukin-10. Immu-
nity. 28:468-76.

Rubtsov YP, et al. (2008) Regulatory T cell-
derived interleukin-10 limits inflammation at
environmental interfaces. Immunity. 28:546-58.

MOL MED 17(5-6)404-416, MAY-JUNE 2011

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

Skov S, et al. (2005) Cancer cells become suscep-
tible to natural killer cell killing after exposure
to histone deacetylase inhibitors due to glyco-
gen synthase kinase-3-dependent expression of
MHC class I-related chain A and B. Cancer Res.
65:11136-45.

Armeanu S, et al. (2005) Natural killer cell-
mediated lysis of hepatoma cells via specific in-
duction of NKG2D ligands by the histone
deacetylase inhibitor sodium valproate. Cancer
Res. 65:6321-9.

Groh V, et al. (1999) Broad tumor-associated ex-
pression and recognition by tumor-derived
gamma delta T cells of MICA and MICB. Proc.
Natl. Acad. Sci. U. S. A. 96:6879-84.

Salih HR, et al. (2003) Functional expression and
release of ligands for the activating immunore-
ceptor NKG2D in leukemia. Blood. 102:1389-96.
Pende D, et al. (2002) Major histocompatibility
complex class I-related chain A and UL16-bind-
ing protein expression on tumor cell lines of
different histotypes: analysis of tumor suscepti-
bility to NKG2D-dependent natural killer cell
cytotoxicity. Cancer Res. 62:6178-86.

Nebbioso A, et al. (2005) Tumor-selective action
of HDAC inhibitors involves TRAIL induction in
acute myeloid leukemia cells. Nat. Med. 11:77-84.
Insinga A, et al. (2005) Inhibitors of histone
deacetylases induce tumor-selective apoptosis
through activation of the death receptor path-
way. Nat. Med. 11:71-6.

Kinugasa F, et al. (2008) Effect of a new im-
munosuppressant histon deacetylase (HDAC)
inhibitor FR276457 in a rat cardiac transplant
model. Biol. Pharm. Bull. 31:1723-6.

Kinugasa F, et al. (2009) Effect of the immuno-
suppressant histone deacetylase inhibitor
FR276457 in a canine renal transplant model.
Transpl. Immunol. 21:198-202.

Mori H, et al. (2003) FR235222, a fungal metabo-
lite, is a novel immunosuppressant that inhibits
mammalian histone deacetylase (HDAC) II. Bi-
ological activities in animal models. ]. Antibiot.
(Tokyo) 56:80-6.

Reddy P, Zou W. (2007) Blocking HDACs boosts
regulatory T cells. Nat. Med. 13:1282-4.

Bosisio D, et al. (2008) Blocking TH17-polarizing
cytokines by histone deacetylase inhibitors in
vitro and in vivo. J. Leukoc. Biol. 84:1540-8.
Chen X, et al. (2007) Absence of regulatory T cell
control of TH1 and TH17 cells is responsible for
the autoimmune-mediated pathology in chronic
graft versus host disease. Blood. 110:3804-13.
Furlan A, et al. (2011) Pharmacokinetics, safety
and inducible cytokine responses during a
phase 1 trial of the oral histone deacetylase
inhibitor ITF2357 (givinostat). Mol. Med.
17:353-362.

Levine JE, et al. (2003) Lowered-intensity
preparative regimen for allogeneic stem cell
transplantation delays acute graft-versus-host
disease but does not improve outcome for ad-
vanced hematologic malignancy. Biol. Blood
Marrow Transpl. 9:189-97.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




