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THE VON HIPPEL-LINDAU
SYNDROME

von Hippel-Lindau (VHL) disease is an autoso-
mal dominant familial cancer syndrome charac-
terized by the development of retinal angiomata,
central nervous system hemangioblastomata, re-
nal cell carcinomas, pheochromocytomata, and
endolymphatic sac tumors (1). This disease af-
fects 1 in 36,000 individuals and has a variable
but high degree of penetrance (2). The develop-
ment of renal carcinomas and cerebellar heman-
gioblastomata are the major causes of morbidity
and mortality for VHL patients.

THE VON HIPPEL-LINDAU GENE

Clinical and molecular epidemiological data have
suggested that VHL disease, like hereditary reti-
noblastoma, is due to inactivation of a tumor
suppressor gene (3). In keeping with this view,
the VHL gene was mapped to chromosome 3p25-
26, a region that is frequently deleted or altered
in sporadic renal cell carcinomas. Based on this
positional information, a group headed by Drs.
Michael Lerman and Bert Zbar cloned the VHL
susceptibility gene in 1993 (4). The VHL gene
consists of three exons (5), encodes a 4.5-kB
mRNA (6,7) and is highly conserved across spe-
cies (4,8,9). VHL gene mutations have now been
identified in ~75% of VHL families (10-12). Tu-
mor development in VHL patients is associated
with somatic loss or inactivation of the remain-
ing wild-type VHL allele, in keeping with the
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notion that the VHL gene functions as a tumor
suppressor.

The risk of developing the various tumors
that comprise the VHL syndrome differs among
VHL kindreds. One classification scheme distin-
guishes families at low risk (VHL type I) or high
risk (VHL type II) of developing pheochromocy-
tomata (13). The latter category is further subdi-
vided into type IIA (low risk of renal cell carci-
noma) and type OB (high risk of renal carcinoma).
Certain genotype-phenotype correlations are
emerging. For example, missense mutations are
often associated with the development of type I
disease, whereas mutations predicted to lead to
truncated versions of the VHL protein are primarily
associated with type I disease (10,11,13-16). It is
now also apparent that certain VHL germ-line mu-
tations give rise to familial pheochromocytomata
without the other classical manifestations of VHL
disease (14,17-19).

A prediction of Knudson’s tumor suppressor
model is that loss of VHL gene function should
also play a role in the sporadic counterparts of
the tumors observed in VHL disease. Indeed, in-
activation of both VHL alleles, either as a result of
mutation, hypermethylation, or loss, has been
documented in ~75% of sporadic renal cell car-
cinomas of the clear cell type (12,20-23) and
~50% of sporadic cerebellar hemangioblasto-
mata (24). Mutation of the VHL gene, with loss
of the remaining VHL allele (manifest as loss of
heterozygosity at the VHL gene locus), has been
documented in early premalignant lesions of the
kidney, such as atypical cysts and in microscopic
renal cell carcinoma in situ (25,26). Thus, inac-
tivation of VHL function appears to be an early,
and possibly requisite, step in the pathogenesis of
hereditary and sporadic renal carcinomas of the
clear cell type. In contrast to renal carcinomas
and cerebellar hemangioblastomata, however,
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inactivation of the VHL gene appears to be a
relatively rare event in sporadic pheochromocy-
tomata (20,27).

THE VON HIPPEL-LINDAU
PROTEIN

The VHL protein (pVHL) contains 213 amino
acid residues and migrates with an apparent mo-
lecular weight of ~30 kD (pVHL-L) (6,8). A sec-
ond VHL isoform (pVHL-S), with an apparent
molecular weight of ~19 kD, is generated by
translation initiation at an internal ATG (O. L
and W. G. K., unpublished observation). In situ
RNA analysis and immunostaining of adult tis-
sues have documented high levels of expression
in organs such as the kidney and cerebellum,
which are sites of tumor formation in VHL dis-
ease (28-30). Immunostaining, as well as bio-
chemical fractionation experiments, suggest that
pVHL is largely, but not exclusively, cytoplasmic
(6,29,30). Under certain experimental condi-
tions, pVHL appears to “shuttle” between the
nucleus and cytoplasm (31). The physiological
relevance of this latter observation is currently
being investigated.

Reintroduction of wild-type, but not mutant,
pVHL into VHL (-/-) renal carcinoma cell lines
inhibits their ability to form tumors in nude mice
(6,32). With one exception (33), restoration of
pVHL function in VHL (-/-) renal carcinoma cells
has not led to significant alterations in cell
growth in vitro. In particular, pvVHL, although
capable of suppressing tumor growth in vivo,
does not dramatically alter the ability of most
renal carcinoma cell lines to grow in low serum
or to form colonies in soft agar (6).

The von Hippel-Lindau Protein Binds to
Elongin B and C

The predicted pVHL primary sequence does not
closely resemble that of any protein whose func-
tion is known. In an attempt to understand the
mechanisms underlying tumor suppression by
pVHL, several groups sought to identify cellular
pVHL-binding proteins (8,34-37). Two such pro-
teins, elongin B and C, bind to a region of pvVHL
that is frequently mutated in VHL kindreds
(34,35,37,38). Elongin B and C, when bound to
elongin A, generate a transcriptional elongation
complex called elongin or SII (38). pVHL com-
petes with elongin A for binding to elongin B and

C, at least in vitro, thereby inhibiting elongin or
SIII activity (35,38). Thus, in the simplest view,
tumor suppression by pVHL might be due, at
least in part, to its ability to modulate the rate of
transcription of certain genes as a result of its
ability to inhibit elongin/SIII.

The von Hippel-Lindau Protein Inhibits
the Accumulation of Hypoxia-Inducible
mRNAs under Normoxic Conditions

VHL-associated neoplasms are typically hyper-
vascular and, on occasion, are associated with
paraneoplastic erythrocytosis. The former has
been linked to the production of angiogenic pep-
tides such as vascular endothelial growth factor/
permeability factor (VEGF/VPF) and the latter to
the production of erythropoietin by the tumor
cells. VEGF/VPF and erythropoeitin production
are normally induced by hypoxia. Several groups
have recently shown that VHL (-/-) cells inap-
propriately produce hypoxia-inducible mRNAs,
such as the VEGF mRNA, under both hypoxic
and normoxic conditions (32,39,40). Reintro-
duction of wild-type, but not mutant, pVHL into
these VHL (-/-) cells specifically inhibits the pro-
duction of these mRNAs under normoxic condi-
tions, thus restoring their previously described
hypoxia-inducible profile. It seems likely that the
overproduction of hypoxia-inducible mRNAs,
including those encoding angiogenic peptides
such as VEGF/VPF, contributes to the hypervas-
cular nature of VHL-associated tumors. Con-
versely, inhibition of VEGF has been shown to
inhibit tumorigenesis in vivo and thus might
contribute to the ability of pVHL to suppress
tumor formation (41). If so, this might help to
explain the differential effects of pVHL on tumor
cell growth in vitro and in vivo.

Surprisingly, the regulation of hypoxia-in-
ducible mRNAs by pVHL appears to be primarily
posttranscriptional rather than transcriptional
(32,39). Similarly, the regulation of VEGF mRNA
abundance by hypoxia occurs primarily at the
posttranscriptional level (42). Hypoxia leads to a
marked increase in the stability of the VEGF
mRNA. This effect depends upon an AUUUA-
rich region of the VEGF 3’ UTR. RNA-gel shift
analyses have identified cellular proteins that
bind to this region under hypoxic, but not nor-
moxic, conditions (43). In the simplest model,
these proteins serve to stabilize the VEGF mRNA.
In contrast, these RNA binding proteins can be
detected in VHL (-/-) cell extracts under both
hypoxic and normoxic conditions and, perhaps
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as a result, the stability of hypoxia-inducible mR-
NAs is no longer regulated by changes in oxygen
(43).

How might binding to elongin B and C con-
tribute to the above-mentioned regulation of hy-
poxia-inducible mRNAs? One possibility is that
elongin/SIII regulates the transcription of a gene
encoding a protein involved in the regulation of
mRNA stability. A second possibility is that elon-
gin B and C, when bound to pVHL, directly affect
the stability of hypoxia-inducible mRNAs. Such a
model might account for the observation that
pVHL, elongin B, and elongin C are primarily
cytoplasmic (39). Finally, regulation of hypoxia-
inducible mRNA stability by pVHL may be unre-
lated to its ability to bind to elongin B and C. In
this regard, it is clear that some VHL-kindred-
associated pVHL mutants retain the ability to
bind to elongin B and C (8,37). This latter obser-
vation, together with the genotype-phenotype
correlations described above, might be explained
if multiple biochemical activities contributed to
tumor suppression by pVHL, one of which is
binding to elongins B and C.

CONCLUSIONS

von Hippel-Lindau disease, like many hereditary
cancer syndromes, is due to a germ-line muta-
tion affecting a tumor suppressor gene. Inactiva-
tion of the VHL gene is also implicated in the
pathogenesis of sporadic renal carcinomas and
cerebellar hemangioblastomata. A frequently
mutated region of the VHL gene product, pVHL,
binds to elongin B and C, two components of a
tripartite transcriptional elongation factor called
elongin or SIII. pVHL negatively regulates the
accumulation of hypoxia-inducible mRNAs, such
as that encoding the angiogenic peptide VEGF,
under normoxic conditions. Whether elongin-
binding and regulation of mRNA stability by
pVHL are linked and, more importantly, whether
they are necessary or sufficient to account for
tumor suppression by pVHL, are questions at the
center of current studies.
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