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Abstract

Chromatin structure is gaining increasing attention
as a potential target in the treatment of cancer.
Relaxation of the chromatin fiber facilitates tran-
scription and is regulated by two competing enzy-
matic activities, histone acetyltransferases (HATS)
and histone deacetylases (HDACs), which modify
the acetylation state of histone proteins and
other promoter-bound transcription factors. While
HATs, which are frequently part of multisubunit
coactivator complexes, lead to the relaxation of
chromatin structure and transcriptional activation,
HDACs tend to associate with multisubunit core-
pressor complexes, which result in chromatin
condensation and transcriptional repression of spe-
cific target genes. HATs and HDACs are known to
be involved both in the pathogenesis as well as in
the suppression of cancer. Some of the genes encod-
ing these enzymes have been shown to be rearranged
in the context of chromosomal translocations in

human acute leukemias and solid tumors, where fu-
sions of regulatory and coding regions of a variety
of transcription factor genes result in completely
new gene products that may interfere with
regulatory cascades controlling cell growth and
differentiation. On the other hand, some histone
acetylation-modifying enzymes have been located
within chromosomal regions that are particularly
prone to chromosomal breaks. In these cases gains
and losses of chromosomal material may affect the
availability of functionally active HATs and HDACs,
which in turn disturbs the tightly controlled equi-
librium of histone acetylation. We review herein the
recent achievements, which further help to eluci-
date the biological role of histone acetylation modi-
fying enzymes and their potential impact on our
current understanding of the molecular changes
involved in the development of solid tumors and
leukemias.

DNA in chromatin is organized in arrays of nu-
cleosomes, where two copies of each histone
protein—H2A, H2B, H3, and H4—are assembled
into an octamer that has approximately 146 base
pairs of DNA wrapped around it in 1.8 turns to
form a nucleosome. The nucleosome is an in-
variant component of euchromatin and hete-
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rochromatin in the interphase nucleus, and of
mitotic chromosomes. This highly conserved nu-
cleoprotein complex occurs fundamentally every
200 * 40 bp throughout all eukaryotic genomes
(1). During mitosis, the tightly packed meta-
phase chromosomes need to be accurately dis-
tributed between two daughter cells, while the
DNA has to be accessible to various enzymatic
machineries during interphase, when DNA is
replicated, specific parts are transcribed, and
mutated DNA segments are repaired. Under
these circumstances, the nucleosomal architec-
ture represents a major structural obstacle that
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limits the access of factors to nucleosome-
bound DNA (2). The interaction of DNA with
histone proteins is highly complex and may—
at least in part—be explained by electrostatic
interactions between negatively charged phos-
phate groups in the DNA backbone and posi-
tively charged amino acids in the histone pro-
teins (3-5). A number of post-translational
modifications of the histone components of
chromatin, including acetylation, phosphory-
lation, ubiquitination, methylation, and ADP-
ribosylation, which altogether affect transcrip-
tional regulation, have been described (6-8).
However, our focus in this review is on the role
of histone modification through acetylation in
the pathogenesis of cancer.

First observations linking transcriptional
activity with histone acetylation and deacetyla-
tion of the e-amino groups of conserved lysine
residues, which are present in the amino termi-
nal tails of all four core histones (H2A, H2B, H3,
and H4), were made more than three decades
ago (9). These observations have been reinforced
by studies that demonstrated transcriptionally
active euchromatin domains to be highly acety-
lated and/or hypomethylated (9-12), while
densely methylated inactive DNA has been as-
sociated with hypoacetylated histone proteins
(9,13,14). Notably, most DNA in mammals is
methylated at CpG dinucleotides, with the
exception of promoter elements, which contain
undermethylated CpG islands (15). Methyl-
CpG binding protein 2 (MeCP2) is a protein
that recognizes methylated DNA and interacts
with histone deacetylases, which are part of the
mSIN3A/histone deacetylases (HDAC) multi-
subunit repressor complex. This suggests that
MeCP2 mediates silencing of methylated DNA
through deacetylation (16-18) (Fig. 1).

It took more than three decades to test the
validity of the hypothesis that linked transcrip-
tional activity with the post-translational modi-
fication of histone proteins, following the identi-
fication of the regulators of histone acetylation,
histone acetyltransferases, and histone deacety-
lases (19). These enzymes allow reversible
modification of histone proteins through the
addition or removal of acetyl groups, which
alter the strength of the bonding between hi-
stones and DNA, thereby modifying the regu-
lation of biological processes such as DNA
replication and repair, gene expression, chro-
matin assembly, condensation, and cell divi-
sion (see also 20,21 for reviews). In addition
to the effect of histone acetyltransferases (HATS)

and HDACs on the charge of the histone oc-
tamer, these enzymes may also directly alter
the activity of basal and sequence-specific
transcription factors as well as other cellular
regulators (cell-cycle regulators, signaling
cascades, etc.) (Fig. 2) (5,22,23).

Histone Modification and
Transcriptional Control

The work of many investigators during the last
few years has contributed to almost explosive
advances in our understanding of the molecu-
lar details of transcriptional regulation and
chromatin modification within the context of
the highly complex interplay of protein-DNA
binding factors and protein—protein interac-
tions. It is now becoming increasingly obvious
that most enzymes that regulate the acetylation
state of histone proteins and other promoter-
bound transcription factors (i.e., HATs and
HDACs) exert their enzymatic activities as
members of large multisubunit protein com-
plexes. A deregulation of the tightly controlled
equilibrium of acetylation and deacetylation
plays a causative role in the generation as well
as in the suppression of several types of cancer
(20,24-27). Depending on the specific target
promotors, hyperacetylation and deacetylation
may exert contradictive effects on gene expres-
sion (28) and suppress tumorigenesis in some
cases, while they facilitate cancer development
in others. This could be either (1) a consequence
of chromosomal translocations, where histone
acetylation modifiers may be fused to or re-
cruited by a newly generated transcription fac-
tor hybrid protein, which alters the expression
of specific target genes, or (2) an effect of over-
all changes in the concentrations of function-
ally available histone acetylation modifiers.

Histone Acetyltransferases

The first HAT gene to be cloned was HATI, a
yeast histone acetyltransferase, initially iden-
tified as a temperature-sensitive mutant lack-
ing the capability to acetylate specific lysine
residues of the Histone H4 peptide (29-31).
This was followed by the discovery of a ho-
molog of the yeast HAT GCN5 (general con-
trol of amino acid synthesis) in Tetrahymena,
which was identified by virtue of its HAT enzy-
matic activity (19). GCN5 is known to be the
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catalytic unit of both the yeast ADA (Ada2-
Ada3-Gen5) and SAGA (SPT-ADA-GCNS5-
acetyltransferase) coactivator complexes, which
exert HAT activity (32-34) and of the human
SAGA-homolog STAGA (SPT3-TAF;31-GCN5
acetyltransferase) (35). Since then, a number of
enzymes with HAT activity have been identified
in humans, including CREB binding protein
(CBP)/p300 (36-38); p300/CBP associated factor
(p/CAF) (36,38,39); the p160 family of proteins
(NCOA1-3) (40-43); the MYST family, which
includes the human proteins monocytic leuke-
mia zinc finger (MOZ), monocytic leukemia zinc
finger protein-related factor (MORF), Tat inter-
acting protein 60 (Tip60), and histone acetyl-
transferase binding to ORC (HBO1) (44-51);
hTF;;C90 (52,53); and TAF;;250 (54). For the
HAT proteins MOF (45), HAT-A4 (55), Esal
(45), NuA3/NuA4 (56), and Elp3 (57), a human
homolog has not been identified to date.

So far, only one report for a HAT knock-out is
available, where p300 nullizygous mice were
found to die early after gestation, exhibiting de-
fects in neurulation, cell proliferation, and heart
development and where heterozygous mice also
revealed considerable embryonic lethality. In the
same study, cells derived from p300-deficient em-
bryos displayed specific transcriptional defects
and proliferated poorly. Mice that were double
heterozygous for p300 and CBP were consistently
associated with embryonic death (58). Taken to-
gether, HATs can be subdivided into two broad
categories, type A and type B, by virtue of their
subcellular localization. While type A HATs,
which are located in the nucleus, essentially are
believed to acetylate chromosomal histones,
thereby playing important roles in the regula-
tion of gene expression, type B HATs are found
in the cytoplasm, where they acetylate cyto-
plasmic histones prior to chromatin assembly
(for review see 20,21,27,59,60) (Table 1).

Histone Deacetylases

First links between the modification of histone
acetylation in conjunction with transcriptional
activity were observed in the early 1960s (9).
In the 1970s, an inhibition of histone deacety-
lase activity was shown to result in the accu-
mulation of acetylated histones in vivo (61).
Finally, the biochemical fractionation of yeast
extracts led to the discovery of two distinct yeast
histone deacetylating activities, HDA, the cat-
alytic subunit of a 350-kDa histone deacetylase

complex, which contains the histone deacety-
lase 1 (HDA1) protein and HDB, the catalytic
subunit of a 600-kDa histone deacetylase com-
plex, which contains reduced potassium depen-
dency 3 (RPD3). HDA1 and RPD3 share a sig-
nificant degree of sequence homology at the
protein level. Both proteins act mainly as
negative regulators of transcription. They may
however, counteract repression at telomeric
loci, where the general hyperacetylation of
histones is associated with gene activation.
Whether this observation, that HDAC en-
zymes repress genes in some parts of the
genome while they activate transcription in
other parts, reflects indirect mechanisms (e.g.,
reduction of the expression of genes, which en-
code other repressor proteins) or direct, gene-
specific effects, remains still to be elucidated
(28,62,63). Functionally, HDA1 and RPD3 have
nonoverlapping effects on the modulation of
lifespan: while the deletion of RPD3 was ob-
served to extend life in yeast, this was not the
case for HDAI, unless it was combined with the
deletion of additional genes (e.g., SIR3). The si-
multaneous deletion of both HDAI and RPD3
has been shown to decrease lifespan and be-
cause the expression of both enzymes declines
with age, this could provide a possible expla-
nation for the increase in mortality during
senescence (64). While HDA activity in yeast
is strongly inhibited by Zn**, spermine, and
spermidine (65), RPD3 mutants are highly sen-
sitive to cycloheximide (63). Null mutants of
both HDAI and RPD3 are viable and result in
a general increase of histone acetylation and
gene expression, except for genes located in
telomeric regions, where histone acetylation
has been associated with silencing (28).

Using trapoxin, a potent histone deacety-
lase inhibitor, as a bait in an affinity matrix,
HDACI, the first human RPD3 ortholog, was
purified (66). HDAC2, a closely related protein,
was found when screening studies for corepres-
sors that interact with YY1, a transcription re-
pressor/activator, were performed (67). More-
over, HOS1, HOS2, and HOS3, three yeast
histone deacetylases, which are homologous to
both HDA1 and RPD3, were identified (28). In
most cases, RPD3 is physically associated with
SIN3 (also referred to as RPD1) and exerts its
transcriptional repression function within a
2-MDa corepressor complex, which is distinct
from the 600-kDa HDB complex described
above (63,68-71). This corepressor complex is
recruited to promoters by sequence-specific
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Table 1. Human histone acetyltransferases
HAT type
Histone Preference (A: nuclear, B:
(K: lysine specificity) cytoplasmic)
Alternate Cytogenetic
Family Members Symbols Position H2A H2B H3 H4 A B  References
HAT HATI — 2q31.2-q33.1  (+4) =+ (+) +  (29-31,55)
HAT2 — n.a. Ks Ks 12
GCN5 GCN5L1 — 12ql13-ql4 +++ + + (19,32-35)
GCN5L2 — 17921 Kis Ksi6
P/CAF P/CAF — 3p24 ++ ++ + (36-38,102)
Kyg Ks
p300/CBP p300 — 22q13.2 ++ ++ ++ ++ + (36-38)
CBP — 16p13.3 Ks Ks, Kiz  Ksgs
15,20 18,23 12,16
p160 NCOAI SRC-1 2p23
NCOA2 GRIP-1 8ql13
TIF2
NCOA3 AIBI 20ql12 _
RAC3 (+) (+) + + + (40-43,104)
ACTR
P/CIP
TRAM-1
MYST Moz — 8pll
MORF — 10g22.2 ++ ++ ++ + (44-51)
HBOI — Xq21 Kig
Tip60 — 11
TF;D TAF2A
complex TAF;250 CCG1 Xql3 +++ + + (54)
BA2R
hTE;;C90  hTF;;C90 — NA ++ + (52,53)

repressor proteins, including the mammalian
heterodimeric repressors Mad/Max and Mxi/
Mazx, which are repressors in large part because
of their ability to recruit the RPD3/SIN3
complex to DNA-bound regulators of tran-
scription (66,72-79), while other repressors
(e.g., unliganded nuclear receptors) recruit the
RPD3/SIN3 complex via SMRT (silencing me-
diator of retinoic acid and thyroid hormone re-
ceptors) or nuclear corepressor (N-COR)
(78-82) and regulators like UME6 recognize
URS1 and bind SIN3, which in turn interacts
with RPD3 (75,83). RPD3, which contains the
catalytic deacetylase subunit of the SIN3/RPD3
complex, is clearly required for repression by
SIN3 (83). However, although it is likely that
the SIN3/RPD3 complex performs multiple
functions, some of which may play a more
prominent role in the repression of transcrip-
tion, it remains to be elucidated whether his-
tone deacetylation per se is the primary mech-
anism of transcriptional repression (Table 2).

So far, seven human histone deacetylase pro-
teins, all of which share a highly conserved cat-
alytic domain, have been identified, of which
HDACI1, HDAC2, and HDAC3 are orthologs of
yeast RPD3 (66,67,84-86), while HDAC4,
HDACS5, HDAC6, and HDAC7 are yeast HDA1
orthologs (87,88). All human RPD3 orthologs
that have been reported so far repress transcrip-
tion when targeted to DNA via a DNA-binding
domain. They all bind transcription factor YY1,
which can act both as an activator and a repres-
sor of transcription (89). Accordingly, the inhibi-
tion of HDACs by trichostatin or trapoxin is as-
sociated with the activation or repression of
specific gene products (90). While mammalian
HDACI1 and HDAC2 have been shown to inter-
act with mSIN3 and the N-COR or SMRT core-
pressor complexes, which may associate addi-
tional proteins (e.g., SAP18, SAP30, RbAp48, or
RbAp46), HDAC3 does not appear to be part of
such multiprotein complexes (74,75,80-82,91).
Unlike the other deacetylases, HDAC4, which
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Table 2. Human histone deacetylases

Alternate Cytogenetic

Histone Preference
(K: lysine specificity)

HD type

Family ¥ Members Symbols Position H2A H2B H3 H4 HDA HDB  References

RPD3 HDACI — 1p34.1 (28,63,66,

orthologs 70,74,75,

(class I HDAC2 — 6q21 + + + + 80-83,85,

HDAGCs) Ks1» Koa 88,195,234,
HDAC3 — 5q31.1 16(-) ) 242,247)

HDAI1 HDAC4 HDAC-A 2q37.2

orthologs

(class IT HDAC5 NY-CO-9 17

HDACSs) + + + + (28,87,88,
HDAC6 — X 92,248)
HDAC7 MITR 7pl5-p21

belongs to the HDA1 family of HDACs, has been
reported to shuttle between the nucleus and the
cytoplasm in a process involving active nuclear
export (87,92). Unfortunately, human orthologs
of the yeast histone deacetylases HOS1 (28),
HOS2 (28,93) and HOS3 (28,94) have not been
reported so far.

Histone Acetylation, Solid Tumors,
and Leukemias: When HATs Are
the Key Players

More recently, an increasing number of dis-
ease processes have been observed to involve
abnormalities of the tightly regulated inter-
play of acetylating and deacetylating cellular
events, which are maintained by the enzymatic
activities of HATs and HDACs (95-100). A de-
crease in the amount of functionally available
HDACs (e.g., if HDAC loci are part of chromo-
somal deletions) or an increase of functionally
active HAT enzymatic activities (e.g., if chro-
mosomal segments, which encode HAT pro-
teins, are amplified) may shift the equilibrium
of histone acetylation toward acetylation,
which in turn has an effect on conformation
and activity of associated transcription factors
(e.g., GATA-1, TF,EB, TF,F, EKLF, and p53)
(23) and subsequently on gene expression, in-
teraction targets, and activities of downstream
signaling pathways (28,101-104). If, by contrast,

HATSs are fused to a transcription factor in the
context of a chromosomal translocation (46-48,
105-110), which creates a novel chimeric pro-
tein, hyperacetylation may be confined to the tar-
get promoters of that specific transcription factor
and, because transcription factors have many
domains of protein—protein interaction, the tran-
scription factor/HAT-fusion may allow acetyla-
tion of associated regulators and result in the
transcriptional activation of a restricted number
of genes. As a consequence, chromosomal re-
gions that were silenced under normal condi-
tions may now be derepressed and change the
entire pattern of gene expression within affected
cells: genes that were previously silenced may
now be activated or even overexpressed,
whereas other genes, which were previously ex-
pressed, may now secondarily be repressed
(5,28,111). HAT enzymes have been found am-
plified, translocated, overexpressed, deleted, or
point mutated in several types of cancers:

B An overexpression of HAT enzymatic activi-
ties has, for example, been described for the
steroid receptor coactivator-1 (SRC1) ho-
molog AIB1, which is involved in the patho-
genesis of both breast and ovarian cancers.
The associated HAT defect that has been
described for this particular type of cancer is
amore than 20-fold amplification of the chro-
mosomal region, which contains the AIB1
gene, and has been determined by fluores-
cence in situ hybridization (FISH) (104,112).
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B Changes in the availability of functionally
available HATs may also directly affect-
functions and activities of nonhistone pro-
teins, in view of the fact that some histone
acetyltransferases (p300, P/CAF, and TAF-
250) have been described to directly acety-
late general transcription factors (TFyF and
TFLEB) (113), sequence-specific transcrip-
tion factors (e.g., GATA-1 or EKLF) (114,
115), tumor suppressors (e.g., p53 or NF«B)
(116-118), architectural chromatin proteins
(e.g., HMGI(Y)) (119), and DNA repair
complexes, where it seems to increase
the DNA-binding capacity of the protein
(115,116).

B Both p300 and CBP possess HAT activity,
which is partly intrinsic and partly the result
of association with other proteins (e.g.,
p/CAF) (36-38). The CBP/p300 HAT-protein
complex integrates many signaling path-
ways (e.g., the TGF-B signaling pathway)
(120-122) and is able to interact with a series
of transcription factors (e.g., CREB, c-Jun,
JunB, c-Fos, Myb, MyoD, YY1, nuclear re-
ceptors and basal components of the tran-
scriptional apparatus, etc.) (123) and to par-
ticipate in the direct or indirect stimulation
of transcription through scaffolding different
classes of transcriptional regulators onto spe-
cific chromatin domains (124,125). p300 and
CBP have been envisioned as negative regu-
lators of cell growth; mutations or transloca-
tions of the p300 or of the CBP genes have
been found to be associated with several
solid tumors (e.g., point mutations of p300,
which may be found in colorectal and gastric
carcinomas, are usually located within the
cysteine histidine-rich regions of the protein,
known to play important roles in the biolog-
ical activities of p300 (121,126,127); loss of
heterozygosity for p300 in 80% of glioblas-
tomas (128) and acute leukemias (e.g., in the
M4/M5 subtype of acute myeloid leukemia
[AML] where CBP is found translocated and
fused to the putative acetyltransferase MOZ
[t(8;16)(pl1;p13)], which is a human ho-
molog of the yeast SAS genes [SAS: something
about silencing]) (48,109,129). Remarkably,
p300 mutations are located within the cys-
teine histidine-rich regions, which have
been observed to play an important role in
the biological activities of p300 (130). In ad-
dition, it has been reported that the onco-
genic viral proteins E1A and SV40 are able
to antagonize CBP-dependent transcription,

thereby promoting cellular proliferation
(38,131-133).

Leukemia-associated chromosome 8 inver-
sions of the genotype inv(8)(p11;ql3) charac-
teristically fuse MOZ to TIF2/NCOA2/GRIP1 (tran-
scriptional mediator/intermediary factor 2)
(134,135), a NR (nuclear hormone receptor)
coactivator that itself binds CBP/p300 (136,137).
The phenotype of the resulting MOZ-TIF2 fu-
sion is therefore highly similar to the MOZ-CBP
fusion.

In other leukemias, particularly therapy-
related AML, myelodysplastic syndrome, and
chronic myelomonocytic leukemia, CBP may be
fused to MLL (mixed lineage leukemia), a gene
that has been associated with the myelodysplas-
tic syndrome [t(11;16)(q23;p13)](48,105-108).
In both translocations (MLL-CBP and MOZ-CBP)
the HAT domain of CBP remains intact within
the fusion protein and because both MOZ and
MLL have been implicated in the modification
of chromatin structure, it is likely that the mole-
cular mechanism through which the fusion pro-
teins perturb growth is by dysregulating gene
expression patterns (130).

In a separate subset of AMLs, which has
been reported to be associated with therapy-
induced leukemia, the p300 gene was found
rearranged and fused in frame with the MLL
gene [t(11;22)(q23;q13)] (106,138). This sug-
gests that alterations of CBP function may occur
in the later stages of leukemogenesis, possibly as
a way to eliminate cell-cycle checkpoints and
apoptotic responses (130). Notably, the MLL fu-
sion proteins described herein lack the carboxy
terminal SET (suppressor of variegation) do-
main, which is a hall-mark of many chromatin-
associated proteins (139,140). The MLL SET
domain interacts with the human SWI/SNF
(switch defective/sucrose nonfermenting) chro-
matin-remodeling complex, a powerful tran-
scriptional activator that belongs to a family of
DNA-stimulated ATPases that can either dis-
rupt the structure of nucleosome core particles
or influence the mobility and spacing of nucle-
osome arrays (141,142). Therefore, a fusion of
MLL and CBP results in the dysregulation of
transcription by failing to recruit SWI/SNF.
Conversely, the leukemia-associated MLL-AF9
and MLL-ENL translocations fuse MLL to genes,
which encode transcriptional activators ex-
pressing carboxy terminal domains, which are
highly homologous to SET and may function as
distinct targets for the SWI/SNF complex
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(143-146). Somatic mutations within the SWI/
SNF complex have been identified in several ag-
gressive pediatric malignant rhabdoid tumors
(147).

Humans lacking one functional allele of
the CBP gene, having point mutations or mi-
crodeletions within the 16p13.3 chromosomal
region that contains CBP, develop a condition,
which has been described as “Rubinstein-
Taybi syndrome” (autosomal dominant).
Individuals exhibiting this condition have a par-
ticular propensity for malignancy, skeletal ab-
normalities, and growth retardation (128,148).
Concordantly, CBP-heterozygous mice reveal
skeletal abnormalities corresponding to the
changes that are seen in Rubinstein-Taybi syn-
drome (149). Interestingly, in spite of appar-
ently overlapping functions between CBP and
p300, patients with Rubinstein-Taybi syn-
drome have an intact p300 allele, which is po-
tentially unable to sufficiently substitute for
CBP (130,150).

Unfortunately, it is not presently clear ex-
actly how p300 and CBP are involved in the
development of cancer. What is known, how-
ever, is that p300 and CBP, which have well-
documented activity as transcriptional activa-
tors, are important key players in cell-cycle
control, within apoptotic pathways, in the pro-
motion of differentiation, and in p53 signaling
and activation (116,124,151,152). In a simpli-
fied scenario the anti-oncogenic properties of
p300 and CBP seem to go hand in hand with
the anti-oncogenic activities that have been
proposed for p53; since p300 forms a complex
with p53 that exerts its anticancerogenic activ-
ity by negatively regulating cell growth. Several
promoter/enhancer elements, such as the AP1
and c-Fos elements, function in a p300-depen-
dent manner (153), which has been correlated
with a promotion of G1-S transition, resulting
thereby in cellular proliferation and potentially
transformation (154). Although the formation
of p53-p300 may in part be responsible for the
recruitment of p300 onto some promoters, it
may inhibit the transactivating effects of p300
on others (e.g., on promoters containing the
DNA binding sites for the transcription factor
AP1, where increased levels of p300 are able to
overcome p53-mediated inhibition of AP1).
Most interestingly, p53 binds to p300 in a re-
gion that is required for its intrinsic HAT activ-
ity (37). However, this region is distinct form
the domains that bind to c-Jun (155), P/CAF
(38), and TBP (156), all of which are important

modulators of transcription. It has therefore
been suggested that p53 might function through
direct protein—protein interactions via p300 and
possibly also through other p300-associated fac-
tors (124).

It has been observed that factors like the
nuclear hormone receptors (e.g., RAR/RXR)
mediate transcriptional repression by recruit-
ing HDAC complexes in their unliganded
form (80-82), while they exhibit ligand-in-
ducible transcriptional activator functions
through the recruitment of HAT-coactivator
complexes (p300/CAF) when hormone is
bound (Fig. 3) (4,5,40,150,157). Similarly,
E2F and Rb, for example, form a repressor
complex, which recruits HDAC1 and HDAC2
(158,159) and subsequently represses the cy-
clin E promoter. Frequently, phosphorylation
is a key event that induces a conformational
change within a transcription factor or other
regulatory elements (e.g., NF«B, the IFNS en-
hancer complex or Rb), which then readily
recruits a HAT-coactivator complex and stimu-
lates transcription (160-162).

Histone Acetylation, Solid Tumors,
and Leukemias: When HDACs Are
the Key Players

Leukemias are generally associated with char-
acteristic chromosomal translocations, which
may result either in the generation of a chimeric
protein with novel functional properties or in
the aberrant expression of a regulatory element.
Usually, chromosomal translocations affect only
one allele of a gene. Therefore, to cause a pheno-
typic effect, the activity of the newly generated
fusion protein needs to be dominant over that of
the wild-type protein. Frequently, the translo-
cations found in leukemias target regulatory
transcription factors that control cellular prolif-
eration, survival, and differentiation and may
obviate the need for multistep mutation path-
ways because they are observed for proto-
oncogenes and tumor suppressor genes in solid
tumors (163,164). In accordance with the dis-
ease-linked HAT defects that have been de-
scribed above, HDAC defects may very similarly
be associated with a tumorigenic phenotype of
affected cells. When HDACs are excessively
available or if the amount of functionally avail-
able HATs is decreased, the balance of histone
acetylation will be shifted toward deacetyla-
tion, resulting subsequently in a dysregulation
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of gene expression. Several transcriptional re-
pressors (e.g., Mad and members of the nuclear
receptor superfamily), trans-cription factors,
and cellular regulators have been described to
associate with HDAC activities (5).

B The analysis of the transforming chimeric
proteins PML-RARa [t(15;17)(q22;921)]
(163,165-167) and PLZF-RARa [t(11;17)
(923;921)] (167-170), which are found in dif-
ferent acute promyelocytic leukemias (APL),
has shown a clear connection between the
action of histone deacetylases and the devel-
opment of cancer. In these instances the
promyelocytic leukemia gene (PML) [t(15;17)
(gq22;921)] or the promyelocytic leukemia
zinc finger gene (PLZF) [t(11;17)(q23;q21)]
are fused to the retinoic acid receptor-alpha
(RAR«x) and are no longer responsive to phys-
iological levels of retinoic acid (167,171,172).
These chromosomal changes result in a
block of cellular differentiation (i.e., in the
clonal expansion of cells arrested in the
promyelocyte stage of development) yield-
ing the clinical picture of an acute leukemia
(78,171,172). While patients featuring the
PML-RARa [t(15;17)(g22;921)] translocation,
readily differentiate upon treatment with all-
trans-retinoic acid (ATRA) (78,171), patients
having the PLZF-RARa [t(11;17)(q23;q21)]
type of translocation do not respond ade-
quately to treatment with ATRA (78,171).
On the molecular level, RAR«a represses
target genes by tethering corepressors such
as N-COR and SMRT to promoter DNA
(78,173). These corepressors are part of one
or more large complexes that also contain
mSIN3A and HDAC proteins (5). In cells
that express PML-RARaq, retinoic acids lead
to the dissociation of the SMRT-mSIN3A-
HDAC1 and N-COR-mSIN3A-HDACI,2
complexes from RAR«a (97,98,172). By con-
trast, cells that express PLZF-RAR« have
two N-COR binding sites, one in the RAR«
region (which is responsive to retinoic
acids) and one in the PLZF amino terminal
region (which is nonresponsive to retinoic
acids) of the fusion protein (97). Because
PLZF binds N-COR and SMRT indepen-
dently from RARe, the HDAC corepressor
complex is readily released from RAR«
upon treatment with retinoic acids, but not
from PLZF (97). As a consequence, tran-
scriptional repression is preserved. How-
ever, the sensitivity of PLZF to ATRA may be

restored by the treatment with an HDAC in-
hibitor (e.g., trichostatin A, an antibiotic). The
PLZF-bound HDAC corepressor complex is
then readily released, allowing these leukemic
cells to differentiate (97,98,172,174, 175).

An additional example of a translocation
found in AML and that has been shown to
involve HDACs is the translocation t(8;21)
(922;922), which results in a fusion of AML-
I and ETO (176-178) and accounts for ap-
proximately 10-12% of AMLs (164). Simi-
larly, AML-1 may be fused to MTG16 (myeloid
tumor gene 16) in the context of a transloca-
tion t(16;21)(q24;922) (179-181), or to EVII, a
transcriptional repressor, in association with
a translocation t(3;21)(q26;922) (177,182,
183). In all these translocations of AML-1,
the Runt homology domain, which is the re-
gion of AML-1 that interacts with both DNA
and the core binding factor CBES, is pre-
served (178,184,185). Other translocations
that are frequently seen are an inversion of
chromosome 16 [inv(16)] in AML, where
the CBFB gene, which forms a transcription
factor complex with AML-1, is fused to the
smooth muscle myosin heavy chain gene
MYHI1 (164) and the translocation t(12;21)
(p12;922), which is found in 15-35% of pe-
diatric B-lineage ALLs and where a TEL-
AMLI gene fusion yields a novel chimeric
protein (186,187). The ability of CBFS to
associate with AML-1, hereby increasing
the affinity of AML-1 for its DNA-binding
site, is retained even when chromosome 16
is inverted (184,185). Because all the translo-
cations mentioned in this paragraph [t(8;21)
(422:922), t(3;21) (q26;q22), £(12;21)(p12;
q22) and inv(16)] interfere with the tran-
scriptional regulation of AML-1 responsive
genes (177,178,188-191), evidence emerges
that transcriptional repression of AML-1 tar-
get genes is critical in the pathogenesis of
AMLs. In the case of AML-1/ETO, overex-
pression of AML-1 and anti AML-1/ETO anti-
sense oligonucleotides can induce differen-
tiation in cells containing this fusion
protein (185,191). In analogy to the obser-
vations that have been made for PML-
RARa and PLZF-RAR«, ETO has been
found to interact with N-COR and mSIN3A,
thereby recruiting histone deacetylases to
repress transcription. This effect can be in-
hibited by histone deacetylase inhibitors
(95,192). Additionally, it has been found that
critical domains that mediate the interaction
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of ETO with N-COR both when AML-I is
fused to ETO [t(8;21)(q22;922)] and when it is
fused to MTGIl6 [t(16;21)(q24;q22)] are
highly conserved, suggesting that t(16; 21)
(q24;922) equally represses transcription
through the recruitment of HDACs. Besides
CBFB, AML-1 associates with other tran-
scription factors and regulators and acti-
vates transcription if bound to HATs (e.g.,
CBP and p300) (191) or represses transcrip-
tion when it interacts with mSIN3 (192)
(Fig. 3).

B Other than the indirect recruitment of
HDAC with the assistance of protein com-
plexes, which include mSIN3A, N-COR,
and SMRT or Rb, several transcription factors
(e.g., YY1) and regulators are able to recruit
HDAC enzymes directly (reviewed in 21),
thereby interfering with the generation of a
functional initiation complex. These HDAC-
associated effects on transcriptional regula-
tion may be abrogated by HDAC-inhibitors
(trapoxin, trichostatin A, etc.). The retino-
blastoma protein (RB), which is important
in the induction of cell-cycle arrest under
unfavorable growth conditions, mediates E2F-
bound promoter repression through its in-
teraction with HDACI1. This binding of
HDAC to RB has been highlighted by the
observations that tumor-specific mutations
found in RB disrupt its association with
HDAC (159,193,194) and that viral oncopro-
teins (e.g., HPV16 E7 or the SV40 T-antigen)
are able to displace HDAC from RB (193,194).
These findings suggest a fundamental role for
histone modification in the suppression of
cancer.

B So far, the chromosomal localizations of the
human RPD3 orthologs HDACI-3 (102,195)
and the HDAI orthologs HDAC4-7 have
been identified more or less precisely (87)
(Table 2) and, interestingly, HDACI-3 and
HDAC7 localize to chromosomal sites,
which are particularly fragile and frequently
altered through mutations, translocations,
and deletions, particularly in myeloprolifera-
tive disorders and solid tumors (101-103,
196). This may potentially result in a
shift of the acetylation equilibrium toward
acetylation.

It had long been epidemiologically postulated
that a diet high in fiber was associated with a
low incidence of colon cancer (197-200) until
the Nurses’ Health Study at Harvard, which

was conducted on 88,757 middle-aged women,
proved that the “protective effect” of dietary
fiber against colorectal cancer or adenoma was
not significant (198). Even though there is con-
siderable and to some extent inconclusive liter-
ature on dietary fiber in connection with colon
cancer, it appears that butyrate, a fiber fermen-
tation product, could in fact have a protective
effect against colon cancer (201-204). More re-
cently, several investigators demonstrated that
butyrate administration effectively reduced in-
cidence and size of colonic tumors (205,206),
their likelihood to metastasize (207), and that it
shifted their histological phenotype to one that
appeared less aggressive (206). Even though
the molecular mechanisms by which butyrate
mediates its protective effects are still very
unclear, butyrate has been shown to induce
both histone and nonhistone hyperacetyla-
tion through a noncompetitive and nonspe-
cific inhibition of HDACs via a serine-threo-
nine protein phosphatase of the PPl type
(208-210). In addition to its capability to in-
duce differentiation, butyrate has been found
to cause a G1 cell-cycle arrest (211,212), which
is mediated through induction of the G1 cell-
cycle inhibitor p21 gene (213), thereby requir-
ing an inhibition of HDACI1. The fact that p21
is deleted in the human colon carcinoma cell
line HCT1116 further supports that p21 is es-
sentially involved in butyrate-mediated cellu-
lar growth arrest (214). Because butyrate is
rapidly metabolized and it has not been possi-
ble to maintain adequate butyrate concentra-
tions in patients, butyrate homologs and alter-
native substrates [e.g., trichostatins and trapoxins
(215,216), depudecin (217), oxamflatin (218),
benzamide derivatives (219)], which appear
more promising than butyrate itself (e.g., phenyl-
butyrate and tributyrin) are currently under
study (220-224).

Conclusion and Future Directions

The equilibrium of reversible histone acetyla-
tion is maintained by the activity of two fami-
lies of enzymes, HATs and HDACs, which have
been found to participate in the regulation of
cellular proliferation and differentiation as co-
factors of several mammalian transcriptional
complexes. More recently, increasing evidence
suggests a close connection between imbal-
anced histone acetylation and carcinogenesis.
This goes hand in hand with the widely
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accepted concepts that reversible modification
of chromatin influences its transcriptional com-
petence and that promoters may be targeted
specifically by either activating or repressing
complexes. Histone acetylation modifiers have
been found to be engaged and mutated in sev-
eral types of cancer. Although genes encoding
HAT enzymes have been found to be preferen-
tially translocated, amplified, overexpressed,
or point mutated, HDACs have repeatedly been
identified to mediate the function of oncogenic
translocation products, thereby accounting for
at least 30% of AMLs, 25% of childhood B-
ALLs, and more than 99% of APLs (26). They
have also been found to associate with tumor
suppressor proteins, which themselves are fre-
quently mutated (e.g., RB). Many questions
persist regarding the molecular mechanisms
that involve histone-modifying enzymes. The
further characterization of HATs and HDACs
will therefore not only continue to unravel the
role that these enzymes play in transcription, it
will also help to identify the molecular mecha-
nisms that promote leukemogenesis. Addition-
ally, it looks like acetylation is not just limited
to histones. It could therefore, in analogy to
phosphorylation, be a process that influences
the function of many proteins and cellular
processes. The identification of proteins that
interact with histone-modifying enzymes and
target genes, which are misregulated as a conse-
quence of mistargeted, or defective histone-
modifying enzymes may help to hasten the
development of less toxic, more refined and
specific forms of pharmacological interventions
for some forms of cancer and leukemias. First ex-
periences with histone deacetylase inhibitors
as “differentiation therapy” reagents have
shown promising results for several types of
leukemias (96,172,221-224) and solid tumors
(220,225-227) with few, if any, significant side
effects, indicating that such treatment could
have great therapeutic advantages when com-
pared to conventional chemotherapeutic agents.
Even though almost explosive advances in the
understanding of the molecular details of tran-
scriptional regulation and chromatin modifica-
tion through acetylation have been reported in
the last few years, many questions remain. The
identification of novel HAT/HDAC interaction
targets, the analysis of HAT/HDAC levels in
primary cells, and the response and tolerability
of histone deacetylase inhibitors in patients
may help to answer and generate new ques-
tions, such as how far a therapeutic modulation

of intracellular acetylation levels could com-
plement or replace existing chemotherapeutic
strategies in the treatment of cancer.
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