
INTRODUCTION
Alzheimer’s disease (AD) is a growing

burden in aging societies and represents
a major challenge in the treatment of
common diseases. Currently, effective
therapies that prevent progression of, or
even cure, the disease are not available.
Thus, the understanding of the etiology
of this devastating disease is critical for
future development of therapeutic or
preventive strategies.

At the neuropathological level, AD is
diagnosed by the combined occurrence
of extracellular plaques and neurofibril-
lary tangles consisting of aggregated
amyloid β peptides (Aβ) and hyperphos-
phorylated tau, respectively (1,2). Strong

evidence from biochemical and molecu-
lar biological experiments as well as ge-
netic findings indicates a critical role of
Aβ aggregates in the pathogenesis of AD
(3–5).

Aβ peptides have been isolated from
extracellular plaques and vascular de-
posits from AD and Down syndrome
brains and characterized by amino acid
sequencing (6,7). The demonstration that
the Aβ amino acid sequence is part of a
much larger precursor protein already
suggested that proteolytic processing
would be involved in the generation of
this peptide and was instrumental for
subsequent work at the molecular, cell
biological and in vivo level (8).

Aβ derives from the amyloid precursor
protein (APP) by proteolytic processing
involving specific proteases that were
termed β- and γ-secretase (Figure 1).
β-Secretase initiates Aβ generation by
cleavage of APP within its ectodomain,
thereby resulting in the secretion of a sol-
uble form of APP (sAPP) and a corre-
sponding C-terminal fragment (CTF) that
is still inserted into cellular membranes
(1,9). As this cleavage occurs in front of
the first aspartate residue of the Aβ do-
main, the resultant CTF contains the full
Aβ peptide sequence, which partly com-
prises the transmembrane domain of
APP. The subsequent processing of the
APP CTF by γ-secretase within the trans-
membrane domain eventually leads to
the generation and secretion of Aβ into
extracellular fluids (10,11).

IDENTIFICATION OF PRESENILIN GENES
IN EARLY ONSET FAMILIAL AD

Genetic analyses of families with
mendelian inheritance of early onset AD
allowed the identification of causative
gene mutations by positional cloning.
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The first gene identified was the APP
gene itself (12), giving strong support for
the amyloid hypothesis (13). In 1995, mu-
tations in two previously uncharacter-
ized homologous genes were identified
that comprise up to 40% of all early
onset familial AD (FAD) cases (14–16).
Briefly, after their identification, the two
genes were named presenilins (PSEN) 1
and 2. The roles of respective presenilin
proteins (PS1 and PS2) in the pathogene-
sis of AD or their biological function
were enigmatic at this time. PSEN genes
are ubiquitously expressed in different
tissues and show considerable conserva-

tion between mammalian and other or-
ganisms. Initial studies with plasma and
primary fibroblasts of mutation carriers
showed elevated levels of secreted Aβ42,
while levels of Aβ40 and APP synthesis
were not significantly changed compared
with those from controls (17). Aβ42 has a
higher aggregation propensity than Aβ40
and appears to be a critical player in trig-
gering the deposition of amyloid plaques
(3–5). Notably, plasma Aβ42 levels were
also increased in presymptomatic PS mu-
tation carriers. These results were subse-
quently confirmed in other cellular mod-
els as well as in transgenic mice and

already suggested that presenilins could
affect the metabolism of APP or Aβ itself
(18–22).

INITIAL CHARACTERIZATION OF
PRESENILIN PROTEINS

Early cell biological and biochemical
studies aimed to characterize the subcel-
lular localization and metabolism of PS
proteins. As expected from the primary
structure of PS1 and PS2, both proteins
were found to be localized in different
membrane compartments of cells
(23–25). PS proteins were predominantly
localized in the endoplasmic reticulum
(ER) and the Golgi compartment. It was
debated whether PS proteins could also
reach additional compartments (see
below). In our initial study, we also
found colocalization of PS proteins with
APP in the Golgi compartment (24). A
binding of PS proteins with APP was
later shown by coimmunoprecipitation
studies (26,27).

A second part of our initial study was
focused on the characterization of poten-
tial posttranslational modifications with
the aim to identify potential molecular
mechanisms that could regulate prese-
nilin function. Using a heterologous ex-
pression system with transient overex-
pression of cDNAs encoding full-length
PS1 or PS2, the proteins were detected at
their expected molecular weight of about
50 kDa. Metabolic labeling with 
32P-orthophosphate revealed phosphate
incorporation selectively into the PS2 full-
length protein (24). Consistent with the
presence of consensus recognition sites
for casein kinases, we found that PS2
could indeed be phosphorylated by pro-
tein kinases CK1 and CK2 in vitro (24,28).
Additional modifications, like glycosyla-
tion or sulfation, were not detected.

In contrast to the overexpressed PS
proteins, very little if any endogenous
protein could be detected at the expected
molecular weight. A very important find-
ing was that endogenously expressed
PS1 proteins were detected as 30-kDa 
N-terminal fragments (NTF) and 20-kDa
C-terminal fragments (CTF), which 
indicated a specific endoproteolytic 
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Figure 1. Schematic showing the proteolytic processing of APP and the composition of the
γ-secretase complex. (A) APP is a type I transmembrane protein. β-Secretase cleaves at
the N-terminus of the Aβ domain (red), resulting in the secretion of soluble APP (APPs-β)
and generation of a C-terminal fragment (APP CTFβ). Subsequent cleavage of this frag-
ment by γ-secretase liberates Aβ and the APP intracellular domain (AICD) from cellular
membranes. (B) Composition of the γ-secretase complex. Presenilins represent the catalyti-
cally active proteins in the complex. Critical aspartate residues within the active site of
presenilins are indicated by yellow stars. Nicastrin, Aph-1 and Pen-2 mediate assembly, sub-
strate recognition and subcellular transport of the γ-secretase complex. See text for details.



processing step of the full-length pro-
teins (29–32).

We also found respective NTF and
CTF of endogenously expressed PS1 in
cultured cells (33). Interestingly, the PS1
CTF was found to undergo regulated
phosphorylation within the hydrophilic
loop region by protein kinase C, which
could be stimulated by activation of
muscarinic acetylcholine receptors
(33,34). Since the full-length PS1 protein
is not phosphorylated, these data sug-
gested a specific regulation at the level of
proteolytically processed PS1. The phos-
phorylation of the PS1 CTF affected its
mobility in sodium dodecyl sulfate–
 polyacrylamide gel electrophoresis gels,
suggesting a conformational change. PS2
was found to be phosphorylated in both
its NTF and CTF. In contrast to the regu-
lated phosphorylation of the PS1 CTF by
protein kinases A (PKA) and C (PKC),
PS2 NTF and CTF undergo constitutive
phosphorylation by protein kinases CK1
and CK2 (28). However, at this time the
biological function of PS proteins and the
role of phosphorylation was enigmatic
(see below).

THE HUNT FOR PRESENILIN FUNCTION
Early insight into the physiologic func-

tion of PS proteins came from studies
with Caenorhabditis elegans. Mutants of
the PS homologue sel-12 in these organ-
isms revealed an egg-laying defective
phenotype closely resembling the lin-
12/notch phenotype (35). Interestingly,
this phenotype could be rescued by ex-
pression of the human wild-type, but not
FAD mutant PS1 or PS2 (36,37). Deletion
of the PS1 gene in mice led to early post-
natal or late embryonic lethality associ-
ated with skeletal deformation, impaired
somitogenesis and brain development
(38,39). Some of these effects were simi-
lar to those in Notch mutant mice. A
double knockout of both PS1 and PS2
closely resembled the Notch knockout
phenotype with early embryonic lethal-
ity (40). However, PS2 knockout mice
were viable and fertile and produced
only mild phenotypes associated with
pulmonary fibrosis and hemorrhage at

higher age (40). Like APP, Notch is a type
I membrane protein and has important
functions in cell fate decision and differ-
entiation during development and also
during adulthood (41,42). These findings
demonstrated that presenilins play fun-
damental physiological roles, potentially
related to the function of Notch.

PS knockout mice and cells were also
instrumental for understanding the role
of these proteins in APP metabolism.
Using neurons from PS1 knockout mice,
it was demonstrated that deficiency of
PS1 decreased the cleavage of APP CTFs
that derive from APP by α- or β-secretory
processing, and thus, the generation of
Aβ (43). Interestingly, mutation of two
aspartate residues localized in trans-
membrane domains 6 and 7 of human
PS1, which are also highly conserved in
PS2 and other orthologs of other species,
also prevented cleavage of APP CTFs
and Aβ generation. The combined evi-
dence suggested that PS proteins them-
selves might exert catalytic activity and
represent a novel class of aspartyl pro-
teases that could mediate intramembra-
neous cleavage of APP, a characteristic
feature proposed for γ-secretase (8,44).
Importantly, PS proteins were also
shown to mediate cleavage of Notch and
thereby release the Notch intracellular
domain from cellular membranes to
allow its nuclear translocation and tran-
scriptional regulation of target genes
(45–47).

Previous cell biological and biochemi-
cal studies suggested that γ-secretase–
 dependent cleavage of APP and Notch
might occur at the plasma membrane or
endocytic compartments (48–52). This
contrasted with the predominant local-
ization of presenilins in the ER and early
Golgi compartment, thereby raising de-
bate about a “spatial paradox” on the
differential localization of presenilins
and γ-secretase activity and whether pre-
senilin could represent γ-secretase at all
(53). However, other studies demon-
strated the presence of presenilins (and 
γ-secretase) in different secretory and en-
docytic compartments as well as at the
plasma membrane (54–56).

PRESENILINS AS THE CORE
COMPONENT OF THE γ-SECRETASE
COMPLEX

As mentioned above, presenilins are
mainly found as stable N- and C-terminal
fragments, whereas the full-length pro-
teins appear to be instable (29,31,32,57,58).
Several early studies suggested that PS
NTF and CTF exist in larger complexes,
probably together with additional compo-
nents (59–61). Protein interaction studies
then revealed that PS proteins could asso-
ciate with members of the catenin family
together with glycogen synthase kinase
3β (GSK3β) and tau (62–65). Whether 
this interaction affects the activity of 
γ-secretase remains unclear (see below).

The first protein identified to be criti-
cally involved in γ-secretase activity of
presenilin was a type I protein called
Nicastrin (66). Functional screens for
Notch signaling in C. elegans led to the
identification of two additional proteins
called anterior pharynx defective 1 (aph-1)
and presenlin-enhancer-2 (pen-2) (67).
Later studies showed that these three
proteins together with presenilins are re-
quired and sufficient to constitute the ac-
tive γ-secretase complex (68,69) (Figure 1).
While presenilins represent the catalyti-
cally active component of the γ-secretase
complex, the other proteins mediate com-
plex assembly, subcellular trafficking and
substrate recognition (70–73).

Besides APP and Notch, more than 90
substrate proteins for γ-secretase have
been identified (74). The vast majority of
them, like APP and Notch, are type I
membrane proteins. However, a physio-
logical role for the cleavage of most pro-
teins remains to be determined. Given the
high number of substrates, γ-secretase
might also play a more general role in the
degradation of type I membrane proteins
(74,75). Cleavage of the transmembrane
domain could liberate extracellular pep-
tides and intracellular domains from cel-
lular membranes for further degradation.

EFFECT OF FAD-ASSOCIATED
MUTATIONS

Since the identification of mutations in
the presenilins as a major cause of famil-
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ial early onset AD, the effect of such mu-
tations on the generation of Aβ and ac-
tivity of γ-secretase has been of prime in-
terest. Today, more than 200 different
mutations in PS1 and PS2 have been iden-
tified (www.alzforum.org/mutations). 
As described above, the common effect
of FAD-associated mutations is an in-
creased ratio of Aβ42/Aβ40 peptides.
However, it is still unclear whether all of
the pathogenic mutations act similarly.
Although some of the mutations studied
so far might increase the production of
Aβ42, most mutations decreased the se-
cretion of Aβ40 peptides (76,77). PS
FAD–associated mutations also decrease
the secretion of Aβ40 more strongly than
Aβ42 in induced pluripotent or embry-
onic stem cell–derived human neurons,
further supporting a partial loss of 
γ-secretase function of PS FAD mutants
(78,79).

Whether the mutations cause a gain
of function (increased production of
Aβ42) or a loss of function (decreased
production of Aβ40) is of great impor-
tance considering the development of
drugs that modulate γ-secretase activity
for treatment or prevention of AD 
(see below). γ-Secretase cleaves the APP
CTF initially at the interface of the
transmembrane domain and the cyto-
plasmic domain, thereby liberating the
APP intracellular domain (AICD) frag-
ment into the cytosol. This so-called 
ε-cleavage, however, can occur at least
at two different positions leading to 
the generation of “long” Aβ peptides
(Aβ48 or Aβ49). Elegant and compre-
hensive analyses on the subsequent 
processing steps indicate that γ-secretase
processes these long Aβ peptides in
steps of three amino acids, leading to
two product lines that could end at
Aβ42 and Aβ40, respectively (48→45→42
or 49→46→43→40) (80). It is interesting
that certain transition-state analogs used
as γ-secretase inhibitors led to accumu-
lation of longer Aβ species in vitro, sug-
gesting they affect the “processivity” of
γ-secretase. A similar effect has also
been observed for certain γ-secretase
mutations (80).

PRESENILINS MIGHT EXERT 
γ-SECRETASE–INDEPENDENT FUNCTION

Since their identification, presenilins
have also been related to biological func-
tions that might be independent from
their activity in γ-secretase, including the
regulation of apoptosis, cellular calcium
homeostasis, protein transport and sig-
naling (81,82).

Apoptosis
A screen for genes that inhibit T-cell

receptor–induced apoptosis revealed a
cDNA fragment encoding the C-termi-
nal amino acids 346–449 of PS2, sug-
gesting that PS2 might exert an anti-
apoptotic function (83). However,
overexpression of PS2 full-length rather
promoted apoptosis in neuronally dif-
ferentiated PC12 cells (62). While the
exact role of PS2 in the regulation of
apoptosis was enigmatic, additional
support for a connection of PS proteins
to apoptosis came from the observation
that both PS1 and PS2 are cleaved by
caspases-3 and -7, two important pro-
teases in the execution phase of pro-
grammed cell death (84–87).

Building on the initial observations on
the phosphorylation of PS2 (24), we as-
sessed a potential role in the regulation
of apoptosis. Phosphorylation sites
within the PS2 CTF were identified at
Ser327 and Ser330 (88). Interestingly,
both sites are localized directly at the
cleavage sites for caspases. The phospho-
rylation of PS2 CTF at these sites
strongly decreased the caspase-mediated
processing and also retarded the progres-
sion of apoptosis (88). A very similar ef-
fect was also identified at the phosphory-
lation of the PS1 CTF at Ser346 (89).

In addition to the phosphorylation of
Ser346 by PKA or PKC, the PS1 CTF can
also be phosphorylated at Ser353 and
Ser357 by GSK3β (90,91). Phosphoryla-
tion at these sites strongly decreased the
interaction of PS1 with β-catenin (92).
This finding was consistent with the ini-
tial identification of β-catenin as an in-
teraction partner of PS1 (64,93). The
function of PS1 in β-catenin metabolism
and signaling appears to be indepen-

dent of its catalytic activity (90,94–96).
Additional phosphorylation sites have
also been identified. However, muta-
tions of the respective sites did not af-
fect APP processing (97). Whether the
phosphorylation of PS proteins could af-
fect the subcellular transport, activity of
γ-secretase or additional functions re-
mains to be determined.

Calcium Homeostasis
The polytopic transmembrane struc-

ture with 9 predicted transmembrane
domains led to the speculation that PS
proteins could exert channel activity. In-
terestingly, studies with heterologous ex-
pression systems and neurons from
transgenic mice as well as with FAD pa-
tient–derived fibroblasts revealed a role
of PS proteins in Ca2+ signaling. Cells
endogenously expressing FAD mutant
PS1 or PS2 showed increased release of
Ca2+ from ER stores and also altered ac-
tivity and expression of inositol trisphos-
phate (IP3) and ryanodine receptors
(98–102). However, the molecular mech-
anisms underlying these observations
are still under debate.

PS proteins could interact with these
receptors and regulate their gating prop-
erties and/or subcellular localization. In
addition, PS-dependent effects on the ex-
pression and turnover of these Ca2+

channels have also been described
(100–102). Because PS FAD mutants also
affect the proteolytic processing of APP
and the ratio of Aβ42/40, cytosolic Ca2+

levels could also be affected by increased
membrane perturbation by aggregated
forms of Aβ. In addition, the APP intra-
cellular domain generated by γ-secretase
activity could also alter the expression of
IP3 and ryanidone receptors by tran-
scriptional regulation (103,104). The
Notch ICD has also been shown to regu-
late Ca2+ signaling in hippocampal neu-
rons and thereby affect synaptic plastic-
ity, learning and memory, and
Ca2+-dependent cell death (55).

The PS proteins themselves might also
function as Ca2+ channels. Tu et al. have
shown that PS proteins represent low
conduction ER leak channels (105). Inter-
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estingly, this function is exerted selec-
tively by full-length PS without or prior
to assembly into the γ-secretase complex
(105). However, other studies did not
show altered Ca2+ leak from the ER by PS
mutations (100,106–109).

Although the exact mechanisms that
contribute to PS-dependent Ca2+ signal-
ing remain to be determined, aberrant
Ca2+ mobilization from ER or other cel-
lular stores might affect synaptic plastic-
ity, and thus learning and memory. Ele-
vated cytosolic Ca2+ concentrations
could sensitize neurons to Aβ-mediated
toxicity and other stressors and promote
neuronal degeneration and cell death
(100–112).

PROTEIN TRANSPORT AND
METABOLISM

Several studies also indicate that PS
could affect subcellular transport and
degradation of select proteins. In PS
knockout cells, the transport of TrkB was
found to be reduced (113). In addition,
the targeting of telencephalin and
 v0ATPase to endosomal and lysosomal
compartments is impaired in PS-deficient
cells (114,115). Interestingly, some indica-
tions suggest that these effects are inde-
pendent of the catalytic activity of 
γ-secretase. Whether and how these
mechanisms contribute to the impairment
of lysosomal function, and thus also au-
tophagy, is debated and requires further
investigation (116–118). In general, the
differentiation of γ-secretase activity de-
pendent and independent PS function is
challenging (82), and might require
knockin models with inactive PS proteins
at the endogenous expression level.

TRANSLATIONAL ASPECTS
Given the fundamental role of γ-secretase

in the production of Aβ, this protein com-
plex is considered as an interesting target
in AD therapy or prevention. Different in-
hibitors have been developed that effi-
ciently decrease Aβ generation in vitro and
in mouse models of AD. Consequently,
several clinical (phase II and III) trials
have been performed and are ongoing
(http://www.alzforum.org/therapeutics)

(119). Unfortunately, so far no trial has
shown beneficial effects on cognitive per-
formance. Rather, detrimental outcomes
were observed (120). This might at least in
part be due to the broad substrate spec-
trum of γ-secretase and its important phys-
iological functions that would also be af-
fected by strong inhibition of its enzymatic
activity (121,122). It needs to be kept in
mind that presenilins are essential not
only for embryonic development, but also
in adulthood. The conditional deletion of
PS proteins in neurons prevents Aβ gener-
ation but leads to age-dependent neurode-
generation in mouse brain and early death
(123).

It is important to note that these find-
ings and the sobering outcome of the
clinical trials does not mean that 
γ-secretase is not a potential target for
future AD therapy. Careful consideration
of dosing and the development of more
selective compounds that could target
individual γ-secretase complexes or ac-
tivities will help in future approaches.
Indeed, the identification of compounds
that could modulate γ-secretase speci-
ficity or processivity rather than gener-
ally inhibit its enzymatic activity holds
great promise for further drug develop-
ment targeting γ-secretase. Here, the ob-
servation that certain nonsteroidal anti-
inflammatory drugs (NSAIDs) could
selectively decrease the production of
Aβ42, without affecting Aβ40, was in-
strumental for the development of 
γ-secretase modulators (GSMs) (124).
However, as with the γ-secretase in-
hibitors, GSMs have not proven benefi-
cial in the treatment of AD so far (125).

FUTURE CONSIDERATIONS
Despite the strong progress that has

been made in presenilin and γ-secretase
research in the past 20 years, we can
only surmise the complex biological
and pathophysiological roles of this en-
zyme. Further research will help to elu-
cidate the functional relevance of the 
γ-secretase–mediated cleavages of indi-
vidual protein substrates in different
cell types and organs. We still know
very little about the transcriptional,

posttranscriptional and posttransla-
tional mechanisms that regulate expres-
sion, trafficking and activity of prese-
nilins and their complex partners. The
existence of two major isoforms of PS
(PS1 and PS2) and Aph-1 (Aph-1a and
Aph-1b), several additional splice vari-
ants, and posttranslational modifica-
tions allows the formation of several
distinct γ-secretase complexes that
might have distinct, albeit partially re-
dundant biological activities.

Notably, γ-secretase also regulates the
metabolism of other important risk fac-
tors of AD, like apolipoprotein E (126)
and the triggering receptor expressed on
myeloid cells 2 (Trem2) (127,128). Thus, it
will be interesting to assess whether 
γ-secretase contributes to the pathogene-
sis of AD not only via the generation of
Aβ, but also by affecting additional path-
ways involved in the pathogenesis of the
most common late onset form of AD.

The recent progress in elucidation of
the molecular structure of the γ-secretase
complex (129–131) will also allow ra-
tional drug designing to improve the
characteristics of compounds to modulate
γ-secretase function for future targeting of
this enzyme in AD therapy or prevention.
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