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Developmental Stage-Specific Hepatocytes Induce
Maturation of HepG2 Cells by Rebuilding the Regulatory

Circuit
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On the basis of their characteristics, we presume that developmental stage-specific hepatocytes should have the ability to in-
duce maturation of hepatoma cells. A regulatory circuit formed by hepatocyte nuclear factor (HNF)-4o, HNF-1a, HNF-6 and the up-
stream stimulatory factor (USF-1) play a key role in the maturation of embryonic hepatocytes; however, it is unclear whether the
regulatory circuit mediates the embryonic induction of hepatoma cell maturation. In this study, 12.5-d fo 15.5-d mouse embryonic
hepatocytes or their medium were used to coculture or freat HepG2 cells, and the induced maturation was evaluated in vifro and
in vivo. In the induced HepG2 cells, the components of the regulatory circuit were defected, their cross-regulation was evaluated
and HNF-4a RNA interference was performed. We found that 13.5-d to 14.5-d embryonic hepatocytes could induce HepG2 cell
maturation, demonstrated by morphological changes, increased maturation markers and decreased c-Myc and a-fetoprotein
(AFP) in vitro. The majority of HepG2 tumors were eliminated by 13.5-d embryonic induction in vivo. Al components of the regula-
tory circuit were upregulated and the binding of HNF-4a, HNF-1a, HNF-6 and USF-1 to their target sites was promoted to rebuild the
regulatory circuit in the induced HepG2 cells. Moreover, RNA inferference targeting HNF-4a, which is the core of the regulatory cir-
cuit, attenuated the induced maturation of HepG2 cells with downregulation of the regulatory circuit. These results revealed that
developmental stage-specific hepatocytes could induce the maturation of HepG2 cells by rebuilding the regulatory circuit.
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INTRODUCTION

Hepatocellular carcinoma (HCC),
which is a major liver malignancy;, is the
third leading cause of cancer death (1-3).
Although the current treatments are able
to effectively kill tumor cells, they fail to
completely cure HCC and inhibit its re-
currence (4,5). Therefore, the search for a
specific therapy remains a struggle in
medical research.

HCC cells own common characteristics
that are often found to be hepatic

stem/progenitor cell biomarkers (2,6-10),
although multiple environmental and ge-
netic risk factors exist. HCC progression
and embryonic liver development share
many same properties, and a tumor may
originate from progenitor/stem cells that
receive abnormal proliferation and matu-
ration signals (11-13). Thus, knowledge
about cancer stem cells may reveal the
exact biology of tumor cells and will
offer new insights on HCC therapy
(5,14-16).
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A series of studies focused on the em-
bryo (including embryonic stem cells,
embryonary sac and parts of fetus) to in-
duce tumor cell maturation (17,18). How-
ever, not all the induction experiments
succeed, and the intrinsic explanation is
not fully clarified (19,20). On the basis of
their characteristics, we presumed that
developmental stage-specific hepato-
cytes, in theory, should have the ability
to direct and induce maturation of tumor
cells (21). The question of whether devel-
opmental stage-specific hepatocytes
could induce the maturation of HepG2
cells has not been explored.

During liver development, complex
regulatory cascades of hepatic transcrip-
tion factors control hepatocyte matura-
tion (22,23), and the regulatory circuit
formed by cross-regulation of hepatocyte
nuclear factor (HNF)-4a,, HNF-10,, HNF-6
and upstream stimulatory factor (USF)-1
plays a pivotal role in hepatocyte matura-
tion and functional formation (24-26).
HNF-4a, the core of the regulatory circuit,
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Figure 1. The cross-regulation of the regulatory circuit in induced HepG2 cells. (A) As illus-
frated, HNF-4a, HNF-Ta, HNF-6 and USF-1 were cross-regulated to form a positive feedback
circuit. (B) The predicted binding sites of HNF-4a, HNF-1a, HNF-6 and USF-1 within their tar-
get promoters were identified. (C) Binding of HNF-4a, HNF-Ta, HNF-6 and USF-1 to their tar-
get sites was evaluated by ChIR After HepG2 cells were cocultured with 13.5-d mouse
embryonic hepatocytes for 48 h, the binding of HNF-4a, HNF-1a, HNF-6 and USF-1 to their
target elements was significantly promoted. (D) The contents of HNF-4o. bound in hnf-Ta
and usf-1 promoters were detected by DNA pull-down assay. Affer HepG2 cells were
freated with 13.5-d mouse embryonic hepatocyte medium for 48 h, the bound HNF-4a. in-
creased significantly. *P < 0.05 and **P < 0.01 versus control. The experiments were re-
peated three times. Con, control.
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is believed to be a controller and marker
of mature hepatocytes (27,28). As a down-
stream target of HNF-4a, HNF-1a is also
essential for hepatocyte maturation
(29,30). USF-1, which competes with the
oncogene c-Myc for the E-box regulatory
element, is another downstream target of
HNF-4o that plays crucial roles in the
maturation and formation of functional
hepatocytes (31,32). USF-1 can activate
HNF-6, which is another important tran-
scription factor for hepatocyte maturation
that has been found to regulate HNF-4a
(23,33). Therefore, HNF-4a,, HNF-1a,
HNF-6 and USF-1 form a positive feed-
back loop that drives hepatocyte matura-
tion in liver development (Figure 1A). Be-
cause the transcription factor binding sites
are generally believed to scatter within

10 kb upstream of the transcriptional start
site (34), the 10-kb gene promoters were
all analyzed. On the basis of previous re-
ports (25), the predicted binding sites of
HNF-4a HNF-1a, HNF-6 and USF-1 were
identified, respectively (Figure 1B). It re-
mains unknown whether developmental
stage-specific hepatocytes rebuild the reg-
ulatory circuit to induce the maturation of
HepG2 cells.

In this study, HepG2 cells were cocul-
tured with mouse embryonic hepato-
cytes at gestation of 12.5-15.5 d, because
the mouse hepatocytes differentiated at
12.5 d, and the liver structure became
firmly established between 12 and 15 d
of gestation (35-37). The induced matu-
ration of HepG2 cells was evaluated on
the basis of their morphological changes,
HNF-40 and c-Myc expression and
o-fetoprotein (AFP) content. In addition,
expressions of cytochrome P450, family 3,
subfamily A, polypeptide 4 (CYP3A4),
CYP1B1, ornithine carbamoyltransferase
(OTC), arginase 1 (ARG1) and alcohol
dehydrogenase 1C (class I), y polypep-
tide (ADH1C), in 13.5-d embryonic hepa-
tocyte medium-—treated HepG2 cells were
evaluated. Moreover, the effects of the
13.5-d embryonic hepatocyte medium on
the HepG2 tumor cells that were inocu-
lated into nude mice were observed to
confirm their induction effects in vivo. All
components of the regulatory circuit



(HNF-40, HNF-1a, HNF-6 and USF-1)
were detected, and their cross-regulation
was measured to investigate whether the
regulatory circuit was rebuilt in the in-
duced HepG2 cells. In addition, RNA in-
terference of HNF-4a was performed to
confirm the role of the regulatory circuit
in the induced maturation of HepG2
cells. In parallel, 10.5-d to 13.5-d embry-
onic hepatocyte medium was used to
treat another human hepatoma cell line
SMMC-7721 for 48 h, and its prolifera-
tion and maturation markers CYP1B1
and ADHI1C were evaluated.

MATERIALS AND METHODS

Cells and Treatment

HepG2 (human hepatoma cell line) and
SMMC-7721 cells were a product of the
Cell Bank of the Chinese Academy of Sci-
ences (Shanghai, China) and were cul-
tured in Dulbecco modified Eagle medium
(DMEM) supplemented with 10% (v/v)
fetal bovine serum (Gibco [Thermo Fisher
Scientific Inc., Waltham, MA, USA)).

Six- to eight-week-old Swiss mice
(25-30 g) from the Department of Experi-
mental Animals of Hebei Medical Uni-
versity (1203166) were housed in a con-
trolled environment with free access to
food and water and maintained on a 12-h
light-dark cycle. The animal experimen-
tal protocol was approved by the institu-
tional animal care committee. Estrus fe-
male and male mice were placed together
at night, and the following morning, fe-
male mice with a vaginal plug were des-
ignated as 0.5 d gestation. The female
mice at 12.5-, 13.5-, 14.5- and 15.5-d gesta-
tion were sacrificed, and their embryonic
livers were isolated. After each embry-
onic liver was sheared into tissue pieces,
0.25% collagenase IV in D-Hanks was
used for digestion. Embryonic hepato-
cytes were collected by centrifugation at
1000g and filtration and purified by dif-
ferential adhesion. The embryonic hepa-
tocytes were identified by albumin im-
munofluorescence (Figure 2A). The
freshly isolated embryonic hepatocytes
were directly used for coculture. HepG2
cells (10°) were seeded in six-well plates,
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Figure 2. Morphological changes in HepG2 cells cocultured with mouse embryonic hepa-
focytes. (A) Mouse primary embryonic hepatocytes were identified by detecting albumin.
(B) Affer coculturing with mouse embryonic hepatocytes at 12.5-, 13.5-, 14.5- and 15.5-d
gestation, HepG2 cells were observed. No proliferation was observed, and most HepG2
cells became round and shrunken in shape and detached and drifted in the 13.5-d and
14.5-d groups. Moreover, only a few cells were observed, and they appeared mononuclear
and hexagonal, similar to hepatocytes. However, in 12.5-d and 15.5-d groups, apparent pro-
liferation was observed with no obvious morphological changes. Scale bar = 20 um.

and embryonic hepatocytes (107) were co-
cultured in inserts of Transwell chambers
(EMD Millipore, Billerica, MA, USA),
which were divided into 12.5-d, 13.5-d,
14.5-d and 15.5-d groups. After cocultur-
ing for different times, HepG2 cells were

observed, photographed and used for
further detection. On the other hand,
after the freshly isolated embryonic hepa-
tocytes were cultured with DMEM (1 mL
per embryonic liver) for 48 h, the super-
natant was collected and used to treat
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HepG2 cells in 1:1 volume. After being
treated for 48 h, the cells were pho-
tographed, counted and used for MTT
and other detections. In addition, expres-
sions of cyp3a4, cyp1bl, otc, argl and adhlc
were detected. Meanwhile, 10.5-d, 11.5-d,
12.5-d and 13.5-d hepatocyte medium
was used to treat SMMC-7721 cells, and
its morphological changes, proliferation
rate by MTT and expressions of cyp1bl
and adhlc were detected.

Quantitative Real-Time Reverse
Transcription-Polymerase Chain
Reaction

Total RNA of HepG2 cells was isolated
by using Trizol reagent (Takara, Japan)
and reverse-transcribed into cDNA by
using the RevertAid First-Strand cDNA
Synthesis Kit (Fermentas, Canada) fol-
lowed by real-time polymerase chain re-
action (PCR) amplification with specific
primers (Supplementary Table S1). Actin
was used as a normalization gene.

Western Blotting

HNF-40, HNF-1a, HNF-6, USF-1 and
c-Myc protein content was measured by
Western blotting by using a previously
described protocol (38,39). Anti-HNF-4a,
anti-HNF-1a, anti-HNF-6, anti-USF-1,
anti-c-Myc and anti-actin antibodies
(Santa Cruz Biotechnology, Santa Cruz,
CA, USA) were used, and band intensi-
ties were quantified and calculated.

In Vivo Experiment

The 13.5-d embryonic hepatocytes
were cultured for 48 h, and then the me-
dium was collected. After having been
centrifuged at 8000g, the supernatant
was collected, filtered and used to treat
HepG2 tumors.

Four-week-old nude mice were a
product of Beijing HFK Bioscience
(11401300001123; Beijing HFK Bio-
technology Co. Ltd., Beijing, P.R. China),
and the animal experimental protocol
was approved by the institutional animal
care committee. Sixteen mice were inocu-
lated subcutaneously in armpit with
1 x 10" HepG2 cells in 1 mL phosphate-
buffered saline (PBS) and divided

equally into control and treated groups.
When tumors became apparent, the
mice in the treated group were locally
injected with 0.1 mL of the 13.5-d em-
bryonic hepatocyte medium, and the
same volume of medium was injected
into the control group once daily. The
mice were treated for 17 d, and the
changes in the tumors were observed
for 25 d.

Chromatin Immunoprecipitation

The binding of HNF-40, HNF-1a,
HNF-6 and USF-1 to their target promot-
ers was analyzed by chromatin immuno-
precipitation (ChIP), which was per-
formed according to a previously
published protocol (39,40). Briefly, the
cells were cross-linked, collected and
washed. Then, the cell suspension was
sonicated, and an aliquot of the soni-
cated DNA was precipitated with etha-
nol and analyzed by electrophoresis.
The average fragment sizes were
0.5-1 kb. Anti-HNF-4a, anti-HNF-1o,
anti-HNF-6, anti-USF-1 (Santa Cruz
Biotechnology) or control rabbit IgG
(Santa Cruz Biotechnology) was added
to an aliquot of 200 pL sonicated lysate,
and 20 uL washed protein G-agarose
beads (Santa Cruz Biotechnology) was
then added. The mixture was rotated
and subsequently centrifuged at 500g to
wash the beads. The washed beads were
resuspended, vortexed and boiled, and
the sample and the sonicated lysate were
treated with proteinase K. After centrifu-
gation at 12,000g, the digested DNA was
used in real-time PCR assays. The
primers for the binding sites are listed in
Supplementary Table S2. Additionally,
controls of the nuclear factor (NF)-xB
binding site in inducible nitric oxide
synthase (inos) gene promoter and con-
trols with only the antibody or beads
were performed.

DNA Pull-down

The protein contents of HNF-4a bound
in hnf-1o and usf-1 promoters were mea-
sured by DNA pull-down assay. The cells
were collected and nuclear proteins were
extracted. After protein concentration

288 | LI ET AL. | MOL MED 21:285-295, 2015

was determined, DNA affinity precipita-
tion assay was performed. The oligonu-
cleotides containing biotin on the 5-end
of the each strand were used. The se-
quences of oligonucleotides for the pre-
dicted HNF-4a binding sites were in
Supplementary Table S3. Each pair of
oligonucleotides was annealed following
standard protocols. Nuclear protein ex-
tracts (200 ug) were precleared with
ImmunoPure streptavidin-agarose beads
(20 uL/sample, Thermo Fisher Scien-
tific). After centrifugation at 12,000g, the
supernatant was incubated with 4 ug bi-
otinylated double-stranded oligonu-
cleotides overnight. A total of 20 uL
streptavidin-agarose beads was added
and incubated, and the protein-DNA-
streptavidin-agarose complex was sub-
jected to Western blotting with
anti-HNF-4a. antibody:.

RNA Interference

A small interfering RNA (siRNA) tar-
geting HNF-4o. (si-HNF-4a: 5-CCACA
UGUACUCCUGCAGATT-3' and
5-UCUGCAGGAGUACAUGUGGTT-3),
a siRNA control (si-control: 5-UUCUC
CGAACGUGUCACGUTT-3' and
5-ACGUGACACGUUCGGAGAATT-3")
and fluorescein-labeled (FAM)-siRNA
were products of Integrated Biotech
Solutions (Shanghai, China). Transfec-
tions were performed by using the Lipo-
fectamine Reagent (Invitrogen [Thermo
Fisher Scientific]) following the manufac-
turer’s instructions. First, after transfec-
tion with the FAM-siRNA, the cells were
observed by using a fluorescence micro-
scope (Olympus IX51, Olympus, Tokyo,
Japan) and were then subjected to flow
cytometry (Guava EasyCyte Mini, EMD
Millipore) to evaluate the transfection ef-
ficiency. Then, 24 h after transfection,
HepG2 cells were cocultured with 13.5-d
embryonic hepatocytes for 48 h, and the
HNF-40. mRNA and protein contents
were examined to confirm the interfering
effect. After the cells were successfully
treated, the AFP content was determined
by immunofluorescence, and the mRNA
and protein contents of HNF-1a, HNF-6,
USF-1 and c-Myc were measured.



Immunofluorescence

Albumin in primary embryonic hepa-
tocytes and AFP in the cocultured
HepG2 cells or with si-HNF-4a were vi-
sualized by immunofluorescence detec-
tion. After fixation, the cells were incu-
bated with 1% Triton X-100 for 30 min,
blocked with 10% goat serum for 1 h
and incubated with primary antibody
(albumin or AFP; ZSGB-BIO, Beijing,
China) at 37°C for 2 h. After washing
with PBS, the cells were incubated with
the secondary antibody (fluorescein
isothiocyanate [FITC]; ZSGB-BIO). Sub-
sequently, the cells were exposed to
0.5 ug/mL 4',6-diamidino-2-phenylindole
(DAPI) for 15 min at room temperature
and sealed with 50% glycerol. Images
were taken by using a fluorescence mi-
croscope (Olympus IX51). Controls were
also performed with PBS in place of the
first or second antibody.

Statistical Analysis

Data are presented as the means +
standard deviation (SD), and all statisti-
cal tests were two-sided. Student ¢ test

was used to assess statistical significance,

and a P value <0.05 was considered
significant.

All supplementary materials are available
online at www.molmed.org.

RESULTS

Developmental Stage-Specific
Hepatocytes Induced Maturation of
HepG2 Cells

Morphological changes in HepG2 cells
were observed after coculturing with
12.5-d to 15.5-d embryonic hepatocytes
for different times (Figure 2B). Although
HepG2 cells cocultured with 12.5-d and
15.5-d embryonic hepatocytes prolifer-
ated and did not show conspicuous
morphological changes, when HepG2
cells were cocultured with 13.5-d and
14.5-d embryonic hepatocytes, their pro-
liferation was completely inhibited, and
they showed distinct morphological
changes. Most HepG2 cells were round
and shrunken in shape and had de-
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Figure 3. The proliferation, maturation marker gene expression and AFP content in treated
HepG2 cells. Aftfer HepG2 cells were treated with 12.5-, 13.5-, 14.5- and 15.5-d mouse em-
bryonic hepatocyte medium, their proliferation rates were detected by MTT, which was
significantly inhibited in the 13.5-d and 14.5-d groups (A). and meanwhile, the cell number
along fime was counted (E). (B) The expression of cyp3a4, cyplbl, ofc, argl and adhlicin
HepG2 cells freated with 13.5-d mouse embryonic hepatocyte medium was dramatically
induced. After HepG2 cells were cocultured with 13.5-d embryonic hepatocytes and
HNF-4a RNA interference, their proliferation rate (C), AFP content (D) and cell number (F)
were detected. *P < 0.05 and **P < 0.01 versus Con. *#P < 0.01 versus Co-cul. Con, control;
Co-cul, coculture. The experiment was repeated three fimes.

tached and drifted; however, the existing
cells were mononuclear and hexagonal,
similar to hepatocytes. And the prolifer-
ation rate of HepG2 cells treated with

MOL MED 21:285-295, 2015 |

13.5-d and 14.5-d embryonic hepatocyte
medium decreased significantly, which
showed an increase in the 15.5-d group
(Figures 3A, E).
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Figure 4. Induced maturation of HepG2 cells by mouse embryonic hepatocytes. (A) In the

13.5-d and 14.5-d groups, c-myc decreased and hnf-4a increased significantly. **P < 0.01
versus control. The experiments were repeated three times. Con, confrol. (B) In contrast to
the apparent AFP in the control (Con) group, AFP was nearly absent in the 13.5-d cocul-

ture group for 48 h treatment. Scale bar =

20 um. (C) Changes in mice inoculated with

HepG2 tumors. (D) At the end of the experiment, in contrast to the control, fumor masses
were eliminated in the majority of treated mice.

Subsequently, after HepG2 cells were
cocultured with mouse embryonic hepa-
tocytes at 12.5-, 13.5-, 14.5- and 15.5-d
gestation for 48 h, expressions of the
oncogene c-myc and the maturation
marker hnf-4o were detected (Figure 4A).
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In the 13.5-d and 14.5-d groups, the ex-
pression of c-myc decreased, whereas
that of hnf-4a increased significantly,
consistent with the morphological
changes in HepG2 cells. The AFP content
in the HepG2 cells that were cocultured
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with 13.5-d embryonic hepatocytes for
48 h was visualized by immunofluores-
cence. As shown, AFP was apparent in
HepG2 cells but nearly disappeared in
the cocultured cells (Figure 4B). Besides,
cyp3a4, cyp1bl, otc, argl and adhlc in
HepG2 cells treated with 13.5-d embry-
onic hepatocyte medium increased dra-
matically (Figure 3B). These results sug-
gest that developmental stage-specific
hepatocytes have the ability to induce
the maturation of HepG2 cells.

In addition, this embryonic induction
effect was evaluated in vivo. When inocu-
lated HepG2 tumors became apparent,
the mice were treated with 13.5-d embry-
onic hepatocyte medium, and the tumor
masses were observed once daily (Fig-
ure 4C). Over the course of the study,
tumor masses shrunk and gradually dis-
appeared in the treated mice, whereas no
changes were observed in the control
mice. Importantly, after termination of
the treatment, no recurrence of the tu-
mors was observed in the treated mice.
At the end of the experiment, in contrast
to the control mice, no tumor masses
were observed in the majority of treated
mice (Figure 4D). The results provided in
vivo evidence that HepG2 cells that were
inoculated into nude mice could be elim-
inated by 13.5-d embryonic hepatocyte
medium.

Developmental Stage-Specific
Hepatocytes Rebuilt the Regulatory
Circuit in HepG2 Cells

HepG2 cells were cocultured with 13.5-d
and 14.5-d embryonic hepatocytes for dif-
ferent times, and the expression levels of
the circuit components and c-myc were
detected (Figures 5A, B). The expression
of hnf-4a, hnf-1a, hnf-6 and usf-1 increased
significantly with time, whereas the ex-
pression of the oncogene c-myc was de-
creased at all time points. In addition, the
protein contents of the circuit components
and c-Myc were determined in 13.5-d em-
bryonic hepatocyte cocultures (Figure 5C).
The protein contents of HNF-4a, HNF-1q,
HNF-6 and USF-1 increased significantly;
however, that of the oncogene c-Myc de-
creased (Figure 5D). These results were
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tected (E), which were low in HepG2 cells and significantly high in 13.5-d mouse embry-
onic hepatocytes (F). *P < 0.05 and **P < 0.01 versus 0 h or HepG2 group. The experiments

were repeated three times. Con, conftrol.

consistent with the gene expression
changes. In addition, the circuit compo-
nents, which were high in 13.5-d embry-
onic hepatocytes, decreased in HepG2
cells (Figures 5E, F). The results confirmed
that developmental stage-specific hepato-

cytes could upregulate the circuit compo-
nents with suppression of c-Myc in
HepG2 cells.

After HepG2 cells were cocultured
with 13.5-d embryonic hepatocytes for 48
h, the cross-regulation of the circuit com-

RESEARCH ARTICLE

ponents was evaluated. The binding of
HNF-40, HNF-1a, HNF-6 and USF-1 to
their predicted sites was detected by
ChIP (Figure 1C). The 13.5-d embryonic
hepatocyte coculture promoted binding
of the factors to their sites, which might
result in their elevated expression and re-
building of the regulatory circuit. The
NF-kB binding site in inos gene promoter
control showed no meaningful signal
and was not shown. The binding of
HNF-4o. to hnf-1a and HNF-4a to usf-1
was promoted, verifying the core posi-
tion of HNF-4a.. Meanwhile, the content
of HNF-4a bound in hnf-1a and usf-1
promoters was detected by DNA pull-
down assay, and the results showed that
13.5-d embryonic hepatocyte medium
could significantly increase the content
of bound HNF-4a in HepG2 cells. All the
data indicated that the developmental
stage-specific hepatocytes could rebuild
the regulatory circuit that drives the mat-
uration of HepG2 cells.

Inhibition of the Regulatory Circuit
Aftenuated the Maturation of HepG2
Cells

RNA interference targeting HNF-4a,
which is the core of the regulatory cir-
cuit, was adopted to confirm the role of
the circuit in the induced maturation of
HepG2 cells. Successful transfection was
indicated by FAM-siRNA (Figures 6A, B).
The HepG2 cells were then treated with
si-HNF-40. and cocultured with 13.5-d
embryonic hepatocytes for 48 h. The
mRNA and protein contents of HNF-4a
were evaluated to analyze the effects of
RNA interference (Figures 6C, D), and
the effective inhibition of HNF-4a was
confirmed by the dramatic inhibition of
its mRNA and protein content in cocul-
tured HepG2 cells. Then, the AFP con-
tent was examined by immunofluores-
cence (Figure 6E) and Western blotting
(Figure 3D). Although AFP was appar-
ently abolished in HepG2 cells cocul-
tured with 13.5-d embryonic hepato-
cytes, si-HNF-4o treatment reversed
the near disappearance of AFP in the
cocultured HepG2 cells. Meanwhile,
the inhibited proliferation rate of cocul-
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protein content (D) were evaluated to analyze the interfering effect. Treatment with si-
HNF-4a dramatically inhibited the increase in its MRNA and protein content in cocultured
HepG2 cells. The experiment was repeated twice. (E) The apparent AFP that was ob-
served in the control group nearly disappeared in the cocultured group. However, the
AFP level was increased in cocultured HepG2 cells treated with si-HNF-4a, whereas treat-
ment with si-control had no effect. Con, control; Co-cul, coculture. Scale bar = 20 um.

could attenuate the induced maturation
of HepG2 cells.

In addition, the mRNA and protein
contents of other elements of the regula-

tured HepG2 cells could be recovered
significantly by si-HNF-4o. treatment
(Figures 3C, F). These results indicated
that inhibition of the regulatory circuit
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tory circuit as well as c-Myc were mea-
sured after HNF-4o. interference in the
cocultured HepG2 cells (Figures 7A, B).
The si-HNF-4a treatment significantly
inhibited the induced expression of hnf-
1o, hnf-6 and usf-1 in HepG2 cells that
were cocultured with 13.5-d embryonic
hepatocytes. However, no obvious
change in c-myc expression was observed
after si-HNF-4o treatment, but HNF-1a
and USF-1 protein expression was signif-
icantly inhibited (Figure 7C). These data
revealed that inhibition of HNF-4a may
result in suppression of the circuit com-
ponents HNF-1a and USF-1.

DISCUSSION

Although current treatments can effec-
tively kill tumor cells, they fail to com-
pletely cure cancer and inhibit its recur-
rence. The treatment strategy should
transit to the induction of tumor cell nor-
malization (41-44). Because embryonic
development process has the ability to
coordinate the synchronism of cell matu-
ration, we questioned whether develop-
mental stage-specific hepatocytes induce
the maturation of HCC cells. If so, we
hypothesized that this method would
provide an effective and harmless strat-
egy for HCC therapy.

On the basis of their characteristics, we
presumed that only developmental
stage-specific hepatocytes should be able
to direct and induce their maturation. In
this study, HepG2 cells were cocultured
with 12.5-d to 15.5-d mouse embryonic
hepatocytes because of hepatocyte devel-
opment (35-37). Embryonic hepatocytes
at different developmental stages had
distinct effects on the HepG2 cells, and
the 13.5-d to 14.5-d embryonic hepato-
cytes could completely inhibit the prolif-
eration and apparently induce the matu-
ration of HepG2 cells.

The induced maturation of HepG2
cells was confirmed by increased HNEF-
40 and decreased c-Myc and AFP levels.
Meanwhile, cyp3a4, cyp1bl, otc, argl and
adhlc increased dramatically for the
13.5-d embryonic hepatocyte medium
treatment. Furthermore, 13.5-d embry-
onic hepatocyte medium could com-
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eration and induce maturation of
SMMC-7721 cells. These results demon-
strated that only the developmental
stage-specific embryonic hepatocytes

pletely eliminate most of the HepG2 tu-
mors that were inoculated into nude
mice. Most importantly, no tumor recur-
rence was observed in the treated mice

after termination of the treatment. In par-
allel, it was found that 11.5-d embryonic
hepatocyte medium could inhibit prolif-

could induce maturation of liver tumor
cells. Further clarifying the correspon-
ding effective developmental stage for
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every type of liver tumor cells may pro-
vide an alternative promising approach
for HCC therapy. Even every person’s
tumor cell can find its unique develop-
mental stage, and therefore, individual-
ized treatment should and must be ap-
plied for the cure of cancer.

The molecular mechanism underlying
the induced maturation of HepG2 cells
is not clarified. During normal liver de-
velopment, the transcription factors
HNF-4a, HNF-1a, HNF-6 and USF-1
cross-regulate each other to form a posi-
tive feedback regulatory circuit, which
drives hepatocyte maturation (24-26).
And we revealed that compared with
that in 13.5-d embryonic hepatocytes,
the circuit components HNF-40, HNF-
1o, HNF-6 and USF-1 were decreased in
HepG2 cells. However, it is unclear
whether the developmental stage-
specific hepatocytes induce the matura-
tion of HepG2 cells by rebuilding the
regulatory circuit.

First, the components of the regulatory
circuit were evaluated in the cocultured
HepG2 cells. After coculture, HNF-4a,
HNF-1a, HNF-6 and USF-1 increased;
however, c-Myc expression decreased
with time, showing that developmental
stage-specific hepatocytes could upregu-
late the regulatory circuit components
and inhibit the oncogene c-Myc. Then,
the cross-regulation of HNF-40, HNF-1a,
HNF-6 and USF-1 was measured by
ChIP. The 13.5-d embryonic hepatocyte
cocultures promoted the binding of the
factors to their target sites and rebuilt the
regulatory circuit in HepG2 cells. Promo-
tion of the binding of these factors to
their promoters might result in their ele-
vated expression, thus forming a positive
feedback circuit that drives the matura-
tion of HepG2 cells. The binding of
HNF-4a to hnf-1coe and HNF-4a to usf-1
was especially promoted and the accu-
mulation of HNF-4a bound in hnf-1o
and usf-1 promoters was proved again
by DNA pull-down assay, verifying the
core position of HNF-4a.

RNA interference of HNF-4a was per-
formed to confirm the role of the regula-
tory circuit in the induced maturation of
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HepG2 cells. The results suggested that
HNF-4a RNA interference could reverse
the inhibited proliferation rate and the
near disappearance of AFP protein in
HepG2 cells that were cocultured with
13.5-d embryonic hepatocytes, indicating
that inhibition of the regulatory circuit
may attenuate the induced HepG2 cell
maturation. In addition, si-HNF-4a treat-
ment significantly inhibited the induc-
tion of hnf-1a, hnf-6 and usf-1 expression
and the increased HNF-1a and USF-1
protein contents in HepG2 cells that were
cocultured with 13.5-d embryonic hepa-
tocytes. These data suggested that inhibi-
tion of the regulatory circuit might result
in the attenuation of the induced matura-
tion of HepG2 cells.

CONCLUSION

This study revealed that developmen-
tal stage-specific hepatocytes could in-
duce the maturation of HepG2 cells in
vitro and in vivo, and this induced matu-
ration was mediated by rebuilding the
regulatory circuit. It was confirmed that
differences in the expression of genes in
embryonic stem cells at different devel-
opmental stages results in the produc-
tion of diverse types and intensity of sig-
naling molecules (45,46). And several
signals and pathways of regulation
mechanism of induced maturation of
tumor cells have been identified (20).
Therefore, clarification of the molecules
expressed in tumor cells and the signal-
ing pathways that mediate their induc-
tive effects may reveal the intrinsic
mechanism of induced maturation of
tumor cells and then allow for the clinical
application of this embryonic-induced
maturation therapy.
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