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Introduction

With the exception of chronic myeloid leu-
kemia (CML), the molecular defects in chronic
myeloproliferative disorders (MPDs) have
not been elucidated. This poor molecular un-
derstanding may contribute to the poor and
frequently inaccurate classification of these
diseases. MPDs are characterized by clonal
proliferation of differentiated myeloid cells,
and their manifestation can overlap with those
of myelodysplastic syndrome (MDS). For ex-
ample, various degrees of dysplasia can be
seen in chronic myelomonocytic leukemia
(CMML), along with significant proliferation
in hematopoietic elements in the bone mar-
row and peripheral blood. Similar prolifera-
tion can be seen in some MDS patients, but
without effective hematopoiesis leading to
pancytopenia. In fact, for this reason, many
pathologists and hematologists consider
CMML a category independent of MPDs and
different from MDS (1).

The traditional MPDs include CML, poly-
cythemia vera (PV), essential thrombocythemia
(ET), and agnogenic myeloid metaplasia (AMM)
(2,3). However, entities such as chronic neu-
trophilic leukemia (CNL) (4,5), hypereosino-
philic syndrome (6,7), mastocytosis (8,9), and
the 8p11 myeloproliferative syndrome (10,11)
are also considered MPDs. Discussing these
entities alongside classical MPDs is important,
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because it may provide information on the
common biology and molecular abnormalities
between these clinically overlapping diseases.
Despite the rarity of 8pll myeloproliferative
syndrome, its molecular defects are better char-
acterized than those in most of the MPDs. This
is due to its association with a specific cytoge-
netic abnormality. As molecular techniques im-
prove and genome-wide screening becomes
more available, defining the molecular abnor-
malities underlying other MPDs will become
more feasible. Better understanding of molecu-
lar abnormalities in CML has lead to signifi-
cant advances in treatment and management.
The hope is that with better understanding of
the molecular defects in the rest of the MPDs,
better therapies will be developed.

In this review, we discuss the known mo-
lecular and biological abnormalities in various
MPDs and speculate on a general molecular
abnormality or pathway that these diseases
may share. We do not discuss the substantial
research that has established the clonal nature
of primary MPDs, which involve G6PD and
X-chromosome activation (12-16). Rather, our
discussion will be restricted to acquired pri-
mary MPDs. We also do not address hereditary
or secondary MPDs.

Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) has an inci-
dence of 1-2 cases per 100,000 people per year
and accounts for 15% of leukemias in adults
(17-20). The median age of presentation is
45-50. Fifteen percent of patients with CML
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present with an accelerated or blastic acute
phase of disease. The blasts can be of myeloid
or lymphoid origin. The hallmark of CML is the
Philadelphia chromosome, a well-characterized
abnormality found in up to 95% of patients.
The Philadelphia chromosome represents the
addition of a 3’ segment from the Abelson
(ABL) gene on chromosome 9q34 to a 5’ seg-
ment from the breakpoint cluster region (BCR)
gene on chromosome 22qll (17). This t(9;22)
(q34;q11) translocation creates a functional fu-
sion gene (Fig. 1) that can give rise to four dif-
ferent chimeric mRNAs, depending on the
breakpoint on chromosome 22 within the BCR
gene. Fusion of exon el from the BCR gene
with a2 from ABL gives rise to a 190-kD BCR-
ABL fusion protein. This fusion is commonly
seen in acute lymphoblastic leukemia with a
Philadelphia chromosome, but also is reported
in rare cases of CML (21). Fusion of either BCR
exon b2 or b3 and ABL exon a2 gives rise to a
210-kD fusion protein, which is seen in CML.
Rare cases of CML are reported to show fusion
between BCR exon el9 and ABL exon a2,
which gives rise to a 230-kD fusion protein
(22,23). Clinical features, prognosis, and re-
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sponse to therapy are similar in patients with
b2a2 and b3a2 fusions (24). However, slightly
higher platelet counts are reported in patients
with the b3a2 fusion. Transcription of both
b2a2 and b3a2 also can be seen in some cases of
CML. The t(9;22) translocation that leads to the
expression of 230 kD el9a2 fusion protein is
associated with a clinical presentation simi-
lar to chronic neutrophilic leukemia with
thrombocytosis. The expression of the 190-kD
fusion protein in patients presenting with
CML appears to be associated with mono-
cytosis (21).

It is believed that the BCR-ABL fusion pro-
tein plays a central role in the leukemogenesis
of CML for its ability to transform cells in
tissue culture and in transgenic mice (25-27).
The ABL protein plays an important role in sig-
nal transduction and regulation of cell growth.
Its N-terminus contains the sequence of a
domain responsible for tyrosine kinase func-
tion and the C-terminus contains a DNA binding
domain and a nuclear localization sequence (17).
It is believed that the added segment of the
N-terminus of the BCR gene in the fusion BCR-
ABL protein increases its tyrosine kinase activity

Fig. 1. Schematic map of the BCR, ABL, and BCR-ABL fusion genes. Exons of the ABL gene are
shown as solid boxes and exons for the BCR gene are shown as shaded boxes. BCR, breakpoint cluster region;

ABL, Abelson.
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and leads to constitutive overactivity of its
tyrosine phosphokinase. The 190-kD fusion pro-
tein has higher tyrosine phosphokinase activity
than the 210-kD protein, which may explain its
manifestation as acute leukemia, rather than
chronic disease (18-19). In addition, the BCR
portion of the fusion protein may bind other
coregulators, such as the growth factors receptor-
bound protein 2 (GRB2), CT-10 regulated kinase
(CRK) oncogene-like protein (CRKL), casitas B
lineage lymphoma protein (CBL), and Rous
sarcoma virus (SRC) homology-2-containing
protein (SHC) (17-20). The binding of the
GRB2 protein to the BCR portion of the BCR-
ABL protein leads to activation of the sarcoma
virus (RAS) pathway. This was confirmed by
showing that expression of dominant-negative
forms of RAS blocks the transforming function
of BCR-ABL fusion constructs (28). BCR-ABL
fusion protein also activates the c-myelo-
cytomatosis (c-MYC) pathway through E2F1,
the just another kinase-signal transducer and
activator of transcription (Jak-STAT) pathway,
and the protein kinase B (AKT) pathway
through the phosphatidylinositol-3 kinase
(PI3K;Fig.2) (17,18).

Diagnosis of CML is easily established by
the presence of leukocytosis, basophilia, eosino-
philia, and the Philadelphia chromosome.
However, in approximately 10% of CML pa-
tients, the Philadelphia chromosome cannot be
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detected by standard cytogenetic studies. In
these cases, molecular analysis by Southern
blots analysis, reverse transcriptase/polymerase
chain reaction (RT-PCR), or fluorescent in situ
hybridization (FISH) is needed for demonstra-
tion of fused BCR-ABL.

Several recent reports demonstrate that the
BCR-ABL fusion transcript can be detected in
normal individuals who have no evidence of
disease and that this detection rate increases
with age (29,30). This raises the possibility
that the presence of this molecular abnormal-
ity, by itself, is inadequate for complete mani-
festation of the disease and that additional
molecular or immunological abnormalities must
be present in CML patients.

The progression of CML into the acceler-
ated or blastic acute phase is frequently associ-
ated with additional genetic abnormalities,
including monosomies of chromosomes 7, 17
and Y, trisomies of chromosomes 8, 17, 19, and
21, translocation t(3;21)(q26;q22), and double
Philadelphia chromosomes (Table 1) (17,18,
31,32). These cytogenetic abnormalities are re-
ported in 50%-80% of patients whose disease
progresses into acute phase. Specific molecular
abnormalities (33-37), including mutations in
p53 and RAS genes (32,33,37), mutations and
deletions in Rb (34), amplification of MYC
(35), deletion of p16™**? (36), rearrangement
of acute myeloid leukemia (AML1) on chro-
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Fig. 2. Schematic representation of various pathways that are activated by the BCR-ABL fusion

protein. BCR, breakpoint cluster region; ABL, Abelson.
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Table 1. Cytogenetic and molecular abnormalities in MPDs
Disease Genes Cytogenetics References
CML BCR, ABL t(9;22) 17-20, 31, 32-38
P53, Rb, pl6k4?, -7,-17, -Y, +17,
RAS, EVI 1, AML +21,
1(3:21)(q26:q22)
CNL del (20q), 38-40
del (11q14),
t(2;2)(q32:p24)
CMML RAS, Tel, PDGFR, t(5;12)(q33:p13), 41-49
NF1 t(5;10)
t(5;7)(933;q11.2),
+8, -5, -7, -11,
del(14q), t(3;6),
t(8;9)
PV EPO and EPO- +8,+19, del(20q), 50-54, 59-61
receptor t(Y;1), t(3;17),
Jak-STAT del(13q)
ET +8, t(X;5), inv 3, 63-67
t(13;14), t(2;3),
11q21
AMM del(3q), del(13q), 83-91
t(l;zo)/ t(1/7)r Sq—;
79—, +9, del(20q),
t(4;13), der(1q9p),
+8, t(5;17)
JCML RAS, NF1 =7,79— 95-98
Hypereosinophilic Dic(1,7), del(20q), 102-105
Syndrome -7, +8
Mastocytosis c-kit receptor +8, +9 110-114
8pll FGFR1, ZNF198
Myeloproliferative (FIM, RAMP), t(6;8), t(8;9), 115-120
Syndrome FOP, MOZ, t(8;13), t(8;14)

MPDs, myeloproliferative disorders; CML, chronic myeloid leukemia; CNL, chronic neutrophilic leukemia; CMML, chronic
myelomonocytic leukemia; PV, polycythemia vera; ET, essential thrombocythemia; AMM, agnogenic myeloid metaplasia;

JCML, juvenile chronic myeloid leukemia.

mosome 21q22 (31), and abnormalities in
(EVI-1) ecotropic virus integration site-1 gene
on 3q26 (32) are associated with transforma-
tion or acceleration of the disease.

Chronic Neutrophilic Leukemia

Chronic neutrophilic leukemia (CNL) is an ex-
tremely rare disease, characterized by in-
creased peripheral blood neutrophils and
splenomegaly (4,5). Patients” white cell counts
are usually higher than 30 X 10°/1. Although
this disease may overlap with CML, little is
known about the molecular defects that drive
the abnormal proliferation of the neutrophils.
Deletions at 11q14 (38) and on the long arm of
chromosome 20 (39) are reported in this dis-

ease (Table 1). Hasle et al. (40) reported
t(2;2)(q32;p24) trans-location in this disease.
Distinguishing CNL from CMML can be very
difficult, because both diseases overlap in
many aspects. However, CNL is distinguished
by the lack of monocytosis and by the rela-
tively higher white cell counts. Our prelimi-
nary data suggest that CNL cases show no in-
creases in apoptosis levels; whereas, CMML
cases demonstrate significant levels of apop-
tosis (Fig. 3).

Chronic Myelomonocytic Leukemia

Chronic myelomonocytic leukemia (CMML) is
generally classified as MDS, however, all cases
of CMML show several proliferative features,
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Fig. 3. Difference in apoptosis between CMML and CNL, as demonstrated by the cell surface
expression of Annexin V. CMML, chronic myelomonocytic leukemia; CNL, chronic neutrophilic
leukemia; FITC, fluorescein isothiocyanate; PI, propidium iodide; PE, phychoerythrin.

in addition to apoptosis, that distinguish this
disease from MDS. The proliferative nature of
CMML recently was recognized in the new
World Health Organization classification (1),
where CMML was separated from MDS and
classified as a separate proliferative disease.
Monocytosis (>1000 X 10°/1), sometimes with
mild eosinophilia and basophilia, is character-
istic of CMML. In most cases, the morphology
of the monocytes is normal, with little or no
dysplasia. However, some cases show abnor-
mal dysplastic morphology. Using loss of het-
erozygosity (LOH) in patients with -7 and -5
chromosomal abnormalities or X-chromosome
activation, we can demonstrate the clonal na-
ture of the monocytes in this disease (Fig. 4).
Mutations and activation of the RAS oncogene
are the most consistent findings in this disease.
Our data indicates that approximately 35% of
CMML patients carry mutations in RAS (41-43).
However, it is believed that in most cases in
which the RAS oncogene is not mutated, defects
in related genes in the RAS pathway cause ac-
tivation of the RAS pathway. Abnormalities in
the neurofibromatosis 1 (NF1) gene are reported
in this disease (44). Chromosomal t(5;12)
(933;p13) translocation involving the tel gene
(chromosome 12) and the platelet-derived
growth factor receptor 8 (PDGFRp) gene (chro-
mosome 5) are reported in some cases of
CMML (45-48). In this translocation, the tel
gene, which is a member of the Ets family and
contains a helix-loop-helix (HLH) domain, is
believed to be responsible for dimerization and
activation of the PDGFRg. This leads to increased
kinase activity and localization of PDGFRf to
the nucleus in a fashion similar to activation of
the BCR-ABL and RAS oncogene pathway. Ac-

tivation of PDGFRB in CMML also is reported
in similar translocations involving chromosome
5 (Table 1) translocation (46). Abnormalities in
chromosomes 5, 6, 7, 8, and 14 also are reported
in CMML (Table 1) (47-49). Adult CMML is clini-
cally and biologically similar to the juvenile
chronic myeloid leukemia (JCML), which is seen
in children and is reported to have high inci-
dence of deletion of the NF1 gene (see below).

Polycythemia Vera

Polycythemia vera (PV) is a clonal disease
characterized by excessive production of all
bone marrow elements, including red blood
cells, granulocytes, and megakaryocytes (2,3).
The disease starts in a proliferative phase and
usually ends with marrow fibrosis. The diag-
nosis of PV is usually established by the pres-
ence of specific clinical and laboratory criteria,
including increased red blood cell mass, but
normal arterial oxygen saturation, splenomegaly,
thrombocytosis, leukocytosis, increased neutro-
phil alkaline phosphatase levels, and increased
serum vitamin B12 levels (2). The disease is
relatively rare (5-10 cases per million people).
The most common cytogenetic abnormalities
reported in PV are +8, +9, and del(20q)
(50-52), but abnormalities involving chromo-
some 3 and 13 also are reported (53-55). The
molecular defects in this disease are not known.
However, it is believed that the major abnor-
mality in this disease lies in the erythroid lin-
eage and is due to the disproportional increase
in proliferation of the erythroid cells. Several
investigators reported increased sensitivity of
erythroid cells to interleukin (IL) 3 and granu-
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Fig. 4. Example of an electropherogram showing loss of heterozygosity (LOH) in monocytes and
polymorphonuclear (PMN) cells and not in T-cells from a patient with CMML. CMML, chronic

myelomonocytic leukemia.

locyte-macrophage colony-stimulating factor
(GM-CSF) in these patients (56). Axelrad et al.
(56) showed that erythroid cells in PV patients
were also highly sensitive to insulin-like
growth factor-1 (IGF-1). It was demonstrated
that the IGF-1 receptor was hyperphosphory-
lated in the erythroid cells of PV patients. Ery-
thropoietin (EPO) levels are reduced and the
EPO receptor levels are downregulated in PV
patients, but the cells are no longer dependent
on EPO for maturation (57). Mutations in the
EPO receptor are described in cell lines, but
studies in PV patients did not demonstrate ge-
netic alteration in the EPO receptor (58). How-
ever, Chepa, et al. (59) detected an alternatively
spliced, truncated EPO receptor mRNA in some
PV patients and believed that the truncated
mRNA translated into a truncated receptor that
was cytoplasmic. This truncated EPO receptor
may become constitutively active, triggering in-
tracellular signaling and overgrowth of ery-
throid progenitor cells. De La Chapelle et al.
(60) described mutations in the EPO receptor
gene in some cases of hereditary PV that acti-
vated the EPO receptor leading to STAT kinase
pathway activation and transcription of several

growth-and proliferation-regulating genes. It
appears that the growth and proliferation of the
erythroid cells in PV patients is driven by dimer-
ization of the receptor and activation of the Jak-
STAT pathway, which leads to activation of sev-
eral genes that block apoptosis and promote
proliferation (61).

Essential Thrombocythemia

Essential thrombocythemia (ET) is a clonal
disease that involves multipotent stem cells
and manifests as a persistent thrombocytosis in
patients who have normal iron levels, have not
undergone splenectomy, and have normal levels
of serum C reactive proteins (62). The disease
is relatively rare (7 cases per million people) and
affects males and females equally. Patients’
platelet counts are usually higher than 1,000 X
10°/1. Despite the increase in counts, the
platelets may function poorly, producing a ten-
dency for hemorrhagic or thrombotic events.
The molecular mechanisms responsible for
ET are unknown at present. Although the dis-
ease involves mutipotent stem cells, the major
abnormalities in this disease involve the path-
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way responsible for the proliferation and dif-
ferentiation of megakaryocytes. Cytogenetic
abnormalities are rare in ET, though the pres-
ence of +8, inv3, t(13;14), t(2;3), 13q deletions,
and 11921 deletions are reported (Table 1)
(63-67). The recent cloning of the ¢-mpl onco-
gene, which is a tyrosine kinase receptor expres-
sed mainly in megakaryocytes and considered
a receptor for thrombopoietin (TPO), has made
it possible to investigate the role of the TPO/
receptor system in ET disease (68-70). Overex-
pression of TPO in mice leads to thrombocyto-
sis and myelofibrosis. Expressing a truncated
c-mpl protein in mice leads to acute myelopro-
liferative disease (71). However, recent publi-
cations suggest that there is no evidence of
c-mpl mutation in ET patients, and growth and
differentiation of megakaryocytes appear unre-
lated to TPO or its receptor in ET patients (72).

Agnogenic Myeloid Metaplasia

Chronic idiopathic myelofibrosis, or agnogenic
myeloid metaplasia (AMM), is a clonal disease
that involves multipotent stem cells and mani-
fests by marked proliferation of megakary-
ocytes, bone marrow fibrosis, extramedullary
hematopoiesis, and peripheral blood pan-
myelosis (2,3,73). In addition to bone marrow
fibrosis and proliferation of megakaryocytes,
leukocyte counts vary between 1 X 10°/1 and
25 X 10°/1 with left-shift, and platelet counts
vary from 150 X 10°/1 to 500 X 10°/1. The char-
acteristic feature of this disease is the presence
of tear-drop erythroid cells in peripheral blood
(73). The proliferating fibroblasts in this dis-
ease are not clonal and appear reactive (74). It
is believed that several growth factors, some of
which are secreted by megakaryocytes, are re-
sponsible for the proliferation of fibroblasts and
synthesis of fibronectin and collagen (75). The
most studied factor is platelet-derived growth
factor (PDGF)(76,77). In addition, transform-
ing growth factor-B (TGFB), TPO, epidermal
growth factor, and IL-6 are expressed at high
levels in patients with AMM (78-80). Our re-
cent data suggest that the levels of vascular en-
dothelial growth factor (VEGF) and basic fi-
broblast growth factor (bFGF) are markedly
high in AMM patients with increased vascular-
ity, which suggests that angiogenesis is a major
factor in the pathogenesis of this disease (Al-
bitar et al.,, unpublished data). The TPO and
c-mpl were also thought to play a role in this
disease (81), but recent studies demonstrated that

growth and differentiation of megakaryocytes
in AMM were independent of the TPO/c-mpl
pathway (82).

Comprehensive cytogenetic studies are not
available on this disease. However, abnormali-
ties in chromosome 3q, 5q, 7q, 13q, and 20q
are reported (83-86). Translocations, including
t(1;20), t(1;7), t(4;13), and t(5;17), in addition
to trisomies 8 and 9 also are reported without
involvement of specific genes (Table 1) (86-91).
However, it appears that the most commonly
detected cytogenetic abnormality in this disease
is del (209)(83). A recent study mapped the
commonly deleted region (CDR) on chromo-
some 20, between 20qll.2 and 20ql3.1, a
region containing several important genes, in-
cluding adenosine deaminase (ADA) and genes
associated with topoisomerase I and PI3K (83).

Juvenile Chronic
Myeloid Leukemia

Juvenile chronic myeloid leukemia (JCML) is
a rare disease that is different from adult CML
and shows clinical and molecular features sim-
ilar to those of adult CMML (92). The disease
usually affects patients under 4 years of age
and affects twice as many boys as girls. Mono-
cytosis and mild leukocytosis are common fea-
tures shared between JCML and adult CMML.
However, one unique feature of JCML is the
increased levels of fetal hemoglobin (Hb F) in
patients (93,94). These high levels of Hb F are
believed to result from activation of the expres-
sion of the y-globin genes as a result of expres-
sion of trans-acting factors that are activated in
the leukemic process. JCML cases lack the
Philadelphia chromosome. Monosomy 7 or 7q-
are frequent cytogenetic abnormalities in this
disease (95,96). As in adult CMML, there is in-
creased incidence of RAS mutations (30%) (97)
and NF1 deletions (98). Young children with
neurofibromatosis type 1 show a high inci-
dence of JCML and the majority have deletions
in both alleles, leading to constitutive
activation of the RAS oncogene pathway.

Idiopathic Hypereosinophilic
Syndrome

Hypereosinophilic syndrome is a rare disease
defined by the presence of at least 1.5 X 10°

eosinophils/l for at least 6 months, in the ab-
sence of any etiology (6,7). The disease is
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usually associated with some evidence of organ
involvement, including hepatosplenomegaly,
heart murmurs, congestive heart failure, diffuse
or focal central nervous system abnormalities,
marrow fibrosis or anemia, and weight loss (99).
The disease is nine times more frequent in
males than in females. Clonality of the eosino-
phils was demonstrated with and without the
presence of cytogenetic abnormalities. Hyper-
eosinophilic syndrome is considered a chronic
proliferative disease and some investigators
report that it can evolve into acute myeloid
leukemia or acute lymphoblastic leukemia in a
fashion similar to other MPDs (100,101). Re-
ported chromosomal abnormalities in this dis-
ease include dic(1;7), 20q-, monosomy 7, and
trisomy 8 (102-105). Eosinophilic leukemia is
usually a term reserved for cases where the
blasts counts in peripheral blood and bone
marrow are elevated. Several cytokines, in-
cluding IL-5, IL-6, IL-3, and GM-CSF are im-
plicated in the proliferation and stimulation of
eosinophils (106-108). IL-5 transgenic mice
develop massive eosinophilia and the IL-5 lev-
els are usually increased in hypereosinophilic
syndrome patients (109). The organ damage in
hypereosinophilic syndrome is caused by se-
cretion of several cytokines from the eosinophils,
leading to significant fibrosis in various organs.

Systemic Mastocytosis

Systemic mastocytosis is a term used for collec-
tive disorders characterized by abnormal growth
and accumulation of mast cells. The disease can
manifest as a myeloproliferative or myelodys-
plastic features (8,9). Mast cells are believed to
be derived from multipotent hematopoietic
cells. The most commonly reported abnormal-
ity in this disease is an Asp816Val mutation in
the c-kit receptor (110-112), a tyrosine kinase
characterized by the presence of 5 immu-
noglobulin-like repeats in the extracellular
domain and cytoplasmic kinase domain. Stem
cell factor (SCF) is the ligand for the c-kit re-
ceptor, but the Asp816Val mutation is believed
to lead to constitutive activation and to uncon-
trolled proliferation of mast cells. Recent
studies show this mutation in the peripheral
blood mononuclear cells from a significant
number of patients with mastocytosis, sug-
gesting that early stem cells are involved in
the neoplastic process in some patients with
mastocytosis (112). Association between mas-

tocytosis and trisomies 9 and 8 also are re-
ported (113-114).

Myeloproliferative Disease
Associated with 8pl11
Chromosomal Abnormality

The 8pl1 MPD is distinct and unusual in its
clinical course (10,11). It is characterized by
myeloid hyperplasia, eosinophilia, and T cell
or B cell lymphoblastic lymphoma that may
progress to acute myeloid leukemia. This un-
usual phenotype is believed to be due to mo-
lecular abnormalities involving hematopoi-
etic stem cells that can differentiate to various
lineages. Several translocations are reported
in this disease, including t(8;16)(pl1l;pl3),
t(8;14)(p11;ql11.1), t(8;19)(pll;ql3), t(8;22)
(p11;q13), and t(8;13)(p11;q11-12) (115-120).
The fibroblast growth factor receptor 1 (FGFR1)
gene on chromosome 8pll is involved in all
these translocations. FGFR1 is a member of the
fibroblast growth factors receptors family
(FGFR1-4). These genes are tyrosine kinase
receptors involved with mediating cellular re-
sponses to 17 fibroblast growth factors (FGF1-
17). They are involved in cell growth and mi-
gration, angiogenesis, organ formation, and
bone growth. The tyrosine kinase domain cod-
ing sequence of FGFRI1 is retained in almost all
translocations and presumably activated by the
fused partner genes through dimerization.
These partner genes include zinc finger protein
ZNF198 (FIM fused in myeloproliferative dis-
orders) on chromosome 13, FGFRI oncogene
partner (FOP) on chromosome 6, and mono-
cytic leukemia zinc finger (MOZ) on chromo-
some 16.

In summary, activation of a tyrosine kinase
signal transduction pathway appears to be the
most common molecular abnormality in the
pathogenesis of chronic myeloproliferative dis-
orders. Further studies are needed to identify
specific genes involved in most of these dis-
eases. However, the recent introduction of sev-
eral tyrosine kinase inhibitors as therapeutic
agents in some of these diseases represents a
promising new therapeutic tool for this group
of diseases.
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