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INTRODUCTION
There is substantial evidence that nu-

tritional status during pregnancy signifi-
cantly affects maternal health and preg-
nancy outcomes. Magnesium (Mg)
deficiency is common and can be attrib-
uted to inadequate intake, impaired ab-
sorption, enhanced losses and/or in-

creased biological requirements (1,2). It
has been reported that >50% of women
in their reproductive years do not con-
sume the Recommended Dietary Al-
lowance (RDA) for Mg (310 mg/day)
(1,2). In addition to reduced consump-
tion of Mg-containing foods, women are
at risk for impaired Mg absorption

and/or increased Mg losses because of
obesity, diabetes, conditions of intestinal
malabsorption, hormonal imbalances, the
use of alcohol and/or drugs that com-
promise renal Mg handling (for example,
nonsteroidal antiinflammatory agents,
diuretics, antibiotics, excess calcium sup-
plementation) and hyperemesis gravi-
darum, as well as excessive vomiting
during pregnancy (3,4). Mg is a required
nutrient; it is essential for the activity of
ATP and is a cofactor for over 300 biolog-
ical enzymes, including those involved
in glycolysis and lipid metabolism, as
well as the synthesis of protein, RNA
and DNA (3,4). During pregnancy, the
daily requirement for Mg increases by
approximately 30% to support the rapid
growth of maternal, gestational and fetal
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tissues. Despite this greater demand, pre-
natal vitamin supplements rarely pro-
vide >25–35% of the RDA for Mg.

Suboptimal nutrient consumption dur-
ing pregnancy can have negative conse-
quences on maternal and fetal health,
some of which can linger beyond preg-
nancy. The maternal liver has been iden-
tified as the main source of polyunsatu-
rated fatty acids (PUFAs), specifically
arachidonic acid (AA) and docosa-
hexaenoic acid (DHA) (5), which are
transferred across the placenta (6) and es-
sential for the healthy development of the
fetal brain and central nervous system
(7,8). On the basis of the well- documented
inadequate intakes of Mg before and
during the reproductive years (1), the in-
creased requirement for Mg during preg-
nancy, and the links between Mg defi-
ciency and enhanced inflammation,
aberrant lipid metabolism and insulin re-
sistance (3,4,9–12), we examined the ef-
fects of Mg deficiency during pregnancy
on maternal and fetal outcomes in mice.

MATERIALS AND METHODS

Mouse Model of Mg Deficiency
During Pregnancy

All animal experiments were approved
by the Institutional Animal Care and Use
Committee of the Feinstein Institute for
Medical Research (IACUC #2010-018) be-
fore commencement and complied with
the Guide for the Care and Use of Laboratory
Animals (13). After a 1-wk acclimatization
period, outbred Swiss Webster female
mice (9–14 wks old; Taconic Farms, Ger-
mantown, NY, USA) were mated with
normal Swiss Webster male mice. Female
mice were weighed just before mating
and on gestation day (GD) 1, GD6, GD12
and GD17. On GD6, pregnant dams were
randomly assigned to receive either the
control AIN-76–based diet [containing
500 mg/kg elemental Mg or 100% of the
recommended Mg for mice (14), n = 12]
or the Mg-deficient diet [containing
50 mg/kg elemental Mg (n = 14); Harlan
Teklad, Madison, WI, USA], as previously
described (15). The diet was administered
beginning on GD6 because, if initiated

earlier (for example, GD1 or GD3), few
viable fetuses were observed on GD17.
Dams continued their respective diets ad
libitum throughout pregnancy and were
euthanized on GD17 by CO2 asphyxia-
tion and exsanguination by cardiac punc-
ture by using heparinized needles/sy-
ringes between 9:00 and 11:00 am (under
nonfasting conditions). Fetal pups were
weighed and euthanized by decapitation;
fetal blood was collected in heparinized
capillary tubes. The 10th percentile for
fetal weight (of the control group) was
determined using Microsoft Excel (per-
centile function). Cell-free amniotic fluid,
fetal plasma, fetal liver and fetal brain
samples of a single dam were pooled and
snap frozen in liquid N2. All samples
were stored at –80°C until use.

Assessment of Magnesium (Mg)
Concentrations

Quantitative determination of ionized
Mg2+ concentrations in maternal and
fetal plasma, as well as amniotic fluid,
was performed by using the Quan-
tiChrom™ Magnesium Assay Kit (Bioas-
say Systems, Hayward, CA, USA), ac-
cording to the manufacturer’s guidelines.

Evaluation of Cytokines, Adipokines,
Glucose and Insulin

Cytokines. Maternal and fetal livers
and plasma, as well as amniotic fluids,
were analyzed for multiple cytokines 
by using the mouse 7-plex proinflamma-
tory cytokine/chemokine assay kit (inter-
leukin [IL]-1β, IL-12p70, interferon [IFN]-
γ, IL-6, CXCL1 [CXC-motif ligand 1 or
GRO/KC], IL-10 and tumor necrosis fac-
tor [TNF]) (Meso Scale Discovery [MSD],
Rockville, MD, USA), as previously de-
scribed (16). Except for IL-12p70 (lower
limit 25 pg/mL) and IL-10 (lower limit 11
pg/mL), the lower limits of detection for
the analytes in this assay were between
0.38 and 5.0 pg/mL. The R2 value for each
standard curve was between 0.997 and
0.999. Samples being compared were run
on the same plate and the percent coeffi-
cient of variation of control replicates run
on the same plate was between 3% (IL-10)
and 12% (CXCL1). Liver cytokine data

were corrected for protein concentration
(determined by Bio-Rad protein assay;
Bio-Rad, Hercules, CA, USA) and ex-
pressed as pg/g.

Adipokine, insulin and glucose meas-
urements. Maternal plasma and amniotic
fluid adiponectin concentrations were
determined by enzyme-linked im-
munosorbent assay (R&D Systems, Min-
neapolis, MN, USA), according to the
manufacturer’s directions. Maternal
plasma and amniotic fluid insulin and
leptin concentrations were determined
by using MSD (as described above for
cytokines). Maternal and fetal plasma
glucose concentrations were measured
by using the BioVision Glucose Assay Kit
(Milipitas, CA, USA), according to the
manufacturer’s guidelines.

Fatty Acid Analyses
Lipids were extracted from maternal

plasma, maternal and fetal livers and
fetal brains by using the method of Folch
et al. (17). Total plasma free fatty acids
(FFAs) and individual fatty acids (FAs) of
the triglyceride fraction from the livers
and the FA profile of the phospholipid
fractions from the fetal brains were quan-
tified. Briefly, individual lipid classes of
the chloroform phase were separated by
thin-layer chromatography, and FAs
were isolated and methylated, as previ-
ously described (18). The methylated FAs
were analyzed by using an Agilent
7890A gas chromatograph. FA methyl es-
ters were identified by comparing the re-
tention times to those of known stan-
dards. Tissue FAs were normalized to
tissue weight and expressed as percent of
total fraction (mg/100 mg).

Expression of Markers of FA Synthesis/
FA Metabolism

Markers of FA synthesis and metabo-
lism in maternal and fetal livers were 
assessed by quantitative reverse 
transcription–polymerase chain reaction
(qRT-PCR) methods. RNA was isolated
from 50-mg frozen maternal and fetal 
livers by using the RNeasy® Plus Univer-
sal Mini Kit with DNase treatment (Qia-
gen, Foster City, CA, USA). The purity/
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 concentration of total RNA was assayed
by using the Nanodrop spectrophotome-
ter; RNA samples had 260:280 and
260:230 ratios ≥1.9 qRT-PCRs by using
specific primers (designed by the Roche
Universal ProbeLibrary Assay Design
Center [http://lifescience.roche.com/
shop/ products/universal-probelibrary-
system-assay-design; Roche Diagnostics
Corporation, Indianapolis, IN, USA] and
synthesized by Thermo Fisher Scientific,
Waltham, MA, USA) for desaturase- and
elongase-related genes: D5d, D6d, Scd1,
Elovl1 (variants 1–3), Elovl2, Elovl4 (vari-
ants 1–2), Elovl5, Elovl6 and other genes
involved in FA synthesis: Chrebp (also
known as Mlxipl), Srebf1, Fasn and Acaca
were performed in triplicate by using the
Eurogentec One-Step RT qPCR master-
mix (Eurogentec North America, San
Diego, CA, USA), 100 ng RNA, Roche
Universal ProbeLibrary and the Roche
LightCycler 480®, as previously de-
scribed (19). See Supplementary Table S1
for primers and probes. Relative changes
in mRNA expression were calculated as
fold changes (versus mouse Hprt1 as the
housekeeping gene) by using the com-
parative Ct (ΔΔCt) method (20).

Indices of FA desaturation (monoun-
saturated fatty acid [MUFA]/saturated
fatty acid [SFA] ratio) and elongation
were determined by using product-to-
substrate ratios, as previously described
(21). Hepatic sterol regulatory element
binding protein-1 (SREBP-1) and carbo-
hydrate-responsive element binding pro-
tein (ChREBP) concentrations were de-
termined by Western blotting by using
specific antibodies: anti–SREBP-1 (H-160;
Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and anti-ChREBP (NB400-135;
Novus Biologicals, Littleton, CO, USA).

Statistical Analyses
All data are presented as means ± stan-

dard deviation (SD), unless otherwise 
indicated. qRT-PCR results (specific
mRNA/Hprt1 [housekeeping gene]
mRNA ratios) are expressed as mean fold
change (± SD) relative to the control
group. Except for fetal death data, all
data were analyzed by using either un-

paired t tests (when there were equal
variances) or unpaired t tests with the
Welch correction (when there were un-
equal variances) by using GraphPad
Prism 5 (GraphPad Software, La Jolla,
CA, USA) to compare controls versus
Mg-deficient animals. Fetal death data
was analyzed by using the Exact Mann-
Whitney test to compare the percent of
nonviable fetal pups per litter among the
control group versus the Mg-deficient
group by using SAS version 9.3 (SAS In-
stitute Inc., Cary, NC, USA). P < 0.05 was
considered significant.

All supplementary materials are available
online at www.molmed.org.

RESULTS

Effect of Maternal Mg Deficiency on
Maternal Weight Gain, Fetal Growth
and Fetal Survival

Consumption of the Mg-deficient diet
by the mouse dams beginning on GD6
and continuing through GD17 (11 d) sig-
nificantly reduced Mg concentrations in
the maternal plasma, amniotic fluid and
fetal plasma by approximately 40–45%
(Figure 1, P < 0.01). A concentration gra-
dient for Mg from the maternal side (low)
to the fetal side (high) was observed (Fig-
ure 1). Dams fed the Mg-deficient diet
gained significantly less weight through-
out pregnancy compared with the con-
trol-fed dams (P < 0.05) (Figure 2A). In
addition, maternal weight gain per fetal
pup (that is, corrected for litter size) was
reduced by approximately 20% in the
Mg-deficient group (P < 0.05) (Figure 2B).

Litter sizes were not significantly differ-
ent between the two groups. Fetal pups
exposed to Mg deficiency in utero
weighed approximately 30% less than
pups exposed to the control diet on E17
(P < 0.01) (Figure 2C), with approxi-
mately 60% of Mg-deficient pups weigh-
ing below the 10th percentile of the con-
trol pup weight (Figure 2C). Fetal losses
(% nonviable pups per litter on GD17)
were significantly greater among the Mg-
deficient dams versus controls (P < 0.001)
(Figure 2D).

Mg Deficiency Is Not Associated with
Maternal or Fetal Inflammation

Consumption of an Mg-deficient diet
did not affect maternal plasma cytokines
(IL-1β, IL-6, CXCL1, IL-12p70, IFNγ or
IL-10) or liver cytokines (IL-1β, IL-6,
CXCL1, IL-12p70 or IFNγ [IL-10 and TNF
were undetectable]) when assessed on
GD17 (Supplementary Table S2). Like-
wise, amniotic fluid, fetal plasma and
fetal livers obtained from the fetal pups
exposed to Mg deficiency showed no sig-
nificant differences in cytokine concen-
trations compared with controls (Supple-
mentary Table S2). With the exception of
CXCL1, our data were very low values
with considerable variation.

Mg Deficiency during Pregnancy
Affects Circulating Adipokine
Concentrations

Maternal plasma adiponectin and lep-
tin concentrations were significantly
higher in the Mg-deficient dams when
compared with control dams (P < 0.01)
(Figures 3A, B). Mg status did not signifi-

Figure 1. Mg deficiency reduces Mg concentrations in maternal and fetal plasma and
amniotic fluid. Mg concentrations (mg/dL) in maternal plasma (A), amniotic fluid (B) and
fetal plasma (C) were determined on GD17 after consumption of either control or Mg-
deficient diets. Values are means ± SD; n = 12 (control) and n = 14 (Mg deficient) per
treatment. **P < 0.01 versus control, ***P < 0.001 versus control.
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cantly affect adiponectin concentrations
in the amniotic fluid (Figure 3C). How-
ever, leptin concentrations in the amni-
otic fluid were significantly higher in the
Mg-deficient mice when compared with
controls (P < 0.05) (Figure 3D).

Mg Deficiency during Pregnancy in
Mice Was Accompanied by Higher
Maternal Plasma FFAs and Significant
Changes in Maternal and Fetal
Hepatic FA Profiles

Following Mg deficiency during preg-
nancy, dams had higher total plasma
FFAs when compared with control dams
(Mg deficient: 102.6 ± 32.6 μg/mL versus
controls: 74.0 ± 11 μg/mL, P < 0.01). Al-
though total maternal liver triglyceride
concentrations were similar among Mg-
deficient and control dams (Mg deficient:
5.8 ± 3.1 μg/mg versus controls: 4.6 ± 
1.9 μg/mg), the overall maternal liver
triglyceride-FA profile was significantly
altered after Mg deficiency (Table 1). Mg
deficiency was accompanied by signifi-

cantly greater SFAs (P < 0.01) and
MUFAs (P < 0.05) and significantly lower
PUFAs (P < 0.01), as well as PUFA/SFA
(P < 0.05) and n-3:n-6 FA ratios (P < 0.05,
Table 1). More specifically, Mg- deficient
dams had higher percentages of 14:0 
(by >100%), 16:1 (by 79%) and 18:1n-9
(by 15%) liver FAs and significantly
lower percentages of 18:2n-6 (by 20%),
18:3n-3 (by 31%), 18:3n-6 (by 50%), 
20:4n-6 (AA, by 56%) and 22:6n-3 (DHA,
by 87%) liver FAs (Table 1).

Mg-deficient fetal livers had signifi-
cantly lower 18:1n-9 (by 14%) and 18:1n-
7 (by 13%) and higher 18:2n-6 (by 40%),
18:3n-6 (by 116%), 18:3n-3 (by 278%),
20:4n-6 (AA, by 173%) and 22:6n-3
(DHA, by 32%) (Table 1). Overall, Mg-
deficient fetal livers had significantly
lower hepatic MUFA and higher PUFA
concentrations, a higher PUFA:SFA ratio
and a higher n-3:n-6 FA ratio compared
with control fetal livers (Table 1).

Fetal Brain DHA Is Lower in 
Mg-Deficient Fetal Pups

The only phospholipid-FA in the E17
fetal brains differentially expressed was
DHA, which was significantly lower in
those brains exposed to Mg deficiency in
utero (controls: 11.9 ± 0.29 versus Mg
 deficient: 11.1 ± 0.22 mg/100 mg brain
tissue; P < 0.05).

FA Desaturation and Elongation-
Related Gene Expression in Maternal
and Fetal Livers

Livers from the Mg-deficient dams
showed a seven-fold higher expression
of Scd1 (also known as D9d) mRNA and
approximately two-fold higher expres-
sion of D5d and D6d mRNA compared
with controls (P < 0.05) (Figure 4A). The
total desaturation index for stearoyl-
CoA desaturase-1 (SCD-1) activity was
higher in Mg-deficient maternal livers
compared with control maternal livers
(P < 0.05) (Table 1). Elovl1 (variants 2
and 3), Elovl2, Elovl5 and Elovl6 mRNA
expression were significantly elevated
in the Mg-deficient maternal livers ver-
sus control maternal livers (P < 0.05)

Figure 2. Mg deficiency reduces maternal and fetal weight gain and fetal survival. Mater-
nal weight (wt) gain between GD1 and GD17 (A), maternal weight gain corrected for litter
size (weight gain per pup) on GD17 (B) and the distribution of control and Mg-deficient E17
mouse fetal weights (expressed as a percentage of fetal pups for each weight category)
are shown. The arrow indicates the 10 percentile cutoff for control fetal weight; inset shows
overall mean fetal pup weight per group (C). Fetal losses (expressed as percentage of litter)
determined on GD17 (D). Values are means ± SD; n = 12 (control) and n = 14 (Mg deficient)
per group. *P < 0.05 versus control, **P < 0.01 versus control, ***P < 0.001 versus control.

Figure 3. Mg deficiency during pregnancy increases maternal circulating adipokines. Ma-
ternal plasma adiponectin (A) and leptin (B) concentrations and amniotic fluid
adiponectin (C) and leptin (D) concentrations determined on GD17. Values are means ±
SEM (standard error of the mean); n = 10 (control, ) and n = 11 (Mg deficient, ) mice
per group. *P < 0.05 versus control, **P < 0.01 versus control.
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(Figure 4B). The ELOVL6 elongation
index for 16:0 was also greater in the
Mg-deficient maternal livers compared
with control livers (P < 0.05) (Table 1).
By contrast, Scd1 (Figure 4C) and Elovl6
mRNA expression (Figure 4D) was
lower in the Mg-deficient fetal livers
versus control fetal livers. The total de-
saturation index for SCD-1 activity for
the fetal livers exposed to Mg deficiency
was significantly lower when compared
with control fetal livers, but there was
no difference in the elongation index
(Table 1).

Maternal liver mRNA expression of
Fasn and Acaca, regulators of SFA syn-
thesis, were higher after Mg deficiency
when compared with the controls (P <
0.05) (Figures 5A, B). By contrast, Fasn
and Acaca mRNA expression were lower

in the fetal livers after Mg deficiency
versus control fetal livers (P < 0.05) (Fig-
ures 5C, D).

Changes in Hepatic Srebf1 and
Chrebp mRNA Expression

The major regulators of FA synthesis,
Srebf1 and Chrebp mRNA, were higher
among the Mg-deficient dams than con-
trols (Figure 6A). Although no significant
differences in SREBP-1 protein concen-
trations (either precursor [p125] or ma-
ture [p68] isoforms) were observed (Fig-
ures 6B, C), Mg-deficient maternal livers
had significantly greater amounts of
ChREBP protein compared with control
livers (see Figures 6B, C). In the fetal liv-
ers exposed to Mg deficiency, no signifi-
cant changes in Srebf1 or Chrebp mRNA
expression were observed versus controls
(Figure 6D). Elevated concentrations of
the inducers of Srebf1 and Chrebp mRNA,
insulin (which induces Srebf1) and glu-
cose (which induces both Srebf1 and
Chrebp mRNA) were found in the circula-
tion of Mg-deficient dams (Figures 7A, B).
On the fetal side, there were no differ-
ences in insulin or glucose concentrations
after Mg deficiency (Figures 7C, D).

Table 1. Mg deficiency during pregnancy alters maternal and fetal hepatic fatty acid profiles.

Maternal Fetal

Control Mg deficient Control Mg deficient

FA (mg per 100 mg liver)

14:0 0.36 ± 0.22 0.74 ± 0.13** 1.75 ± 0.21 1.55 ± 0.19
16:0 30.2 ± 0.86 30.8 ± 2.55 27.8 ± 1.00 26.3 ± 0.58*
16:1 2.02 ± 0.34 3.63 ± 1.02** 5.21 ± 0.30 4.74 ± 0.68
18:0 4.46 ± 0.48 4.8 ± 0.82 7.89 ± 0.87 8.75 ± 0.94
18:1n-7 2.70 ± 0.25 3.01 ± 0.59 3.90 ± 0.23 3.37 ± 0.38*
18:1n-9 30.3 ± 2.54 34.7 ± 2.68** 38.1 ± 1.60 32.8 ± 2.48**
18:2n-6 24.2 ± 2.74 19.3 ± 4.96* 13.8 ± 1.90 19.4 ± 2.62***
18:3n-6 0.97 ± 0.18 0.48 ± 0.58* 0.36 ± 0.36 0.78 ± 0.35*
18:3n-3 0.54 ± 0.37 0.37 ± 0.99* 0.23 ± 0.34 0.87 ± 0.46*
20:4n-6 2.80 ± 0.57 1.24 ± 0.44*** 0.26 ± 0.27 0.71 ± 0.33*
22:6n-3 1.41 ± 0.42 0.19 ± 0.33*** 0.67 ± 0.05 0.93 ± 0.17*

Percentage of total

MUFA 37.0 ± 1.20 39.8 ± 3.06* 47.0 ± 1.80 40.1 ± 3.56**
SFA 33.0 ± 2.70 40.0 ± 3.20** 37.4 ± 1.80 37.1 ± 1.73
PUFA 30.0 ± 2.96 20.2 ± 6.07** 15.6 ± 2.67 22.8 ± 4.17**

Ratio

PUFA:SFA 0.86 ± 0.10 0.63 ± 0.23* 0.33 ± 0.16 0.61 ± 0.24**
n-3:n-6 FA 0.07 ± 0.01 0.06 ± 0.01* 0.06 ± 0.02 0.09 ± 0.01*

Activity

Desaturation indexa 1.00 ± 0.08 1.14 ± 0.09* 1.26 ± 0.07 1.12 ± 0.1*
ELOVL6b 1.15 ± 0.09 1.29 ± 0.06* 1.65 ± 0.04 1.58 ± 0.09

Values are means ± SD; n = 8–9 per group.
aTotal desaturation index = (16:1n-7 + 18:1n-7 + 18:1n-9)/(14:0 + 16:0 + 18:0).
bELOVL6 (elongase 6) activity index = (18:0 + 18:1n-9)/16:0.
*P < 0.05, **P < 0.01, ***P < 0.0001 versus control.

Figure 4. Mg deficiency alters mRNA expression of desaturases and elongases in maternal
and fetal livers. Scd1, D5d and D6d (desaturases) mRNA expression (A, C) and Elovl1 (v1
and v2,3), Elovl2, Elovl4 (v1,2), Elovl5 and Elovl6 (elongases) mRNA expression (B, D) in ma-
ternal livers (A, B) and fetal livers (C, D), respectively, are shown. Values are means (fold
change) ± SD; n = 5–7 mice per group. *P < 0.05, **P < 0.01, ***P < 0.0001 versus control.
ND, not detectable; v1, variant 1; v1,2, variants 1 and 2; v2,3, variants 2 and 3.
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DISCUSSION
On the basis of the reduction in mouse

maternal plasma Mg concentrations with
respect to previously published guide-
lines (22,23), this model appears to pro-
duce moderate Mg deficiency. Maternal
plasma Mg concentrations decline over
the course of pregnancy (24). This result
is consistent with the competition for
Mg between the mother and fetus favor-
ing the fetus, with higher Mg concentra-
tions in cord blood than maternal blood
(25). The competition for existing Mg be-
tween the fetuses and dams was evident
by the concentration gradient from the
maternal (low) to the fetal (high) side
(Figure 1). Although plasma Mg concen-
trations may not reflect intracellular Mg
availability, determination of serum/
plasma Mg concentrations is the most
commonly used method to assess Mg
status and adequately reflects acute Mg
status resulting from altered dietary 
intakes (26).

Previous studies report enhanced in-
flammation during Mg deficiency in the
absence of pregnancy in rodents and hu-
mans (11,27). We observed no increase in
inflammatory cytokines or chemokines
in the maternal or fetal circulation, amni-
otic fluid, maternal livers or fetal livers
(Supplementary Table S2). However, we
did not assess C-reactive protein or amy-
loid P, two important inflammatory me-
diators. The lack of enhanced inflamma-
tion in our mice may be due to elevated
β-estradiol concentrations accompanying
pregnancy, which have been shown to
protect against Mg deficiency–induced
inflammation in the nonpregnant state
(28). Alternatively, Mg deficiency was

not severe enough (due to length of time
the dams were on the Mg-deficient diet
[11 d]) to produce significant inflamma-
tory changes.

To our knowledge, no studies have ex-
amined the effect of Mg deficiency on
maternal circulating adipokines during
pregnancy in mice. Leptin is upregulated
during pregnancy (29), but its role in

pregnancy is not well understood. Leptin
is typically associated with reduced food
intake, but not in pregnancy (30). A re-
cent study revealed that higher circulat-
ing maternal leptin, an early marker of
metabolic dysfunction, correlates with re-
current pregnancy losses in humans (31).
In this study, higher leptin in the Mg-
 deficient group was accompanied by
more fetal losses. Also consistent with
our findings, a recent report showed that
the administration of adiponectin to
pregnant mice significantly restricted
fetal growth (32), which was observed
herein. Adiponectin improves insulin
sensitivity by promoting glucose uptake
and reducing hepatic gluconeogenesis
(33). Thus, higher adiponectin concentra-
tions found in Mg-deficient dams may be
a compensatory mechanism to manage
elevated maternal glucose and insulin

Figure 5. Mg deficiency alters Fasn and Acaca mRNA expression in maternal livers. Fasn
(A, C) and Acaca (B, D) mRNA expression in maternal mouse livers (A, B) and fetal livers
(C, D), respectively, is shown. Values are means (fold change) ± SD; n = 5–7 per treatment
(control, ; Mg deficient, ). *P < 0.05, ***P < 0.0001 versus control.

Figure 6. Mg deficiency during pregnancy affects the expression of regulators of fatty acid
synthesis. Srebf1 (A) and Chrebp (B) mRNA expression in maternal livers is shown. Represen-
tative Western blots are shown for maternal liver SREBP-1 proteins (precursor, 125-kDa
[p125] and mature, 68-kDa [p68] forms) (B) and ChREBP protein (C), with quantitation of
band densities of SREBP-1 p125, SREBP-1 p68 and ChREBP corrected for GAPDH below.
Srebf1 (D) and Chrebp (E) mRNA expression in fetal livers. Values are means ± SD; n = 5–7
samples per treatment. *P < 0.05, **P < 0.01 versus control.
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concentrations. Unfortunately, because of
the small amounts of fetal blood ob-
tained, we were unable to assess fetal
plasma adiponectin or leptin concentra-
tions. Maternal nutrient deficiencies (for
example, global food restriction, energy/
calorie, protein restriction and iron defi-
ciency) can lead to fetal growth restric-
tion or intrauterine growth restriction
(IUGR). IUGR, a major cause of fetal/
neonatal morbidity and mortality, occurs
when the fetal growth rate is signifi-
cantly below its potential for a given ges-
tational age. By strict definition, IUGR
results when the estimated weight of the
fetus is below the 10th percentile for its
gestational age (34). The precise causes of
IUGR are not well understood. While
IUGR during maternal Mg deficiency has
not been previously reported, earlier
studies support the role of Mg status in
fetal growth. Takaya et al. (35) reported
that, in humans, Mg concentrations
found in umbilical cord blood-derived
platelets were significantly lower in
neonates born small for gestational age
(previously IUGR in utero) than the “ap-
propriate for gestational age” control
group (35). While the cause of reduced
fetal growth in the Mg-deficient dams is
not known, it is possible that it may re-
sult, in part, from maternal metabolic
dysfunction and the need for Mg for so
many important biological processes. Mg
is a cofactor for enzymes involved in
DNA, RNA and protein synthesis and
numerous metabolic pathways required
for normal growth and development.
Ongoing studies in our laboratory are in-
vestigating potential mechanisms under-

lying fetal growth restriction in mice
after exposure to Mg deficiency in utero.

Inadequate Mg intakes have been as-
sociated with metabolic syndrome in hu-
mans (4,12). Although insulin resistance
was not measured in this study, Mg defi-
ciency was associated with insulin resist-
ance in humans and laboratory animals
during the nonpregnant state (36,37).
Precisely how Mg status regulates in-
sulin sensitivity and glucose levels/toler-

Figure 7. Changes in maternal plasma glucose and insulin levels after Mg deficiency. Ma-
ternal plasma insulin (A) and glucose (B) concentrations and amniotic fluid insulin (C) and
fetal plasma glucose (D) concentrations were determined. Values are means ± SD; n = 10
samples per treatment (control, ; Mg deficient, ). *P < 0.05 versus control.

Figure 8. Proposed model describing the effects of maternal Mg deficiency in mice dur-
ing pregnancy. On the maternal side, Mg deficiency is accompanied by higher maternal
circulating glucose and insulin, positive regulators of Srebf1 and Chrebp mRNA expres-
sion, which promote Fasn and Acaca mRNA expression. Together, these promote higher
hepatic SFAs, along with Scd1, D5d, D6d (desaturase) and Elovl1, Elovl2, Elovl5 and Elovl6
(elongase) mRNA expression, which lead to higher circulating FFAs and hepatic SFAs and
MUFAs and lower hepatic PUFAs, specifically DHA and AA (which are negative regulators
of Srebf1 and Chrebp mRNA expression). On the fetal side, Mg deficiency is accompa-
nied by no changes in glucose or insulin concentrations, consistent with no changes in
Srebf1 and Chrebp mRNA expression in the fetal liver. Inadequate supplies of maternal
DHA and AA, which are critical for fetal growth and brain development, lead to lower
fetal brain DHA concentrations along with a compensatory increase in fetal hepatic
PUFAs (DHA and AA) and decrease in MUFAs (via decreased Fasn, Acaca, Scd1 and
Elovl6 mRNA expression). Maternal and fetal metabolic dysfunction during Mg deficiency
is accompanied by fetal growth restriction and increased fetal mortality.
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ance is not completely understood. Mg
may regulate intracellular signaling asso-
ciated with glucose uptake and/or in-
sulin signaling by serving as a cofactor
for pathway-specific enzymes (38).

This study is the first to link Mg defi-
ciency during pregnancy to dysfunc-
tional maternal lipid metabolism and
aberrant fatty acid profiles. Srebf1 and
Chrebp transcribe the major overall tran-
scriptional regulators of hepatic FA syn-
thesis, SREBP-1 and ChREBP (39,40), re-
spectively, which have been linked to the
metabolic syndrome (41,42), as well as el-
evated hepatic de novo lipogenesis and
fatty liver (40,43,44). The two major in-
ducers of Srebf1 mRNA expression are
 insulin and glucose, whereas Chrebp
mRNA expression is induced by glucose
independent of insulin (40). Mg defi-
ciency in pregnant mice was character-
ized by higher maternal plasma insulin
and glucose concentrations as well as
greater maternal hepatic Srebf1 and
Chrebp mRNA expression, compared
with controls (Figure 6). By contrast,
DHA and other PUFAs, the negative reg-
ulators of Srebf1 (45,46) and Chrebp (47)
mRNA expression, were significantly
lower in Mg-deficient dams versus con-
trols. SREBP-1 controls the expression of
Scd1, D6d and Elovl5 (43), as well as Fasn
and Acaca (43), which were elevated on
the maternal side during Mg deficiency.
ChREBP regulates both glycolytic and li-
pogenic genes and plays a critical role in
FA synthesis (48). The protein product of
Scd1, SCD-1, is the rate-limiting enzyme
for MUFA synthesis (49), and its expres-
sion is primarily regulated at the level of
mRNA transcription (50). Mg-deficient
maternal livers showed higher ChREBP
protein, but not higher SREBP-1 protein
expression (Figures 6C, D). This result
could be due to the instability of the ma-
ture SREBP-1 protein, which is immedi-
ately degraded (40) and/or due to our
assessment of whole organ lysates rather
than the nuclear fractions (where it ex-
erts its effects) (40). Finally, providing the
Mg-deficient diet for only 11 d was pos-
sibly too brief for the dams to develop
fatty livers.

IUGR has been associated with aber-
rant FA metabolism in rat fetuses and
offspring (51). In addition, previous stud-
ies have revealed the correlations be-
tween low maternal n-3 and n-6 FA
plasma concentrations and poor fetal
growth (52) and between maternal di-
etary n-3:n-6 FA ratios and childhood
brain development (53). The fetus relies
on the transplacental transport of mater-
nally derived DHA (6,54), which forms a
maternal-to-fetal gradient favoring the
fetus (55). DHA delivery to the fetus
could be compromised by the 86% reduc-
tion in maternal liver DHA after Mg defi-
ciency. Enhanced fetal liver DHA after
Mg deficiency may reflect a compensa-
tory response to produce DHA for the
fetal brain (that is, brain-sparing) and
fetal growth (Figure 8). However, be-
cause the fetal liver is not capable of
making sufficient DHA (6,56) and be-
cause DHA is critical for cells of the cen-
tral nervous system for forming mem-
brane phospholipids required for
neurogenesis and synaptogenesis
(8,57–59), a maternal deficit could have
significant consequences for the fetus
and offspring. In addition, maternal
DHA supplementation has been associ-
ated with improved fetal growth (60).

CONCLUSION
Our data add to the results of previ-

ous work, establishing the role of Mg in
maintaining metabolic function in the
nonpregnant state and reveal that, in a
mouse model of pregnancy, moderate
Mg deficiency leads to aberrant maternal
and fetal hepatic FA profiles and fetal
brain DHA levels, along with changes in
the expression of key transcriptional reg-
ulators involved in fatty acid metabo-
lism (see Figure 8). Poor maternal
health, including aberrant n-3 and n-6
FA profiles, can affect offspring size and
health (52). Our findings support inves-
tigating whether these metabolic abnor-
malities foreshadow future maternal and
neonatal/offspring health risks and
whether this pattern can be reversed by
Mg supplementation. Likewise, these
findings warrant further investigation of

the relationships between inadequate
Mg consumption and/or Mg deficiency
in humans during pregnancy and dys-
regulated maternal metabolism and poor
pregnancy outcomes.
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