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confirmation of malignancy as well as to 
decide on whether surgery is required 
for the bone tumor patients (1). If it was, 
the surgeon may suggest different types 
of surgery depending on the size and 
location of the tumor such as resection 
(removal parts or the bone affected), 
curettage (scraping out the tumor with­
out removal of the bone; usually used 
for benign tumor) and limb salvage 
surgery (removal of the cancer but still 
leaving some part of the limb for endo­
prosthesis). If the latter is not possible, 
amputation may be needed, which will 
definitely affect the normal function of 
the limb and, subsequently, the quality 
of life of the patient.

Currently, there are no specific mark­
ers that can be used to diagnose tumors 
of the bone. Biomarkers for early identi­
fication of the disease are greatly needed 
to reduce the mortality and increase 
limb salvage strategies (2). Early de­
tection of either recurrent or metastatic 
disease can also prompt initial decision 
and action to treat the tumor, which 
may improve patient prognosis (3). 
Robbins and Kumar (4) had suggested 
that the elevated level of serum alkaline 
phosphatase released through osteoblas­
tic activity in the tumor may be used 

nerves or blood vessels. Rhabdomyo­
sarcomas, neurofibrosarcoma and an­
giosarcomas are a few examples of soft 
tissue sarcomas, whereas lipoblastoma 
and neurofibroma are benign soft tissue 
tumors.

 Compared to most other tumors, a 
bone tumor can manifest pain early and 
is usually accompanied by local swell­
ing, fever and spontaneous fracture. 
Plain radiographs can be used to detect 
bone tumor in the initial diagnosis and 
also suggest the aggressiveness of the 
tumor. This step is usually followed by 
staging studies that can be carried out 
using various methods, including bone 
scintigraphy, computed tomography 
scan, positron emission tomography 
scan or magnetic resonance imaging. 
However, biopsy must be performed for 

INTRODUCTION
The classification of bone tumor lies in 

the basis of the cell type from which the 
tumor originates. Aside from the bone, 
a neoplastic growth in bone tumors may 
also originate from the surrounding soft 
tissues, muscles and ligaments. Benign 
bone tumors, which are more common 
than malignant tumors, include osteo­
chondroma (derived from cartilage 
tumor), giant cell tumor (GCT), osteoid 
osteoma and osteoblastoma. The most 
commonly diagnosed malignant bone 
tumors, or often termed “sarcomas,” 
are osteosarcoma (derived from osteo­
blastic cells), Ewing sarcoma (derived 
from round cell from bone marrow) and 
chondrosarcoma (derived from cartilage 
tumor). Some tumors may also develop 
from the soft tissues such as fat, muscle, 
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biomarkers can usually be achieved 
using several approaches, including 
DNA sequencing, RNA expression and 
microRNA (miRNA) profiling, as well as 
epigenetic studies (14).

 DNA sequencing is the most common 
approach used to identify genetic muta­
tions in candidate genes, and it is also an 
important method in analyzing chromo­
somal rearrangement (that is, deletion, 
duplication, inversion and translocation 
of the chromosomes). The discovery of 
these genetic biomarkers usually starts 
with sequencing of exome (that is, the 
coding region of the human genome 
formed by exons) and/or whole genome 
sequencing. This step is usually followed 
by the validation phase, typically by mi­
crofluidic Sanger sequencing technology. 
Today, Sanger sequencing technology 
has been supplanted by next-generation 
sequencing methods, which can be used 
for a larger scale and automated genome 
analyses and also suitable for cross-
platform validation at a much lower 
cost (15).

 The discovery of epigenetic biomark­
ers stems from the ability of the DNA 
to undergo epigenetic modifications to 
the genome without any changes to the 
primary DNA sequence (16,17). Epi­
genetic alterations that are believed to 
be the causal events in cancers include 
DNA methylation, histone modification 
(methylation and acetylation), chromatin 
remodeling and regulation of noncoding 
RNAs (17,18). DNA methylation is the 
most extensively investigated as an epi­
genetic biomarker. In his review, Bock 
had outlined a systematic approach in 
the discovery of an epigenetic biomarker 
(18). A candidate differentially meth­
ylated region (DMR) is often mapped 
using bisulfite sequencing with the aid 
of computational tools, which is con­
sidered as a gold standard method in 
validating DNA methylation profiling 
(18,19). The candidate DMRs are then 
tested using medium-scale customizable 
methods such as microarrays or hybrid-
selection sequencing. The selected top 
candidate DMR region–related genes are 
validated in large independent cohorts 

Biomarkers should ideally possess 
certain characteristics to make them 
clinically valuable. These characteristics 
include being easily measured, reliable 
and detectable using a cost-effective 
assay without loss of analytical sensitiv­
ity or specificity (9). Until 2013, Fuzery 
and coworkers listed 23 protein cancer 
biomarkers that had been approved by 
the U.S. Food and Drug Administration 
(FDA), the majority of which are for 
breast cancer (10). The other biomarkers 
are for testicular, pancreatic, ovarian, 
colorectal, thyroid, prostate and bladder 
cancers. Although a lot of research has 
been carried out to identify biomarkers 
for bone tumors (Tables 1–4), none of 
the proposed candidate has so far been 
approved by FDA for clinical settings.

 Serum or plasma from blood and 
urine are the most frequently used sam­
ples in biomarker research because they 
are the easiest to sample from patients, 
and the method to obtain them is con­
sidered less invasive compared with 
tissue biopsy. These samples are well 
known to reflect various physiological 
and pathological states of the human 
body. There had been many biomarker 
studies that used tissue samples. How­
ever, these are not suitable for screening 
or early detection of diseases because 
the tissues usually came from patients 
who already had symptoms of the 
tumor (11).

DISCOVERY STRATEGIES
Diagnostic, prognostic and predictive 

biomarkers are most sought after in 
cancer research due to the urgent need 
in achieving a better clinical outcome for 
the patients (12). Presently, genomics and 
proteomics technologies are the two most 
widely used approaches in biomarker 
discovery strategies.

Genomics Technologies
The word “genomics” was first coined 

by Thomas Huston Roderick, a geneticist 
at The Jackson Laboratory, Bar Harbor, 
Maine, in 1986. The term can be defined 
as the study of an organism’s entire 
genome (13). Discovery of genomics 

as an indicator. However, the enzyme 
was previously reported to be high in 
patients with diseases of the liver, thus 
making it unsuitable for use as a bone 
tumor marker (5,6). Furthermore, this 
marker may be more useful for monitor­
ing progression of bone tumor but not as 
its diagnostic marker.

 A biological marker (biomarker) is 
a characteristic that is objectively mea­
sured and evaluated as an indicator of 
normal biological processes, pathogenic 
processes or pharmacologic responses to 
a therapeutic intervention (7). It can be 
proteins, deoxyribonucleic acid (DNA), 
ribonucleic acid (RNA) or even metab­
olites. Biomarkers can be grouped into 
four main categories depending on their 
intended applications. First is a diagnos­
tic biomarker, which can be used as a tool 
in identifying diseases or abnormal con­
ditions in patients. On the other hand, a 
prognostic biomarker is an indicator that 
can predict tumor behavior and act as a 
marker of disease prognosis. The third 
type of biomarker is one that can be used 
in staging the disease, for example, in 
cancer. And finally, predictive biomark­
ers can be used to predict and monitor 
the clinical response after a treatment (7).

 Biomarkers can also be classified ac­
cording to their sources and functions, 
as explained by Baron in 2012 (8). The 
first group is carcinogenesis biomarkers, 
which are products of the neoplastic 
process directly produced by the tumor 
itself (for example, mutated or hyper­
methylated DNA). The second group 
is response biomarkers, which are gen­
erated when the body responds to the 
presence of cancer (for example, antibod­
ies, protein degradation products and 
acute-phase reactants). The third group 
is released biomarkers, which include 
physiological molecules that are released 
in abnormal amounts after anatomical or 
metabolic disruptions of carcinogenesis 
(for example, blood in the stool or pros­
tate-specific antigen in serum). Lastly, 
risk biomarkers, which consist of mo­
lecular markers associated with or sup­
porting the carcinogenesis (for example, 
increased hormone levels).
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Table 1. Potential biomarkers for osteosarcoma.

Study 
approach

Type of 
biomarker Candidate biomarker Regulation Sample Technique Reference

Genomics Diagnostic C7orf24 ↑ Tissue; cell lines RT-PCR; qRT-PCR; Western blot 
(WB); siRNA transfection

(62)

Diagnostic 
and 
predictive

miRNA signatures — Tissue; cell lines qRT-PCR (58)

Predictive Multigene classifier — Tissue cDNA microarray; qRT-PCR (60)
Predictive Multigene classifier — Tissue cDNA microarray; RT-PCR (61)
Predictive 
and 
prognostic

miRNA signatures — Tissue miRNA microarray; qRT-PCR; 
immunohistochemistry (IHC)

(59)

Predictive 
and 
prognostic

miR-21 ↑ Serum qRT-PCR (51)

Prognostic Tenascin-C ↓ Cell lines cDNA microarray; RT-PCR; 
WB; IHC

(64)

Prognostic miRNA-214 ↑ Tissue qRT-PCR (63)
Proteomics Diagnostic Serum amyloid A (SAA) ↑ Plasma SELDI-TOF MS; WB (71)

Diagnostic Ezrin (EZR); α crystallin β 
chain (CRYAB)

↑ Tissue 2D-DIGE; LC-ESI-MS/MS; 
RT-PCR for mRNA; tissue 
microarray and IHC

(66)

Diagnostic Cytochrome C1 (CYC-1) ↑ Serum; cell lines SELDI-TOF MS; Gene 
microarray (cell lines)

(72)

Diagnostic Zinc finger protein 133 
(ZNF133); tubulin-α1c 
(TUBA1C)

↑ Tissue 2-DE; MALDI-TOF MS; WB; IHC (70)

Diagnostic Protein NDRG1 ↑ Plasma membrane from 
cell line and tissue

2-DE; LC-ESI-MS/MS; IHC; WB (67)

Diagnostic Gelsolin ↓ Serum 2D-DIGE; MALDI-TOF; WB; ELISA (68)
Predictive 
and 
prognostic

SAA ↑ Serum 2D-DIGE; MALDI-TOF MS; WB; 
ELISA

(2)

Predictive Peroxiredoxin 2 (PRDX2) ↑ (poor 
prognosis)

Tissue 2D-DIGE; LC-ESI-MS/MS; WB (69)

Predictive SAA; transthyretin (TTR) ↓ (poor 
prognosis)

Plasma SELDI-TOF MS; WB (73)

Table 2. Potential biomarkers for Ewing sarcoma.

Study 
approach

Type of 
biomarker Candidate biomarker Regulation Sample Technique Reference

Genomics Diagnostic 
and 
prognostic

ccf mtDNA ↓ Serum qRT-PCR (80)

Prognostic cadherin-11 and MTA1 — Tissue cRNA oligonucleotide microarray; qRT-PCR (83)

Prognostic CXCR4 and CXCR7 ↑ (poor prognosis) Cell lines qRT-PCR (81)
Prognostic miR-34a ↓ (poor prognosis) Tissue Microarray; qRT-PCR; Northern blot (82)

Proteomics Prognostic Nucleophosmin ↑ (poor prognosis) Tissue 2D-DIGE; LC-ESI-MS/MS; IHC (84)
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different fluorescent dye having a dif­
ferent excitation wavelength, and the 
gel is scanned at the corresponding emi­
ssion wavelength to generate images of 
the individual samples. This method 
allows introduction of labeled internal 
standard and therefore minimizes inter-
gel variations. Nevertheless, there are 
some limitations to electrophoresis 
strategy for protein separation. Besides 
being time-consuming and laborious, a 
2-DE experiment usually cannot detect 
proteins of low abundance, especially if 
their molecular weights are low. High-
abundance proteins such as albumin 
and immunoglobulins always mask the 
presence of these proteins. The deple­
tion of these high-abundance proteins 
can increase sensitivity to the detection 
of lower-abundance proteins. However, 
depletion of albumin, for example, may 
cause the loss of several proteins and 
cytokines including those that are cur­
rently used as biomarkers because of 
their interaction with the albumin itself 
(25–28).

 The complexity of a sample such 
as serum also makes the gel-based pro­
teomics analysis a daunting task. To 
overcome these limitations, other pro­
teomics alternatives can be used, such 
as surface-enhanced laser desorption/
ionization time-of-flight mass spec­
trometry (SELDI-TOF MS) or a combi­
nation of liquid chromatography (LC) 
and MS. These techniques can analyze  

and finally utilization of annotated data­
bases to identify the proteins. Compared 
to genomics approaches, proteomics 
offers wider avenues for research. This 
result is because the genome of an organ­
ism is almost fixed, whereas proteome is 
always changing with time and from cell-
to-cell, besides frequently being subjected 
to posttranslational modifications.

 The most common techniques used 
to separate and isolate proteins are one-  
and two-dimensional gel electrophore­
ses (1-DE and 2-DE). In 1-DE, proteins 
are separated based on their molecu­
lar mass, and it can be used to sepa­
rate proteins with molecular mass of 
~10–250 kDa. However, it has a limited 
resolving power, especially for more 
complex mixtures such as neat serum 
and crude cell lysate. Instead, 2-DE 
can be used, since it can separate the 
proteins according to their net charge 
in the first dimension and to their mo­
lecular mass in the second. This step 
provides a much better resolution for 
complex mixtures compared with 1-DE. 
The separation according to these two 
properties enables this method to also 
resolve proteins that had undergone 
posttranslational modifications (23,24). 
2-DE has also been modified to generate 
its variant, two-dimensional difference 
gel electrophoresis (2D-DIGE), where 
different protein samples can be re­
solved simultaneously in a single gel. 
Each protein sample is labeled with 

before entering the assay development 
and clinical trial phase.

 In the case of expression biomarkers, 
which are derived from genes or RNA 
expression studies, genomics microarray 
is most frequently used because it is a 
powerful platform that can simultaneously 
measure the expression levels of thou­
sands of genes. Coupled with hierarchical 
clustering algorithms, the data analysis 
that leads to classification of the gene 
expression can suggest candidate biomark­
ers that have diagnostic, prognostic or 
predictive values. To validate the microar­
ray data, quantitative reverse-transcription 
polymerase chain reaction (qRT-PCR) is 
the most common method used and is 
considered the “gold standard” protocol in 
biomarker research (20).

Proteomics Technologies
The term “proteome” was first coined 

by Marc Wilkins (21) and refers to the 
total protein complement of a genome. 
The term “proteomics” refers to the anal­
ysis of the protein complement of the ge­
nome (22). In cancer research, proteomics 
has been widely applied in profiling the 
expression of proteins in cancer patients 
using various types of samples, includ­
ing blood (serum and plasma), urine, ce­
rebrospinal fluid, tear, saliva and tissues.

 A typical proteomics experiment usu­
ally involves separation and isolation of 
proteins from a sample, acquisition of 
their structures and their characterization, 

Table 4. Potential biomarkers for GCT.

Study 
approach

Type of 
biomarker Candidate biomarker Regulation Sample Technique Reference

Genomics Diagnostic TP73L ↑ Tissue cDNA microarray; 
tissue microarray; IHC

(92)

Proteomics Prognostic Glutathione peroxidase 1 (GPX1); 
thioredoxin peroxidase (PRX); allograft 
inflammatory factor 1 (AIF1); ubiquitin 
E2N (UBE2N); heat shock protein 
27 (HSP27)

↑ (except for HSP27) Tissue 2-DE; MALDI-TOF; tissue 
microarray

(94)

Table 3. Potential biomarkers for chondrosarcoma.

Study approach Type of biomarker Candidate biomarker Regulation Sample Technique Reference

Genomics Differential diagnosis IDH1/2 ↑ Tissue Genotyping (PCR, SNaPshot) (86)
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is calculated on the basis of the differ­
ences between the areas of the XICs of 
the two ions with the same mass (46). 
The labeling of these ions with isotopes 
can provide a more accurate result, but 
the cost involved is much higher than 
the label-free method, and complex sam­
ple processing for this method can lead 
to sample loss.

 If one has already had the targeted 
molecules through the discovery phase, 
selective ion monitoring techniques can 
be applied for absolute quantitative 
measurements. Selection of appropriate 
and unique parent/product ion pairs for 
the analytes of interest using a powerful 
triple quadrupole mass spectrometer 
is known as single reaction monitoring 
(SRM) or multiple reaction monitoring 
(MRM), depending on the number of  
target ions screened (44,47). This 
nonscanning technique, unlike the shot-
gun approach, is highly selective and 
sensitive, which allows the researcher 
to direct the instrument to specifically 
monitor and do absolute quantification 
of target peptides or proteins of interest, 
even of low abundance, in a complicated 
matrix (44,48). MRM, which offers a 
rapid and specific quantification assay 
without the use of any antibodies, has a 
huge potential to be used as a biomarker 
validation tool (48). It has been used to 
successfully quantify 45 proteins in the 
human plasma, which includes 31 puta­
tive biomarkers for cardiovascular dis­
eases (49). In a more recent study, Sung 
et al. (50) developed a high-throughput 
MRM assay to quantify and differentiate 
different isoforms of serum amyloid A 
(SAA), a putative protein biomarker for 
patients with lung cancer.

BIOMARKER FOR BONE TUMORS 
FROM GENOMICS AND PROTEOMICS 
STUDIES

Today, a large number of candidate 
biomarkers for bone tumors have been 
proposed via various genomics and 
proteomics studies. Biomarkers for os­
teosarcoma, being the most common 
type of bone tumor, are the most ex­
tensively sought after by researchers. 

technique with high sensitivity and high 
specificity. The use of LC-MS allows for 
the “shot-gun proteomics” approach, a 
term used when an entire protein sam­
ple is subjected to proteolytic digestion 
yielding a highly complex mixture of 
peptides. The recovered peptides are 
subjected to the LC system, and in a typi­
cal reverse-phase single-dimensional LC, 
the separation of the peptides in an LC 
column is based on hydrophobicity. The 
resulted elution is ionized before mass 
determination using MS. In the case of 
tandem MS (LC-MS/MS), the recovered 
peaks are further fragmented and ana­
lyzed by a second MS. The LC-MS itself 
is incapable of determining the amounts 
of proteins present in the sample. How­
ever, an approach using Isobaric Tags 
for Relative and Absolute Quantitation 
(iTRAQ) can be used to comparatively 
quantify the proteins. This chemical 
labeling method incorporates stable 
isotopes into an amine tagging reagent 
before identification of the proteins using 
MS (43). Currently, there are two sets of 
amine-reactive isobaric tags available in 
the market, the 4-plex and 8-plex, which 
allow the labeling of from four and up to 
eight samples simultaneously. The tags 
are used to derivatize peptides at the 
N-terminus and the lysine side chains, 
therefore labeling all the peptides in a di­
gest mixture (43). Upon fragmentation in 
the second MS (MS/MS), these tags will 
give rise to unique reporter ions (m/z) 
that can be used to quantify the respec­
tive samples.

 High-throughput relative protein 
quantification and identification can 
also be done using isotopic labeling 
of proteins or peptides and by means 
of label-free quantification of derived 
mass spectra. In the label-free LC-MS 
method, the amount of peptides can 
be determined using the ion signal in­
tensities in the sample, where the data 
are collected in full MS scan mode to 
reconstruct the elution profile of the 
ions, thus producing the extracted ion 
chromatogram (XIC) (44,45). The abun­
dance of the analyte can be determined 
relatively between two samples, which 

complex mixtures with a simpler 
work flow and enables a greater number 
of samples to be analyzed. In addition, 
enrichment steps can also be performed 
to samples, to enable a study of a less 
complex subproteome. For example, 
lectins that are structurally diverse 
carbohydrate-binding proteins of non­
immune origin that have high affinities 
toward carbohydrate ligands are suit­
able for enrichment of the glycopro­
teome fraction. The study of a patient’s 
glycoproteome fraction may enable 
further understanding of the dynamic 
changes in the glycoprotein profiles in 
cancer patients compared with healthy 
controls (29–32).

 Profiles obtained from low-molecular-
weight serum protein analysis using 
SELDI-TOF MS has been suggested to 
reflect the pathological state of organs 
and aid in the early detection of cancer 
(33–35). SELDI-TOF MS, first intro­
duced in 1993 by Hutchens and Yip 
(36), is most valuable in profiling of low-
molecular-weight peptides (<20 kDa), 
which cannot be achieved by LC-MS and 
2-DE (37). This novel approach combines 
both retention and MS-based methods 
on a relatively simple principle. Because 
of the unique surface chemistries of the 
chips, the system can be exploited to 
cater the use of different types of sam­
ples such as serum, plasma, urine and 
cell lysates. This platform has been suc­
cessfully used to profile serum proteins 
and has been used in the discovery of 
potential candidates of biomarker or 
proteomics patterns for lung cancer (38), 
renal cancer (39), endometrial cancer 
(40) and gastric cancer (41). However, 
it is incapable of directly carrying out 
the sequence-based identification of the 
discovered discriminatory peaks (42). 
Identification of the resolved peaks must 
be performed using other proteomics 
work flow, for example, purification of 
the proteins of interest through chroma­
tography or gel electrophoresis, followed 
by MS analysis (39,40).

 LC-MS involves physical separation 
and mass analysis of peptides, making 
it a very powerful analytical chemistry 
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compared with those with benign bone 
tumor. SAA, which is normally present 
at low levels in sera of healthy subjects, 
is secreted in response to inflammation 
and it is thought to be involved in tum­
origenesis (74). In 2009, Folio et al. (66) 
showed that crystallin α/β (CRYAB) and 
ezrin (EZR) were significantly higher 
in osteosarcoma tissues compared with 
normal bone tissues, particularly in ad­
vanced stages of the disease. CRYAB 
protein has anti-apoptotic functions, 
suggesting its involvement in the carcino­
genesis of osteosarcoma, whereas EZR is 
a membrane-cytoskeleton linker protein 
that is involved in the growth and metas­
tasis of various types of tumors (66).

 Other potential biomarkers for osteo­
sarcoma uncovered by proteomics studies 
include cytochrome C1 (CYC-1), zinc 
finger protein 133 (ZNF133), tubulin-α1c 
(TUBA1C), protein NDRG1 and gelsolin 
(67,68,70,72). CYC-1 is a heme-containing 
subunit of the cytochrome b-c1 complex 
and is mainly known as an important 
participant in mitochondrial adenosine 
5′-triphosphate (ATP) synthesis (72,75). 
However, the relationship between this 
protein and tumorigenesis is relatively 
unknown. TUBA1C, a major cytoskeletal 
protein, was suggested as a key protein 
involved in metastasis and progression 
of osteosarcoma and therefore might be 
valuable as a prognostic indicator (70). 
Li et al. (70) also demonstrated the up­
regulation of ZNF133, a transcriptional 
repressor, in osteosarcoma tissues, but 
the exact function of this protein is still 
unknown (70). Another potential diag­
nostic biomarker discovered by Hua et al. 
(67) is NDRG1, a protein that was found 
to be significantly upregulated in human 
osteosarcoma cell line and tissues. The 
specific biological function of NDRG1 
is unknown, but there were reports that 
suggested it as a potential tumor suppres­
sor protein (76). In a separate study by 
Jin et al. (68), downregulation of another 
putative tumor suppressor, gelsolin, was 
reported in osteosarcoma. Gelsolin is 
involved in various biological functions 
such as apoptosis stimulator, cell motility, 
inflammation and wound healing (68).

the incidence of osteosarcoma and fluo­
ride exposure in drinking water during 
childhood (57). However, their finding is 
only consistent among male subjects.

 A vast number of biomarker studies 
of osteosarcoma had proposed a series of 
miRNA fingerprints and multigene clas­
sifiers as signatures (Table 1) that may 
be used to reflect its pathogenesis and 
response to chemotherapy in patients 
(58–61), although single-gene miRNA 
biomarkers such as C7orf24, miR-21, 
miRNA-214 and a gene that codes for te­
nascin-C protein had also been suggested 
(51,62–64). The upregulation of the 
C7orf24 gene, which was observed in 
human osteosarcoma cell lines and pri­
mary tumor samples, was suggested to 
be involved in cell adhesion and protein 
transport, and the knockdown of this 
gene apparently inhibited the growth 
of the cell lines (62). Upregulation of 
miRNA-214 has been found to correlate 
with aggressive clinicopathological fea­
tures and poor prognosis in pediatric 
osteosarcoma (63), whereas higher miR-
21 expression in the serum, which af­
fects the tumor behavior by modulating 
the cell growth, cell cycle progression, 
metastasis process and chemosensitivity 
of the tumor cells, appeared to show sig­
nificant correlation with advanced stages 
of the tumor, resistance to chemother­
apy and poor prognosis (51). In another 
study involving a highly metastatic 
osteosarcoma cell line, the expression of 
tenascin-C was found to be significantly 
downregulated (64), although Tanaka 
et al. (65) had suggested that tenascin-C 
assists in osteosarcoma cell migration 
and therefore promotes metastasis.

 Proteomics investigations, on the 
other hand, have unearthed potential 
biomarkers that appear more useful for 
diagnosis of osteosarcoma (Table 1). 
The majority of the proteomic studies 
had used 2-DE– and 2D-DIGE–based 
approaches (2,66–70), whereas only 
two groups of researchers had used 
SELDI-TOF MS (71–73). In a study by 
Li et al. (71), plasma levels of SAA was 
shown to be significantly elevated in 
pediatric osteosarcoma patients when 

This is followed by biomarkers for 
Ewing sarcoma and chondrosarcoma.

 Most of the genomics biomarkers pro­
posed are of the prognostic and predic­
tive types, and a number of studies have 
listed a series of multigene classifiers or 
signatures to correctly classify or identify 
various types of bone cancer, as opposed 
to single protein markers derived from 
proteomics approaches. Focus was also 
toward discovery of miRNA biomarkers. 
In this case, almost all analyses were on 
tissues, with the sole exception of a study 
by Yuan et al. (51), which had used serum 
samples in the search for a potential 
miRNA marker for human osteosarcoma. 
Compared to tissue studies, substantial 
amounts of sera were used to isolate suf­
ficient miRNA for the study.

 On the other hand, the majority of 
biomarkers uncovered by proteomics are 
of the diagnostic type. The most common 
proteomics platforms used in biomarker 
research of bone tumor were 2-DE and 
2D-DIGE. Recently, gel-free platforms 
such as SELDI-TOF MS and LC-MS have 
also been popular among proteomics re­
searchers, mainly due to the requirement 
of small amounts of samples and the 
possibility of quantification analysis. Gel-
free platforms offer additional options 
for automations and are known to be less 
laborious compared with 2-DE.

Potential Biomarkers for 
Osteosarcoma

Osteosarcoma, also called osteogenic 
sarcoma, is the most common type of 
primary bone cancer affecting children 
and adolescents (52). This tumor arises 
from mesenchymal cells and is charac­
terized by osteoblastic differentiation of 
the neoplastic cells. The precise etiology 
of osteosarcoma is essentially unknown. 
Several reports, which were published 
as early as 1972, had already suggested 
that viruses such as human osteosarcoma 
virus (53) and Moloney murine sarcoma 
virus (54,55) can induce osteosarcoma. 
Other possible causes or initiating factors 
of osteosarcoma include chemical agents 
and radiation (56). In 2006, Bassin and co­
workers reported an association between 
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myeloma and osteosarcoma (85). It has 
age-specific incidence rates, where it 
usually develops in adults up to the age 
of 75 years. Chondrosarcoma affects 
the long bone of the extremities, pelvis 
and ribs, manifested by local swelling 
and/or pain. The causes of this tumor 
remain unknown, but prognosis is good 
for low-grade volume of tumor. IDH1/2 
mutations can be used to distinguish 
chondrosarcoma from chondroblastic 
osteosarcoma (Table 3), where both 
diseases usually exhibit similar patho­
logic features (86). Strong positive 
results of the mutation for the genes 
that encode for metabolic enzymes 
isocitrate dehydrogenase (IDH)-1 and -2  
were observed from patients with 
chondrosarcoma, whereas the lack of 
IDH1 or IDH2 mutations was observed 
in chondroblastic osteosarcoma cases. 
The differentiation between these two 
diseases is important to determine 
the appropriate course of action in 
managing the patients, since chondro­
sarcoma usually can be treated just by 
surgery, whereas chondroblastic osteo­
sarcoma requires surgery as well as 
chemotherapy. To date, there had been 
no reports of any proteomics studies on 
biomarkers for chondrosarcoma.

Potential Biomarkers for Giant Cell 
Tumor (GCT)

Although classified as benign, GCT, 
also known as osteoclastoma, is locally 
aggressive and can recur in up to 50% 
of the cases (87). It is crucial to find bio­
markers for this disease, since 5% of 
patients with aggressive GCT (stage III) 
may face a possibility for the tumor to 
metastasize to the lung, and in 1–3% of 
the patients, spontaneous transformation 
to high-grade malignancy can happen 
(87,88). GCT is rather uncommon and 
generally affects patients over the age 
of 20 years (89). The tumor lesion is 
characterized by having numerous 
multinucleated giant cells (90). This 
neoplasm is also composed of sheets of 
neoplastic ovoid mononuclear cells inter­
spersed with uniformly distributed large, 
osteoclast-like giant cells. Curettage is 

 Despite being less frequent, there 
were quite a number of studies per­
formed on Ewing sarcoma in relation 
to the search for biomarkers (Table 2). 
In 2012, Yu et al. (80) proposed circu­
lating cell-free mitochondrial DNA 
(ccf mtDNA) for application as diag­
nostic and/or prognostic biomarker 
for Ewing sarcoma. Serum ccf mtDNA 
were found to be reduced in the pa­
tients and were deduced to be associ­
ated with tumor metastasis (80). Other 
genomics studies proposed CXCR4 and 
CXCR7 genes, miR-34a, cadherin-11 and 
MTA1 that can be used as prognostic 
indicators for Ewing sarcoma (81–83). 
The CXCR4 and CXCR7 genes, both of 
which encode for chemokine receptors, 
can serve as predictors of poor patient 
survival, whereas the CXCR4 gene 
itself is correlated with the metastasis 
of Ewing sarcoma (81). Patients with 
Ewing sarcoma who had very low 
expression of mIR-34a, a miRNA that 
is regulated by tumor protein p53 sig­
naling, had a very high risk of cancer 
progression and recurrence within 
2 years (82). When the expression of 
miRNA-34a was enforced, prolifera­
tion of the cancer cells were found to 
be reduced, and the sensitivity to the 
chemotherapy drugs, doxorubicin and 
vincristine, increased (82).

 To date, only one proteomics study, 
which suggested nucleophosmin as a po­
tential prognostic marker (84), has been 
reported for Ewing sarcoma. By using 
2D-DIGE as the main platform, the ex­
pression of nucleophosmin was found to 
be correlated with poor prognosis of the 
patients. The functional role of nucleop­
hosmin in the etiology of Ewing sarcoma 
is still unclear, but it has been linked to a 
few proteins, including p53, the mutation 
of which is associated with poor progno­
sis of Ewing sarcoma cases (82,84).

Potential Biomarkers for 
Chondrosarcoma

Chondrosarcoma is a malignant 
tumor with pure hyaline cartilage dif­
ferentiation and the third most common 
primary malignancy of bone, after 

 SAA, peroxiredoxin 2 (PRDX2) and 
transthyretin (TTR) have also been 
independently suggested for use as 
predictive protein biomarkers in eval­
uating the efficacy of treatment of pa­
tients with osteosarcoma (2,69,73). Jin 
et al. (2), in a study comparing the SAA 
expression in patients before and after 
chemotherapy, found that the level of 
this protein is significantly lower after 
the treatment, as well after surgery. 
Conversely, Li et al. (73) reported that 
SAA was higher in good responders of 
post-chemotherapy treatment. Aside 
from diagnostic and predictive uses, 
SAA may also serve as a prognostic bio­
marker, since its expression was found 
to be significantly increased in relapsed 
osteosarcoma patients (2). PDRX2 is an 
important protein in the antioxidant 
defense mechanism and redox signaling 
process (77). The expression of PDRX2 
is positively correlated with poor re­
sponse to chemotherapy, but the role 
of this protein in this reaction is still 
vague (69). The expression of another 
protein, TTR, was also significantly 
lower in good responders compared 
with poor responders to chemother­
apy. TTR is involved in thyroxine and 
retinol-binding protein transportation 
and reacts to inflammation process. Yet, 
its downregulation was also observed in 
ovarian cancer, suggesting the regula­
tion of this protein is not merely because 
of inflammation, but is due to the pres­
ence of the tumor as well (73).

Potential Biomarkers for Ewing 
Sarcoma

Ewing sarcoma is an extremely ma­
lignant tumor that arises within the 
marrow cavity of bone. This type of bone 
cancer usually affects adolescents from 
10 to 15 years of age, and it can dissem­
inate to other bones and to the lung. 
The etiology is still unknown but Ewing 
sarcoma has been hypothesized to be as­
sociated with cytomegalovirus, through 
in utero viral infection during pregnancy 
(78). There is also a close relationship 
suggested between Ewing sarcoma and 
peripheral neural tumors (79).
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ample, miRNA is stable in formalin-fixed 
tissue and blood (100). However, the dis­
covery of genomics biomarkers usually 
requires invasive procedures, since a 
fresh tissue specimen from a primary 
tumor is deemed the most suitable start­
ing material. In this context, proteomics 
is a better choice for the discovery of bio­
markers because it can use various types 
of bodily fluid samples, which can be 
obtained in less invasive ways.

 A single gene can code for multi­
ple proteins and hence increases their 
diversity. As most proteins undergo 
posttranslational modifications, these 
modifications also result in increased 
complexity of the proteome. The in­
formation of the physiologic changes 
mediated by these posttranslational 
modifications will not be available at the 
nucleic acid level, making proteins more 
dynamic and reflective of the cellular 
physiology compared with DNA or RNA 
(101). The structure and availability of the  
finalized protein decisively deter­
mine the cell behavior and, therefore, 
high-throughput screening for changes 
in protein expression is more suitable for 
discovery of prognostic or predictive bio­
markers (102). However, due to the com­
plexity of proteins and posttranslational 
processing, their analysis often proves to 
be a daunting task.

 The technological advances in small 
molecule separation and identification, 
derived especially from proteomics, 
open the possibility for metabolites to 
be studied. Metabolomics, a more recent 
scientific field compared with proteomics 
and genomics, is defined as “the system­
atic study of small-molecule metabolites 
and their changes in biological samples 
due to physiological stimuli or genetic 
modification” (103). The most common 
methods used to study metabolites (both 
separation and identification) in biological 
samples are gas chromatography, capil­
lary electrophoresis, high-performance 
liquid chromatography, ultra-perfor­
mance liquid chromatography, MS and 
nuclear magnetic resonance (104). Because 
metabolites are related to functional phe­
notypes expressed in cells, tissues and 

Collection, preparation and analysis 
of samples for genomics assays have less 
stringent requirements than for proteomic 
assays. Genomics assays can use poly­
merase chain reaction (PCR) for sample 
amplification, so analyses can still be car­
ried out even though the amount of sam­
ple is limited. Proteomics does not have 
any amplification method analogous to 
PCR (97). Most of proteomics assays re­
quire enrichment or purifications steps, 
whereas in the genomics work flow, these 
steps are often unnecessary (95). How­
ever, gene expression techniques such as 
RT-PCR and Northern blot are not suit­
able for high-throughput study, while 
serial analysis of gene expression (SAGE) 
and DNA microarray are laborious and 
costly (96).

Advantages and Disadvantages of 
Biomarkers Discovered by Genomics 
and Proteomics Approaches

There are many advantages and dis­
advantages of biomarkers that should 
be taken into consideration before being 
implemented in any clinical setting. 
Most biomarker studies strived to elim­
inate differential biases, and the usage 
of a biomarker is definitely less biased 
compared with questionnaires (98). In 
addition, the mechanisms of disease are 
usually investigated and, therefore, the 
proposed biomarker is generally reli­
able when their validity is ascertained 
(98). The disadvantages include timing 
of sample collection (which is a critical 
point), expensive cost of analysis, the 
storage of the samples, errors that might 
be introduced in the laboratory, the dif­
ficulty in establishing normal range and 
also ethical responsibility (98).

 The deregulation of collaborated 
genes (since genes normally do not 
function as a single unit) in a series of 
overlapping and interrelated networks is 
known to be a classic hallmark of cancer 
(99). Unlike proteins, genomics informa­
tion carried by the DNA in an organism 
is stable over the entire lifetime to create 
and regulate proteins necessary for the 
cell structure and function. RNA is also 
stable in various types of samples, for ex­

the most common medical intervention if 
the tumor is not too aggressive (91).

 Strong expression of the TP73L gene, 
which encodes for p63, was exhibited by 
the neoplastic stromal cells of GCT tis­
sue, suggesting the use of this gene and 
p63 as diagnostic biomarkers for this dis­
ease (92) (Table 4). In contrast to p53, the 
exact role of p63 in oncogenesis and spe­
cifically in GCT is unclear. Nevertheless, 
Melino (93), described p63 as a suppres­
sor of metastasis formation by decreasing 
the cell mobility and invasion. Highly 
aggressive tumors lose p63 expression, 
which then accelerates the tumorigenesis 
and metastasis (93). Therefore, the value 
of p63 as a differential diagnostic bio­
marker is higher in tumors with benign 
properties such as GCT (93). In addition, 
Conti et al. (94), using 2-DE, suggested 
glutathione peroxidase 1 (GPX1), thi­
oredoxin peroxidase (PRX), allograft 
inflammatory factor 1 (AIF1), ubiquitin 
E2N (UBE2N) and heat shock protein 27 
(HSP27) as potential biomarkers in pre­
dicting the aggressive behavior of GCT 
to local recurrences or to metastasis (94) 
(Table 4). These proteins are involved in 
various functions involving tumorigen­
esis such as oxidative stress, apoptosis, 
angiogenesis, cell proliferation and drug 
resistance (94).

GENOMICS VERSUS PROTEOMICS

Advantages and Disadvantages of 
Proteomics and Genomics Assays

Proteomics assays have several advan­
tages over genomics-based assays. Pro­
teomics enable the researcher to directly 
examine the molecular machinery of cell 
physiology, which include expression of 
the protein itself, variations of sequences 
and isoforms, posttranslational modifi­
cations and protein-protein complex 
interaction (95). Yet, proteomics profiling 
techniques have some practical limita­
tion, for example, 2-DE is labor intensive, 
and the handling of high-end equipment 
such as LC-MS/MS and SELDI-TOF MS 
definitely requires special training for the 
users (96).
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 Several solutions have been pro­
posed to address these shortcomings 
in an attempt to bring the biomarkers 
to become clinically useful. Diaman­
dis (115) emphasized the need for 
biomarker scientists to possess the 
required analytical and clinical creden­
tials other than experiences from the 
qualitative field of science to success­
fully convey the biomarker’s benefit 
to the patients. A standard stratagem 
that outlines the various phases of 
biomarker studies, from the discovery 
strategies through the validation phases 
toward the intended use of the discov­
ered biomarkers, has to be implemented 
(116,117). Finally, a well-validated 
biomarker, which may not be useful 
enough for clinical practice when used 
solely, may be combined with other 
clinical or biomarker data to identify 
the clinical scenarios (113,118).

CONCLUSION
Numerous putative biomarkers have 

been proposed over the years for bone 
tumors, which involved multiple re­
search platforms. These biomarkers, 
mainly for osteosarcoma, Ewing sar­
coma, chondrosarcoma and GCT, have 
prognostic, diagnostic and/or predictive 
values, and the majority of which were 
discovered by genomics and proteomics 
approaches. Despite this, the devastating 
present-day reality is that none of these 
tumor biomarkers have managed to get 
into the clinical utility.
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freeze and thaw cycles, storage condi­
tions, association with menstrual cycle, 
and diet and drug use, and not from 
presence of the cancer itself (109).

 Variation of results is also known to 
exist from independent genomics inves­
tigations to find new prognostic gene 
signatures (110). The possible causes 
identified were poor study design, lack of 
a standard technology platform, nonstan­
dardized sample collection procedures, 
difference in statistical method applied 
in each study and differences in input 
cohorts for the study (110). Such incoher­
ence is also present in the field of pro­
teomics. For example, in 2005, Baggerly et 
al. (111) raised controversy by questioning 
the reproducibility of a report by Petricoin 
et al. (34). In the study, the SELDI-TOF MS 
platform was used to correctly classify 
and discriminate all the ovarian cancer 
cases from nonmalignant disorders. Based 
on the data that were made publicly 
available by Petricoin’s group in a website 
in 2004, Baggerly et al. (112) reexamined 
the reproducibility of the work and con­
cluded that “much of the structure uncov­
ered in these experiments could be due to 
artefacts of sample processing, not to the 
underlying biology of cancer.”

 The question of why protein biomark­
ers for cancer usually failed to reach 
the clinic has been attributed to three 
main reasons (113). First is fraudulent 
publications, which are actually quite 
rare (114). Second is the inability of the 
biomarkers to meet the demands by clin­
ics due to low specificity, low sensitivity 
and low prognostic/predictive value, 
despite being successfully validated. To 
obtain approval from the FDA, clinical 
trials have to be conducted for the pro­
posed biomarkers, but the expensive 
cost and various organizations that 
need to be involved sometimes impede 
decisions to further bring the potential 
biomarker into the clinics. Third is false 
discovery, where some biomarkers that 
initially look promising fail to make it 
through because of preanalytical, ana­
lytical, postanalytical and bioinformatics 
shortcomings at either discovery or the 
validation phase (113).

organisms, metabolite biomarkers could 
be a good complementary to the genom­
ics and proteomics biomarkers. However, 
metabolomics possesses one critical advan­
tage over the other “omics” technologies, 
where each metabolite has the same basic 
chemical structure, regardless of the type 
of the organism, and therefore readily 
transferable from one species to another 
(105,106). The other favorable features of 
metabolomics for biomarker discovery 
have been elaborated elsewhere (106). 
Recently, a group of researchers have 
described a possible mean to forecast 
risk of breast cancer (up to 5 years) among 
women using plasma metabolomics and 
biocontour, with higher sensitivity and 
specificity than mammography (107). 
This metabolic forecasting of cancer may 
provide new insight in cancer etiology, 
besides being useful for early detection 
of the cancer (107).

CHALLENGES IN BIOMARKER 
DISCOVERY AND IMPLEMENTATION

Despite numerous reports of potential 
biomarkers uncovered from genomics 
and proteomics studies, the fact remains 
that these markers are still far from 
making their way closer to the patients. 
In the case of bone tumor, none of the 
potential biomarkers has currently been 
applied in clinical use. Genomics and 
proteomics technologies have produced 
close to 100,000 articles on biomarkers 
combined (PubMed search on April 15, 
2015, keywords “proteomics biomarker” 
and “genomics biomarker”), but out of 
these, less than 100 managed to be val­
idated for clinical use (108). In clinical 
practice, clinicians usually depend on 
numeric cut-off points when evaluating 
tumor markers. However, research in 
biomarkers usually proposed a set of 
genomics or proteomics signature, or fin­
gerprint patterns, instead of a single bio­
marker, in distinguishing disease from 
normal conditions. The downside of this 
is that such patterns may at times be due 
to factors presented during collection of 
samples, such as the analysis of lipemic 
and hemolyzed samples, varying icteric 
index in the case of hyperbilirubinemia, 
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