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BACKGROUND
The human immunodeficiency virus

(HIV) was first discovered in 1981, and
in the last 30 years, >30 million people
have died from HIV infection and pro-
gression to acquired immunodeficiency
syndrome (AIDS). Sub-Saharan Africa is
home to the majority of people carrying
HIV, and roughly 25 million people are
living with HIV, representing around 7%
of the total sub-Saharan population or
two-thirds of globally infected HIV indi-
viduals (1). Besides the prevalence of
poverty, the inefficient distribution of
anti-HIV drugs was found to be the main
root cause of widespread HIV infection.
Nevertheless, because of various interna-

tional initiatives along with remarkable
scientific efforts in developing more po-
tent anti-HIV drugs, the onset of AIDS in
the HIV-infected population has been
greatly delayed, and both mortality and
morbidity due to AIDS has been signifi-
cantly reduced (2).

AIDS is the ultimate consequence of
unchecked HIV infection, where the
virus kills a sufficient amount of CD4+

T cells. This depletion impairs the im-
mune system and, because of lack of
proper immune defense, any opportunis-
tic infection could become fatal to the
host. Fortunately, present anti-HIV ther-
apy, namely highly active antiretroviral
therapy (HAART) or combination anti-

retroviral therapy (cART), proved to be
successful in controlling HIV infection
and significantly prolongs the lifespan of
infected individuals (3,4). Sadly, anti-
retroviral drugs are still not available to
every infected patient in developing
countries, but more and more programs
have been introduced in recent years to
make sure that no HIV infection goes
without treatment. Especially since 2004,
great strides have been achieved prima-
rily by increasing the access to anti-HIV
drugs, improving the awareness regard-
ing HIV and introducing various preven-
tive measures. These efforts produced
clear results in the form of a reduced
number of AIDS-related deaths and a
proportional decrease in new infections
in many parts of the world (World
Health Organization report 2010 [5]).

Owing to the success of anti-HIV ther-
apy, the median lifespan of HIV patients
has improved significantly. The biggest
challenge in tackling HIV is the inability
of HAART to eradicate the virus. Even
when the virus is suppressed to unde-
tectable levels for many years, it quickly
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reemerges if the treatment is stopped.
Two main reasons for this dreaded fea-
ture of HIV infection are replication of
the virus in immunoprivileged sites,
with limited access to drugs (for exam-
ple, brain) and the ability of the virus to
establish latent infection. Macrophages
may be important contributors to contin-
uous viral replication in the presence of
HAART, since HIV is less cytopathic to
macrophages, and anti-HIV drugs are
also comparatively less effective in these
cells (6–11). However, the main reser-
voirs of latent HIV are memory CD4+

T lymphocytes. These cells harbor a set
of integrated proviruses that are unable
to complete their lifecycle because of the
lack of suitable conditions and are called
latent or “transiently silent” proviruses.
Latent proviruses, because of their silent
nature, are well protected from antiretro-
viral therapies, which target actively
replicating viruses, and from the host’s
immune system, which is unable to dif-
ferentiate the infected cells from unin-
fected cells because of the lack of any
viral activity in latently infected cells.
These hibernating latent proviruses are
just waiting for the favorable conditions
and consequently are the everlasting
source of replication-competent viruses
(12–14). HIV-infected memory T cells
have an extremely long lifespan, exceed-
ing many years, and are effective HIV
producers on activation (13,15–23). Al-
though a small fraction of the T-cell pop-
ulation carries latent proviruses (~1 in
106 cells), it creates a stable reservoir of
virus that can be reactivated to produce a
rebound of the viral load, even after suc-
cessful antiviral treatment (24,25).

The continuous presence of the virus
in the body necessitates the lifelong
treatment with anti-HIV drugs, which re-
sults in various side effects. These side
effects, along with a deregulated im-
mune system, contribute immensely to
the occurrence of various age-associated
diseases in HIV patients, such as neu-
rocognitive abnormalities, cardiovascular
disease and muscle and bone disorders
(26–30). Moreover, the lack of accessibil-
ity of drugs and economic constraints to

supporting lifelong treatment in develop-
ing countries drastically hamper the vi-
sion of global HIV containment (31). As a
result, despite global anti-HIV efforts
and better availability of HAART, new
HIV infections are outnumbering the pa-
tients initiating HAART (32–34).

It remains an important priority of
HIV research to precisely define the mo-
lecular mechanisms that allow the estab-
lishment of latency in T cells and subse-
quently design therapies to achieve
either complete HIV eradication or some
kind of functional cure, which will allow
the immune system to maintain the
upper hand and keep HIV replication
below threshold levels in the absence of
anti-HIV drugs/therapy.

MOLECULAR BIOLOGY OF HIV
LATENCY

Transcription Factors and HIV Latency
The persistence of HIV in patients, de-

spite prolonged treatment, has prompted
renewed interest in understanding the
molecular mechanisms that control HIV
latency. As for all retroviruses, replica-
tion of HIV provirus relies primarily on
efficient transcription. HIV transcription
depends on the host cell transcription
machinery along with master transacti-
vator protein of HIV, transactivator of
transcription (Tat). Flaws in proviral
transcription appear to be the major fac-
tor contributing to HIV latency.

HIV transcription is mainly divided
into two main phases, namely the initia-
tion phase and the elongation phase.
During the initiation phase, transcription
factors such as specificity protein 1 (Sp1),
TATA box binding protein (TBP) and
TBP-associated factors are recruited at
the core long terminal repeat (LTR) pro-
moter, a minimal essential component
sufficient to sustain basal transcription.
The LTR core promoter, besides TATA
box and initiator sequence, also carries
three Sp1 binding sites, and mutation of
any of these sites individually or in com-
bination strongly impairs both basal and
Tat-dependent HIV transcription (35–39).
HIV LTR also carries an enhancer se-

quence, which consists of the cognate
overlapping binding sites for the mem-
bers of both nuclear factor (NF)-κB and
nuclear factor of activated T cells (NFAT)
protein families (40,41). The binding of
these factors strongly enhances HIV tran-
scription, primarily by cooperating with
Sp1 and recruiting histone acetyl trans-
ferases (42–46). The enhancer sequence
appears to play an even more significant
role during reactivation of  latent
proviruses (23,47,48).

HIV transcription is further divided
into slower and faster, or Tat-independent
and Tat-dependent, phases, respectively.
The slower, Tat-independent phase en-
counters several restrictions primarily
because of the presence of two  inhibitory
factors, namely the negative elongation
factor (NELF) and the 5,6-dichloro-1-β-D-
ribofuranoxylbenzimidazole (DRB)
 sensitivity-inducing factor (DSIF), which
commonly restrict the transcription of
several cellular genes  (reviewed in
[49,50]). However, once Tat protein is
synthesized, it provides positive feedback
to HIV transcription and enhances HIV
transcription rate several hundred–fold.
Thus, HIV transcription enters into the
second, fast Tat- dependent phase (51,52).
Therefore, HIV transcription differs from
normal transcription of cellular genes,
since it is autoregulated by Tat protein.
In the absence of Tat, HIV transcription
halts at around 60 nucleotides because of
the presence of NELF, DSIF and nonpro-
cessive RNA polymerase II (RNAP II) at
HIV LTR. To overcome this obstruction
and facilitate transcription elongation,
HIV Tat protein binds to the nascent RNA
sequences called the transactivation-
 responsive element (TAR). TAR is a 59-
nucleotide stem-loop structure located at
the 5′ end of every viral transcript. After
binding to TAR sequences, Tat recruits
positive transcription elongation factor b
(P-TEFb; 53,54), which subsequently 
hyperphosphorylates the C-terminal 
domain of RNAP II, primarily at its ser-
ine 2 residues. The C-terminal domain
hyperphosphorylation makes RNAP II
highly processive (55,56). Additionally,
P-TEFb also phosphorylates inhibitory
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factors DSIF and NELF. These modifica-
tions eventually relieve all the restric-
tions, and, consequently, HIV transcrip-
tion enters into the elongation phase,
which enhances the rate of generation of
full-length HIV transcripts (57–59).

Any defect in the process of HIV tran-
scription (initiation or elongation phase)
leads to the generation of latent pro -
viruses. A number of cellular transcrip-
tion factors known to play a critical role
in HIV transcription, including NF-κB,
NFAT and P-TEFb, are either lacking or
present in their inactive form in resting
primary T cells. As a result, HIV tran-
scription is restricted and the virus re-
mains silent or latent in these cells
(60–63). Subsequently, this restriction
translates into stochastic fluctuations in
cellular Tat levels, which further dampen
the prospect of effective HIV transcrip-
tion (23,47,64–66).

Eventually, the fall of Tat levels below
the threshold level results in the more
stable maintenance phase of HIV latency
(Figure 1). Thereafter, latent proviruses
are unable to perform their transcription
and keep waiting for the favorable con-
ditions that eventually enhance cell me-
tabolism, such as via T-cell receptor acti-
vation or through action of various
cytokines (see Figure 1). However, once
cells become metabolically active, the
level of transcription factors rises. These
transcription factors in turn facilitate
both the initiation and elongation phases
of transcription that eventually lead to
the reactivation of latent HIV proviruses.
For more details about HIV transcription
and latency, please see recent reviews
(21–23,67–69).

Role of Epigenetics in Controlling HIV
Transcription and Latency

The expression of every cellular gene,
including integrated HIV genome, de-
pends on specific epigenetic modifica-
tions, which define particular chromatin
structures at that gene. The specific chro-
matin structures are characterized by
their fundamental subunit, nucleosomes.
A nucleosome consists of an octamer of a
pair of four core histones (H3, H4, H2A

and H2B), which are wrapped around by
147 base pairs of DNA. These core his-
tones undergo various kinds of posttrans-
lational modifications such as acetylation,
methylation, sumoylation, phosphoryla-
tion, ubiquitinylation and so on. These
modifications eventually define the spe-
cific nature of the chromatin structures.
Chromatin structures primarily around
the promoter region of a gene regulate its
expression. Thus, the nature of chromatin
modifications plays a decisive role in reg-
ulating the expression of a gene (70–72).
The transcriptionally active, open/re-
laxed chromatin structures, which allow
the access of transcription machinery at
the promoter region of a gene, are called
euchromatin. On the contrary, the tran-
scriptionally repressive closed/compact
chromatin structures, which inhibit the
access of transcription machinery at the
promoter region of a gene, are called het-
erochromatin (71,73).

After integration, the HIV genome ap-
pears to assemble into a well-defined nu-

cleosomal structure, independent of the
site of integration into the cellular ge-
nome (74,75). The epigenetic modifica-
tions at the two nucleosomes (Nuc-0 and
Nuc-1) around the HIV LTR promoter
play a major role in controlling HIV gene
expression (75–77). Not only nucleoso-
mal histones, but also DNA, receive epi-
genetic modifications, and notably the
DNA methylases have also been impli-
cated in HIV transcription and latency
regulation (78–80). Interestingly, most of
the enzymes that catalyze epigenetic
modifications are unable to bind directly
to the DNA and have to be recruited to
HIV LTR by various DNA binding pro-
teins. Proteins such as latency-C-
 promoter binding factor 1 (CBF-1), Yin
Yang 1/late SV40 factor (YY1/LSF), P50
homodimer, activating enhancer-binding
protein 4 (AP4), COUP-TF-interacting
protein 2 (CTIP2) and thyroid hormone
receptor recruit chromatin-modifying en-
zymes in the form of multiprotein com-
plexes to HIV LTR (81–86). For example,

Figure 1. Factors regulating HIV provirus into latency. Lack of transcription factors in resting
CD4+ T cells along with repressive chromatin structures impede the HIV transcriptional initi-
ation rate, which in turn translates into reduced Tat levels that ultimately yield the entry of
provirus into latency. After cell activation, the level of transcriptional factors rises and re-
sultant Tat production reinstates HIV transcription. See details in the text.
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CBF-1–induced repressive chromatin
structures facilitate HIV latency in pri-
mary CD4+ T cells (62). Recently, the
Karn group demonstrated the role of
EZH2, a histone methylase and a compo-
nent of polycomb group corepressor
(PcG) complexes, in inducing repressive
chromatin structures during HIV  latency
(87). To further extend these studies, we
found that CBF-1 is responsible for the
recruitment of EZH2 and other chro-
matin-modifying enzymes of PcG com-
plex to HIV LTR (M Tyagi, manuscript
in preparation). PcG complexes carry
multiple chromatin-modifying enzymes
and thus are known to repress expres-
sion of cellular genes by inducing vari-
ous layers of repressive epigenetic modi-
fications involving both histones and
DNA (88). The role of repressive epige-
netic modifications in controlling HIV
latency is quite evident by the fact that
their removal or inhibition leads to the
reactivation of latent pro viruses (for de-
tails, please refer to recent reviews from
the Margolis and Verdin labs [22,89,90]).

A critical role of various epigenetic
modifications in regulating HIV replica-
tion and latency has been well estab-
lished, but underlying molecular
 mechanisms that regulate these specific
epigenetic changes at HIV LTR are not
yet well defined. Thus, there is a press-
ing need to understand these mecha-
nisms to use them therapeutically. There
is an enormous potential for drugs that
could manipulate chromatin structures at
HIV LTR in regulating HIV latency. The
search for small molecule drugs that
could reactivate latent proviruses via
converting heterochromatin into euchro-
matin structures at HIV LTR is a hot
topic in the HIV latency field. However,
these studies are complicated by lack of
understanding regarding how specific
epigenetic modifications influence each
other and how they are regulated. Nev-
ertheless, various strategies have been
tried to reactivate latent proviruses, such
as by activating transcription factors or
targeting histone modifications, while at
the same time incapacitating the reacti-
vated viruses with HAART. This kind of

strategy is usually known as the “shock
and kill” strategy, where “shock” is
given to reactivate latent proviruses, and
the “kill” phase is used to inhibit reacti-
vated proviruses via HAART treatment
(91,92). See Ongoing Therapeutic Ap-
proaches for further discussion. For spe-
cific details about the role of epigenetic
modifications in HIV gene expression,
see recent reviews (21–23,90).

Besides histone modifications, nucleo-
somal structures are also modulated by
SWItch/Sucrose NonFermentable
(SWI/SNF) remodeling complexes.
These complexes regulate the overall
structural organization of nucleosomes
via an ATP-dependent mechanism, and
the resultant modulation of nucleosomal
structures changes the accessibility of
DNA to transcription factors (for recent
literature, refer to [90,93–100]).

HIV Integration and Transcriptional
Interference

Being a retrovirus, HIV integrates itself
into the host cell genome. Extensive evi-
dence has demonstrated that, most of the
time, HIV integrates within the actively
transcribing genes, primarily in their
 intronic regions. This is most likely be-
cause of the selective binding preference
of lens epithelium-derived growth factor
(LEDGF), a protein shown to be involved
in HIV integration, toward transcription-
ally active open chromatin structures
(101–106).

After integration, one can envision that
gene expression from the LTR promoter
can affect and be affected by the direc-
tion and strength of the neighboring cel-
lular promoters. If the cellular and provi-
ral promoters are arranged in opposite
directions, there is a chance that the
RNAP II complexes of both promoters
interfere with the expression of each
other’s gene and consequently could
augment proviral latency establishment
(107). Likewise, another scenario sug-
gested by Peterlin’s group can be envi-
sioned: if the upstream cellular promoter
is stronger than the LTR promoter, the
upstream transcription complex may dis-
place the transcription machinery from

the LTR promoter and read through the
proviral genome, messing up the HIV
transcription (108). This transcriptional
hindrance due to promoter occlusion can
also lead to the generation of latent
proviruses. Additionally, generated tran-
scripts can act as antisense RNA and
even as miRNA, which can further im-
pede HIV transcription and stabilize HIV
latency (21,108). Theoretically, transcrip-
tional interference could play a major
role in restricting HIV transcription dur-
ing latency establishment. The removal
of this kind of silencing of HIV transcrip-
tion could present a big problem to erad-
ication of latent proviruses. Fortunately,
it was found that activation of the LTR
promoter by NF-κB can overcome these
transcriptional hindrances (21,109). Ad-
ditionally, transcriptional interference
does not seem widespread in trans-
formed T-cell lines and in primary
T cells, since, in both kinds of cells, most
of the proviruses initiate transcription
after integration (47,62). Nonetheless,
transcriptional interference could play an
important role during the maintenance
phase of HIV latency.

The important role of cellular miRNAs
has also been demonstrated in regulating
HIV gene expression and latency. In par-
ticular, cellular miR-28, miR-125b, miR-
150, miR-223 and miR-382, which are en-
riched in resting CD4+ T lymphocytes,
target HIV-1 mRNA and suppress its
translation (110–112). A number of recent
reports provide further details of
miRNA-mediated regulation of HIV la-
tency (113–122). Therefore, innovative
methodologies designed to manipulate
the action of involved miRNAs could be
useful in purging latent proviruses.

Although the mechanisms controlling
HIV latency are not yet clearly defined, it
is now well established that it is a multi-
factorial phenomenon involving different
mechanisms affecting HIV gene expres-
sion. These mechanisms include the lack
of essential transcription factors, lack or
defect in Tat transactivation, presence of
transcriptional repressors, HIV transcrip-
tional hindrance due to activation of the
neighboring cellular promoter, miRNA-
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induced restrictions, repressive epige-
netic modifications involving both his-
tones and DNA, integration of provirus
into the heterochromatin area or
 unfavorable provirus  orientation
(40,41,47,62,78,79,81,108, 122–132).

CELLULAR BIOLOGY OF HIV LATENCY

Latent and Persistent Viral Reservoirs
The persistent cellular or anatomical

reservoirs allow slower but continuous
viral replication, even under the optimal
HAART regimen. On the other hand,
proviruses in latent reservoirs, such as
resting memory T cells, mostly remain
silent without a productive lifecycle (re-
viewed in [21]).

Over the years, researchers have found
that latency can exist in a range of
anatomical sites and cell types. The most
prominent ones are the CD4+ T-cell sub-
sets, primarily resting central memory
T cells (TCM) and transitional memory
T cells (TTM) (15,133,134). The predomi-
nant presence of latent proviruses in the
resting memory CD4+ T cells was con-
firmed by various groups via the estab-
lishment of in vitro primary T-cell–based
model systems for HIV latency (re-
viewed in [67,135]). Memory CD4+

T cells express CCR5, which makes them
susceptible to CCR5-tropic HIV-1 vari-
ants dominating transmission (136–138).
Normally, however, because of the pres-
ence of various blocks to the viral lifecy-
cle, HIV is not able to infect quiescent
T cells efficiently (139–142). Latently in-
fected resting memory T cells thus ap-
pear to be generated primarily when
HIV-infected actively replicating antigen-
stimulated cells differentiate into long-
lived resting memory T cells (19,21,143).
This result is a normal physiological phe-
nomenon that the immune system uses
to mount a quick immune response if the
same antigen appears in the system
again. Direct infection of quiescent
T cells can also occur, although ineffi-
ciently, when cells are treated with a se-
lected set of chemokines (144,145). This
treatment is suggested to prime these
cells for infection without full reactiva-

tion (106,144). Additionally, induced sig-
nal transduction pathways following the
binding of cytokines or HIV to its core-
ceptor also appear to make resting T cells
permissive for HIV infection (146–148).

Other T-cell subsets, such as naive
T cells and CD34+ multipotent hemato -
poietic stem cells, have also been demon-
strated to contain latent proviruses
(133,149–151). These cells express CXCR4
but not CCR5 (152,153) and are therefore
susceptible only to infection by X4
viruses. The matter of infection of CD34+

hematopoietic progenitor cells is still de-
batable, since a recent study by the Sili-
ciano group did not find the prevalence
of HIV genomic DNA in the CD34+

hematopoietic progenitor cells of HIV
patients (154). The infection of naive
T cells, which are quiescent in nature,
could be explained by their transient par-
tial activation, such as under the influ-
ence of cytokines or during thymo -
poiesis, but they eventually return back
to the quiescent (G0) phenotype (149,
151,155). Another primary target of HIV
infection and one of the major persistent
HIV reservoirs are the cells belonging to
the monocyte/macrophage lineage,
where viruses are generally not com-
pletely silent but maintain a low level of
replication (156,157). In contrast to
T cells, HIV infection is not cytopathic to
these cells; it even extends their lifespan
and makes them more resistant to apo-
ptosis (9,158–161).

An important anatomical site for the
HIV reservoir is the central nervous sys-
tem (CNS), where HIV-infected cells are
continuously replenished by circulating
infected monocytes. These monocytes
cross the blood-brain barrier and differen-
tiate into macrophages and microglial
cells. These cells and the infected astro-
cytes are the main cause of CNS pathol-
ogy. The blood-brain barrier, which re-
stricts entry of cytotoxic T cells and does
not allow free flow of anti-HIV drugs,
also reduces the impact of immune re-
sponse and HAART on CNS-localized
HIV viruses (162–170). Moreover, protease
and reverse transcriptase inhibitors, the
main anti-HIV drugs, were found to be

less effective in macrophage and mi-
croglial cells (11,171). CNS thus acts as a
sanctuary site for the HIV virus and con-
tinuous viral replication, even during
HAART, and it could be responsible for
the evolution of drug-resistant viruses.
However, significance of this viral reser-
voir is still debatable, since the overall
share of CNS-derived viruses in persistent
viremia appears to be negligible (172).

Another important HIV reservoir is in
gut-associated lymphoid tissue (GALT),
where 5–10 times more HIV RNA than in
peripheral blood mononuclear cells can
be recovered (173,174). This clearly sug-
gests that there is an ongoing rapid HIV
replication, even in patients undergoing
effective HAART treatment. As a result,
the gastrointestinal (GI) tract CD4+ T-cell
population takes much longer to revive
under HAART than in peripheral blood
and never seems to be restored up to the
original levels (175).

Although the matter of HIV reactiva-
tion remains contentious, several studies
clearly demonstrated that the major pop-
ulation of residual viruses in the plasma
of patients undergoing successful
HAART regimens arises primarily from
reactivation of the latent provirus in rest-
ing CD4+ T cells. The sequence analysis
of the circulating viruses in HIV patients
who are either undergoing successful
anti-HIV therapy or have a rebound of
the virus after HAART interruption
demonstrated that very few HAART-
 selected mutations are present in the re-
bound viruses. This result suggests a
very low ongoing viral replication dur-
ing HAART. This notion is further sup-
ported by the observation that intensifi-
cation of the HAART regimen, either by
including another drug or replacing one
of them with a more potent drug, does
not lead to the reduction of either the
residual viremia or the latent reservoir
(176–182). Overall, most studies suggest
that the source of the circulating viruses
is the archival, pre-HAART virus present
in the latent reservoir of resting CD4+

T cells (21,183–188). These cells become
activated either via antigenic stimulation
or homeostatic proliferation (Figure 2
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and next section). The contribution of
other reservoirs, such as infected macro-
phages, to residual viremia has also been
documented (157,186,189–191). However,
because of a comparatively shorter half-
life of these cells, their significance as a
persistent source of HIV is uncertain, es-
pecially in patients undergoing success-
ful anti-HIV therapy (21,192,193).

Residual Viremia, Viral Blips and
Homeostatic Proliferation

Unfortunately, latent proviruses in rest-
ing CD4+ T cells do not remain silent for-
ever. Instead, HIV patients experience
transient episodes of higher viral loads,
called “blips,” because of changes in the
metabolic state of the cells. It has been
suggested that viral blips (episodes of
higher viremia) and their amplitudes de-

pend on various factors, which include
viral evolution and immunologic or drug
shortcomings (for recent review, see
[194]). To keep these blips in check, HIV
patients have to continue taking anti-HIV
drugs even when the viral levels fall
below detection limits (12). As shown in
Figure 2, one can anticipate that in vivo
there could be continuous stimulation of
TCM, either via antigen or homeostatic
proliferation, resulting in TCM differentia-
tion to effector memory T cells (TEM) or
TTM, respectively. These events in turn
lead to the reactivation of latent
proviruses, either fully or partially. How-
ever, because of the continuous presence
of anti-HIV drugs in the system, viremia
reverts back to the controlled range. Most
of the differentiated cells die off because
of cytopathic effects of the virus and host

immune responses, but a minute fraction
of these differentiated cells revert back to
the TCM phenotype with new viral se-
quences, albeit with limited mutations
because of restricted rounds of viral repli-
cation. This result suggests that latent
reservoir in TCM cells keeps replenishing
itself with updated viral sequences
(18,195). The same conclusion was also
drawn from simian immunodeficiency
virus (SIV) studies that showed that on-
going rate of viral replication defines SIV
DNA sequence turnover in resting CD4+

T cells (196). In sanctuary sites such as
GALT, where anti-HIV drugs are found
to be comparatively less effective, newly
produced viruses could further infect
neighboring TCM cells activated after
antigenic stimulation or homeostatic pro-
liferation. This result could be one of the
factors contributing to the higher ongoing
viral replication in GALT (173,174,194).

After antigenic stimulation or homeo-
static proliferation, TCM cells lose CCR7,
a homing receptor for secondary lym-
phoid organs (197,198). As a result, a
fraction of these partially activated HIV-
infected cells could leave the secondary
lymphoid organs and move to the pe-
ripheral bloodstream, providing an HIV
source for infection of partially activated
TTM cells, thus contributing to the gener-
ation of viral blips (194,199,200). Phylo-
genetic analyses of blipped viruses also
suggest that most of them were gener-
ated after reactivation of latently infected
T cells (187,188). Taken together, these re-
sults suggest that the escape of viruses
from HAART can occur during TCM to
TTM conversion, especially in sanctuary
sites such as GALT.

New Tools to Study HIV Latency
The failure of current therapy to eradi-

cate HIV appears to be due to the cre-
ation of stable reservoirs of latently in-
fected cells and/or pools of slowly
replicating viruses in pharmacologically
privileged sites that can be reactivated
and produce a rebound of the virus after
termination of successful antiviral treat-
ment (13,24). Novel technologies are re-
quired to eradicate the HIV virus and

Figure 2. A schematic representation of turnover of latently infected T cells. Naive T cells
get activated after antigenic stimulation and become susceptible to HIV infection. Most
of infected cells die, but a minute fraction turns into TCM for the encountered antigen.
Antigenic stimulation of TCM results in their activation and conversion into TEM. Their meta-
bolically active state leads to the reactivation of integrated latent provirus that eventu-
ally contributes to the blips and viremia. Most of the T cells die off because of viral pro-
duction toxicity and clearing the antigens from the system, but a tiny fraction gets
differentiated into TCM specific for that antigen and replenishes the source. HIV homeosta-
tic proliferation induced by IL-7 and IL-15 results in TCM differentiation into partially acti-
vated TTM, which support partial reactivation of latent HIV. Some of TTM revert to TCM. See
details in the text.
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cure HIV infection. To develop such ther-
apeutic interventions, we need to under-
stand the precise molecular mechanisms
responsible for the establishment and
maintenance of postintegration latency
and for subsequent reactivation of the la-
tent proviruses. Because of the rare avail-
ability of latently infected cells in pa-
tients (~1 in 106), it is almost impossible
to isolate them in sufficient numbers to
be able to do biochemical studies (143).
In addition, the lack of any specific
marker on the surface of latently infected
cells further complicates their isolation
from noninfected counterparts (15,134,
201). Consequently, most of the biochem-
ical studies concerning the molecular as-
pect of HIV latency until now were done
by using latently infected transformed
cell lines (47,77,202–205). However, the
quiescent phenotype of the latently in-
fected CD4+ T cells found in vivo is sub-
stantially different from the replicating
and constitutively activated transformed
T cells. Many laboratories have therefore
come up with several informative
 primary cell–based model systems
(46,144,151,206–214).

The Siliciano laboratory used the anti-
apoptotic protein, B-cell lymphoma 2
(Bcl-2) to help maintain primary CD4+

T cells longer in vitro (215,216). Although
promising, this strategy raises concerns
that cell transformation by overexpres-
sion of Bcl-2 might alter the cellular phys-
iology. Nevertheless, using this system,
they performed several high-throughput
screenings and identified compounds
that activate latent provirus, including
5-hydroxynaphthoquinone and disulfiram
(216,217). In addition, via this system,
they also confirmed the role of transcrip-
tional interference in HIV-1 latency (127).

The model introduced by Planelles
laboratory involves T-cell differentiation
into nonpolarized cells (NP) and infec-
tion of these cells with Env-defective
HIV-1 (46,78). This model has been use-
ful in defining several signaling path-
ways required for HIV reactivation and
also in establishing the role of DNA
methylation in supporting HIV latency
establishment (46,78). Using this model,

they also demonstrated recently that
homeostatic proliferation of TCM might
not be able to effectively reactivate latent
HIV proviruses (218).

Another informative model comes
from the Karn lab (62). The unique abil-
ity of this latency model to provide large
quantities of pure latently infected pri-
mary CD4+ T cells makes it the most
suitable model system for various bio-
chemical analyses that require many
cells, such as protein analysis by Western
blot, and particularly to study the role of
epigenetic modifications on HIV gene ex-
pression and latency. The only drawback
of this model is the time needed to estab-
lish the system, since the provirus re-
quires 5–7 wks to become latent. Using
this model, we demonstrated the role of
repressive chromatin modifications in re-
stricting HIV gene expression during la-
tency establishment in primary T cells
(62). Furthermore, we also demonstrated
that transcription of latent proviruses in
primary T cells is restricted not only at
the initiation but also at the elongation
phase (62,67). These results further
strengthen the notion that, to reactivate
latent proviruses, various viral lifecycle
steps have to be targeted simultaneously.

Although every model of HIV latency
has its own advantages and limitations,
these models provide an opportunity to
perform HIV latency studies in physio-
logically relevant setups (for detailed re-
views of particularities of every model,
see [67,135,219]). These models open up
new avenues to search for therapeutic ap-
proaches aimed at fighting HIV  latency.

Ongoing Therapeutic Approaches
An approach to tackle HIV latency is

to make anti-HIV therapy eradicate HIV
completely. In that approach, anti-HIV
therapy needs to inhibit the establish-
ment of latent proviruses, and it should
also either reactivate or permanently si-
lence every latent provirus. Because a
single remaining virus could repopulate
the reservoirs, successful anti-HIV ther-
apy has to eradicate every single infected
cell. This step is a huge challenge. As
mentioned above and depicted in Fig-

ure 2, the intensification of HAART was
not able to reduce the residual viremia in
patients, largely because of the intrinsic
capability of latently infected resting
memory T cells to replenish their popu-
lation (176,220,221). Consequently, re-
searchers have come up with an alterna-
tive approach involving reactivation of
latent proviruses to purge latent viral
pools (12,222). As mentioned earlier, this
“shock and kill” strategy involves reacti-
vation of latent proviruses via a shock
stimulation and killing of infected cells
by viral cytopathic effects and cytolytic
immune responses, while keeping new
infections under control by HAART
(91,92). For this strategy to be effective in
purging latent proviral pools, the shock
phase needs to reactivate and inactivate
all latent proviruses, and all infected cells
have to be killed. Additionally, target
specificity of the shock stimulus is an-
other critical factor that has to be taken
into serious  consideration.

Several activation strategies and vari-
ous stimulants have already been tried in
vitro and in clinical trials, such as inter-
leukin (IL)-2, IL-7, anti-CD3 antibodies,
inhibitors of histone deacetylases and
 agonists of protein kinase C (22,25,223–
231). These strategies obtained limited
success but proved the concept. Because
HIV latency involves various mecha-
nisms, a cocktail of several drugs along
with HAART has to be used to reactivate
latent proviruses, which have stuck at
different stages of their lifecycle. In addi-
tion, immune responses of HIV-infected
patients may be inadequate to eliminate
reactivated HIV-infected T cells (232);
hence, treatments stimulating CTL re-
sponse or targeting toxins to infected
cells should be added to the therapy reg-
imens. Interestingly, IL-7 was found to
boost antiviral CTL response against SIV
in rhesus macaques (233).

However, a lesson can be learned from
a recent case, where an HIV patient (fa-
mously known as “the Berlin patient”)
had received a bone marrow transfer
from an individual carrying a mutation
in the chemokine receptor CCR5, the
main coreceptor for HIV. This bone mar-
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row transfer has allowed him to control
the rebound HIV virus without taking
anti-HIV drugs, for about 4 years now
(234,235). Thus, this HIV patient appears
to be cured from AIDS, despite maintain-
ing a certain number of infected cells.
This approach suggests the possibility of
a functional cure, where a patient could
maintain a manageable viral pool with-
out AIDS, in the absence of antiretroviral
therapy. In that regard, some groups have
started the preliminary work needed to
use gene therapy approaches to delete or
mutate CCR5 on CD34+ hematopoietic
progenitor cells of HIV patients, either in
situ or in vitro, and later put the cells back
into the patients. As a result of such treat-
ment, all the lineages originating from
these cells will be resistant to HIV be-
cause of the lack of functional CCR5 on
their surface (236–238). Consequently, the
loss of CD4+ cells because of HIV infec-
tion could be controlled, and a healthy,
HIV-resistant immune system could be
reconstituted. Although we have a suc-
cessful example of this approach and
translation of this concept seems to be
quite straightforward, it carries the limi-
tations intrinsic to gene therapy. More-
over, additional care has to be taken to
prevent these approaches from altering
the homeostatic balance of the host im-
mune system, since these modifications
are expected to enhance the availability
of free chemokines in the system. Of note,
these CCR5- modified T cells remain sus-
ceptible to CXCR4-tropic strains of HIV-1;
the same approach can also be used to re-
move the CXCR4 receptor (239). Overall,
these findings demonstrate that the goal
of curing AIDS is feasible and may be
within our reach.

CONCLUSIONS
Because of a very slow decay rate of

latently infected CD4+ T cells with a
half-life of around 44 months, and con-
sidering the occasional blips of proviral
reactivation that further facilitate new
rounds of viral infection, it is now ac-
cepted that complete eradication might
not be possible with current anti-HIV
therapies (13). Careful analysis of cells

harboring replication-competent latent
proviruses appears to show a rare but
highly stable population that is resistant,
even to intensive HAART regimens
(15,176,240). These infected cells can un-
dergo homeostatic proliferation, a pro-
cess further contributing to the mainte-
nance of the latent reservoirs (133).
Thus, in the present scenario, latently in-
fected resting CD4+ T cells seem to be
the major obstacle in eradicating HIV
proviruses.

To target latent cells, a “shock and kill”
strategy appears to be promising. The
fact that HIV latency is a multifactorial
phenomenon involving various mecha-
nisms suggests that multifaceted ap-
proaches are required to activate latent
proviruses, where different steps of the
viral lifecycle are targeted simultane-
ously by a cocktail of drugs, along with
the HAART regimen to keep new infec-
tions in check. The drugs should also be
able to target viruses present in sanctu-
ary sites such as CNS and GALT. Addi-
tionally, anti-HIV CTL responses should
be boosted or other means of killing reac-
tivated HIV-infected cells should be in-
troduced. Before this can be accom-
plished, however, we have to better
understand the underlying molecular
mechanisms that support the existence
and maintenance of latent proviruses
and latently infected T cells. Conse-
quently, complete eradication of HIV ap-
pears to be quite distant, but prospects
for a functional cure seem more in the re-
alistic range.
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