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Abstract

Insulin-like growth factor 2 (IGF-2) is important for nor-
mal development and growth of an organism. In humans
it is encoded by 11p15.5 paternally expressed imprinted
gene. It binds at least two different types of receptors: IGF
type 1 (IGF-1R) and IGF-2/mannose 6-phospate receptors
(IGF-2R/M6P). Ligand binding to IGF-1R provokes mito-
genic and anti-apoptotic effects. IGF-2R/M6P has tumor

suppressor function; it mediates IGF-2 degradation. When
the IGF-2 gene/protein is overexpressed, mostly as a con-
sequence of loss of heterozygosity resulting in paternal al-
lele duplication (LOH) or by loss of imprinting (LOI), it is
involved in the development and progression of many tu-
mors and overgrowth syndromes by autocrine or paracrine
mechanisms.

Introduction

The insulin-like growth factors (IGFs) are mitogens
that play a role in regulating cell proliferation, dif-
ferentiation, and apoptosis. However, we, as well as
other authors before us, also recognize the role of
IGFs in neoplastic growth.

More than 20 years ago we described the in-
volvement of IGFs in cancer (1-3). Increased glucose
level in the blood of diabetic but normoinsulinemic
mice was accompanied by suppressed growth of
mammary carcinoma. The same tumors maintained
in hypoinsulinemic mice grew faster after each
subsequent transplantation into diabetic mice. The
observed proliferation enhancement of mammary
carcinoma was caused by de novo synthesis of in-
sulin-like protein, by the tumor cells themselves (2).
Affinity purified, tumor secreted insulin-like sub-
stance stimulated glucose uptake by rat epididymal
adipose cells and competed with radiolabeled in-
sulin for binding to these cells. Later we showed
that IGFs appear in many experimental and human
tumors (4-15) (Table 1). Increase in tumor size was
paralleled by an elevation of IGFs in the serum of
both diabetic and nondiabetic animals; this increase
correlated with a decreased concentration of circulat-
ing glucose and an elevated concentration of growth
hormone (16,17). It appeared that IGF-1, as well as
IGF-2 (13), could mediate autocrine stimulation of
some murine (18) and human tumors (12).

Our early thinking was influenced by classical
work on growth factor (particularly insulin)/tumor
interaction, although we did not realize at that
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time that there could be some distinct insulinoid
entities important for tumor development and pro-
gression. Later, by use of a mathematical model
based on experimental data we showed that some
tumors induce their own growth by positive
feedback (16). Today we know that IGF-2 is a
major member of the IGF family in development
of tumor hypoglycemia and tumor growth self-
incitement.

The effects of IGFs are mediated through the IGF
receptors, which are also involved in cell transfor-
mation induced by tumor virus proteins and onco-
gene products. Six binding proteins (IGF BPs) in-
hibit or enhance the action of IGFs; their effects on
1GFs are regulated in part by IGF BP proteases. IGFs
exert strong mitogenic and anti-apoptotic activity on
various cancer cells; they also act synergistically
with other growth factors and steroids, and antago-
nize the effect of antiproliferative molecules on can-
cer growth. Evidence suggests that certain lifestyles,
such as one involving a high-energy diet, may in-
crease IGF-1 levels, a finding that is supported by
animal experiments indicating that IGFs may abol-
ish the inhibitory effect of energy restriction on can-
cer growth (19).

Insulin-Like Growth Factor 2

IGF-2 is a regulatory peptide that appears to be in-
volved in the progression of many tumors. The gene
for human IGF-2 is found on the short arm of chro-
mosome 11 (11pl15.5) and spans approximately
30 kbp of chromosomal DNA (20-22). The gene con-
sists of nine exons and the mature peptide (67
amino acids) is encoded by exons 7, 8, and 9. The
IGF-2 gene is transcribed from four different pro-
moters (P1-P4). P2-P4 are contained in CpG islands,
and transcription from these promoters is subject to
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Table 1. Historical overview of ILA/IGFs expression in human neoplasms

Type of Cancer ILA*/IGF Types Description References

Hodgkin’s lymphoma - Overexpression of insulin-like activity (ILA) 3,7,8,9

non-Hodgkin lymphomas ILA - Secretion by tumor cells proven in some cases

Renal carcinoma insulin and glucagon - Ectopic secretion by tumor cells 4

Cervical and endometrial IGF-1, IGF-1R - ILA*; recently obtained IGF1 and IGF1R 10

carcinomas overexpression Unpublished

Bronchial and mammary ILA - ILA*; autocrine secretion 5

carcinomas 6

Lung cancer - IGF-2, IGF-1R, and IFG-2R overexpression 11

IGF-2, IGF-1R, IGF-2R

Hemangiosarcoma IGF-1 - Autocrine growth stimulation 12

Hemangiopericytomas IGF-1 - Overexpression 13
IGF-2 14
IGF-1R 15

Gastric cancer 1IGF-2 - Overexpression; autocrine secretion Unpublished
IGF-1R

*Insulin-like Activity Detected by Radioimmunoassay with insulin antibodies IGF-1, IGF-2, IGF-1R, and IGF-2R/M6P determined by

RNAse protection assay, RT-PCR, or immunohistochemistry.

imprinting. Monoallelic expression from these pro-
moters occurs mostly in fetal and young tissues. The
P1 promoter, utilized primarily in adult liver tissue,
is regulated differentially; it escapes imprinting and
is expressed biallelically (23). Loss of imprinting
(LOI) of promoters P3 and P4 have been implicated
in Wilms’ tumor (24) and rhabdomyosarcoma
development (25). However, the usage of P1 pro-
moter was also observed in tumors with IGF-2
gene LOI (26), suggesting that it could also be
involved in the biallelic (due to the LOI) expression
of IGF-2.

The IGF-2 gene can be expressed to produce
proteins of various molecular weights. The most ac-
tive form, with regard to binding of IGF receptors, is
7.5 kDa (27). Larger forms lack posttranslational
cleavage and have been implicated in hypoglycemia,
which can accompany a variety of tumors. The se-
cretion of IGF-2 by tumors and tumor-derived cell
lines suggests that it may act as an autocrine regula-
tor of cell proliferation.

IGF-2 is mitogenic for a number of cell types
and can inhibit apoptosis. The frequent overex-
pression of this gene in human and animal tumors
indicates that the IGF-2 may play an important role
in tumor development. Transgenic mice that ex-
press the IGF-2 gene under the control of the H19
enhancer often develop multiple mammary tumors
that have the ability to metastasize. Increased inci-
dence of other solid tumors has also been noted in
older mice. These findings indicate that IGF-2
expression increases the probability of malignant
transformation, and that the mammary gland is
at particularly high risk of tumor development

in response to chronic increase in IGF-2 gene
dosage (28).

The Role of IGF Type 1 Receptor
in Tumorigenesis

IGF-2 binds at least two different types of receptors:
IGF type 1 (IGF-1R) and IGF-2/mannose 6-phosphate
(IGF-2/M6P) receptors (IGF-2R/M6P). IGF-1R has
been identified as a potential control point for trans-
formed cells (29) and is a well-defined target of
IGF-2-modulated cell growth (30). The growth and
tumorigenicity of transformed cells can be inhibited
by the perturbation of IGF-1R function, and IGF-1R
has been implicated in the protection of tumor cells
from apoptosis. Autocrine or paracrine loops involv-
ing the IGF receptors and their ligand(s) may be cru-
cial determinants for the in vivo growth and tumori-
genicity of transformed epithelial cells.

IGF-1R is structurally similar to the insulin re-
ceptor. It is a heterotetrameric peptide consisting of
two a-subunits (Mr 135,000) and two transmem-
brane B-subunits (Mr 90,000). Each B-subunit con-
tains a tyrosine kinase domain, which activates the
receptor by autophosphorylation. Despite functional
and structural similarities, the receptors for IGF-1
and insulin are thought to play different biological
roles during mammalian development and mature
life. Whereas insulin plays a key role in regulation
of a variety of metabolic processes, the IGFs appear
to be more potent in promoting growth. Further-
more, insulin and IGF-1 receptors are the products
of distinct genes, located on separate chromosomes
that are controlled by different types of regulatory
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signals. The IGF-1 receptor gene maps to 15q 25-26,
whereas the insulin receptor gene is localized on
chromosome 19p band 13.3-p13.2 (31). Chromoso-
mal assignment of IGF-1R to 15925-26 coincides
with the map position of the cellular proto-
oncogene c-fes (32). Both of these receptors are tyro-
sine-specific protein kinases and their distinct roles
in differentiation and cellular metabolism suggests
that they utilize different pathways of signal trans-
duction involving phosphorylation of different
classes of substrates. Binding of IGF-1 to the extra-
cellular portion of its cell surface receptor in some
way initiates a cytoplasmic signal cascade that in-
cludes autophosphorylation of tyrosine residues
within the intracellular portion of the insulin recep-
tor B-subunit. Signal transduction through the
plasma membrane may involve intermolecular sig-
nal transfer through the transmembrane domain or
ligand-induced intermolecular receptor association.
In the case of IGF-1 and insulin receptors, the het-
erotetrameric complex structure may represent a sta-
bilized receptor dimer, in which a conformation
change in one a—83 subunit extracellular domain trig-
gers the conversion of both B cytoplasmic domains
into an activated conformation (33).

The extensive homology of sequences down-
stream from the putative ATP-binding consensus se-
quence with members of the src family of tyrosine
kinase proto-oncogenes, as well as the hormone
receptors of this gene family, indicates that they
represent the domain encoding the tyrosine kinase
enzymatic activity. The nonapeptide Val-Leu-Ala-Pro-
Pro-Ser-Leu-Ser-Lys, which begins at residue 1073,
is present at the exact position in the IGF-1 receptor
where 70- and 100-residue heterologous insertion
sequences are found in c-fins/CSF1 receptor and
platelet-derived growth factor receptor structures
(34,35). The presence of such a highly heterologous
sequence within otherwise highly conserved tyro-
sine kinase domains of gene family members ap-
pears highly significant and indicates a possible
function of this subdomain in defining a specific re-
ceptor function.

The finding that the v-erbB and v-fins oncogenes
of acute transforming retroviruses were derived
from growth factor receptor proto-oncogenes by
carboxyl-terminal sequence truncation further em-
phasizes the functional importance of this domain
and raises the question as to whether the IGF-1 re-
ceptor gene represents a potential proto-oncogene.
The transforming gene of the avian sarcoma virus
UR-2 (v-ros) (36) shares sequence homology with ty-
rosine kinase family members and was found to be
most similar to the insulin receptor (37).

In addition to being stimulated by IGF-2, IGF-1
receptors are overexpressed in some tumors. Over-
expression of these receptors, independent of exoge-
nous peptides, transforms cells to a phenotype of
anchorage-independent growth (38). When acti-
vated by its ligands (IGF-1, IGF-2 or insulin at

supraphysiologic concentrations), the IGF-1R trans-
mits to its two major substrates, insulin receptor sub-
strate 1 and Shc (39,40), a signal that is subsequently
transduced via the common signal-transducing path-
way, through ras and raf, to the nucleus (41).

Recently, the importance of the IGF-1R in cell
growth has been confirmed in vivo by the finding
that mouse embryos with a targeted disruption by
homologous recombination of the IGF-1R gene and
the IGF-2 gene have a size at birth that is only 30%
the size of wild-type littermates (42).

An intriguing finding is, however, the effect of
the IGF-1R on transformation. Physiologic levels of
IGF-1R are an obligatory requirement for the estab-
lishment and maintenance in the intact animal (43).

IGF Type 2 Receptor/Mannose
6-Phosphate

The IGF-2R/M6P or type 2 of IGF receptor is struc-
turally and functionally different from the IGF-1R.
The receptor is a 250-kDa protein with a large extra-
cellular domain, which binds M6P, lysosomal en-
zymes, and IGF-2. This suggests that IGF-2R/M6P
may be involved in the clearance of IGF-2 from the
circulation, in the modulation of trafficking of lyso-
somal enzymes such as cathepsin D, as a protease
present in some cancer tissues and possibly in-
volved in matrix degradation or in signal transduc-
tion. The extracellular region of IGF-2R/M6P is
composed of 15 homologous repeat units with an
average length of 147 amino acids (44). Whereas re-
peats 1-3 and 7-9 each contain one M6P binding
determinant involved in the binding of MéP-
containing ligands (lysosomal enzymes, latent
transforming growth factor-8 [TGF-B], proliferin,
and LIF) (45,46) the binding site of IGF-2 has been
localized on repeat 11 (47). More recently, it has
been reported that retinoic acid and urokinase-type
plasminogen activator receptor bind to IGF-2R/M6P
at a site or sites different from those involved in
M6P or IGF-2 binding (48,49).

Disruption of IGF-2R/M6P function has been im-
plicated as a mechanism of increasing cell prolifera-
tion. Several missense IGF-2R/M6P mutations have
been identified in human cancers. To determine what
effects these mutations have on IGF-2R/M6P function
Byrd et al. (50) constructed mutant and wild-type
FLAG epitope-tagged IGF-2R/M6P constructs lacking
the transmembrane and cytoplasmic domains and
characterized these receptors for binding of IGF-2 and
a MeéP-bearing pseudoglycoprotein pentamannose
(PMB) phosphate-bovine serum albumin. The Ile-
1572->Thr mutation eliminated IGF-2 binding but
did not affect PMB. The Gly-1449->Val and Cys-
1262->Ser mutations each showed a 30-60% decrease
in the number of sites available for binding to both
ligands. In addition, the GIn-1445->His mutant un-
derwent a time-dependent loss of IGF-2 binding, but
not of PMB, that was not observed for the wild type.
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Although the binding sites for lysosomal en-
zymes and IGF-2 are distinct, reciprocal inhibition
of binding between IGF-2 and lysosomal enzymes
has been observed (27). IGF-2 has been shown to
inhibit the cellular uptake of lysosomal enzymes
and, in the case of B-galactosidase, inhibition of
binding to purified receptor by IGF-2 was demon-
strated (51). Although most of the IGF-2R/M6P is
found intracellularly, where it functions to direct
newly synthesized lysosomal enzymes to lysosomes,
some receptors cycle to and from the plasma mem-
brane where extracellular lysosomal enzymes and
IGF-2 bind to the receptor and are internalized.
DeLeon et al. (51) speculate that in a cell that is syn-
thesizing IGF-2, the IGF-2 could act intracellularly
to block the binding of lysosomal enzymes to the
IGF-2R/M6P and thereby increase secretion of lyso-
somal enzymes and decrease the flux of lysosomal
enzymes to lysosomes.

Mutant mice lacking IGF-2R/M6P usually die
perinatally but are completely rescued from lethality
in the absence of IGF-2. IGF-2R/M6P-deficient mice
have elevated levels of circulating IGF binding
protein (IGF BP-3) and show a strong IGF BP-6
immunoreactivity in all pancreatic islet cells and in
secretory granules of different size in acinar cells and
interlobular connective tissue of exocrine pancreas.
Fibroblasts derived from homozygous null pups are
unable to properly sort the lysosomal protease
cathepsin D, but are able to degrade endocytozed
IGF BP-3 intracellularly, however, with lower effi-
ciency (52).

At the cell surface, the IGF-2R/M6P is constitu-
tively endocytosed, where its main role is thought to
be the binding and internalization of the nonglyco-
sylated polypeptide hormone IGF-2, with the minor
role being the reuptake of secreted acid hydrolases
(53). Motyka et al. (54) presented evidence that IGF-
2R/MBS6P is a death receptor for granzyme B during
cytotoxic T-cell-induced apoptosis. The serine pro-
teinase granzyme B is crucial for the rapid induction
of target cell apoptosis by T cells. Granzyme B was
recently demonstrated to enter cells in a perforin-
independent manner, thus predicting the existence
of a cell surface receptor(s). Other nonacid hydrolase
proteins besides IGF-2 that bind the cell surface
IGF-2R/M6P include the precursor form of TGF-«,
leukemia inhibitory factor (55), and the herpes sim-
plex virus (56).

Numerous reports show that IGF-2R/M6P is a
tumor suppressor. Loss of heterozygosity has been
reported in a variety of human malignancies includ-
ing hepatocarcinoma, and adrenocortical tumors
(57,58), and aggressive early breast cancer (59,60).
Furthermore, the IGF-2R/M6P locus at 6q has been
reported to be a hot spot for mutation in tumors in-
cluding malignant melanoma (61), ovarian cancer
(62), non-Hodgkin lymphoma (63), and renal cell
carcinoma (64). This has usually been interpreted on
the basis of the IGF-2R/M6P regulating responses of

cells to IGF-2 signaling through the IGF-1R. How-
ever, Motyka’s data suggest that tumors carrying
mutated nonfunctional IGF-2R/M6P would also
have an inherent resistance to the immune system,
and this could play a critical role in the early escape
of tumors and/or metastatic variants from host de-
fenses. In addition, in Wilms’ tumor and rhab-
domyosarcomas, IGF-2 is overexpressed and is be-
lieved to interfere with signaling through IGF-1R
and the routing of lysosomal proteins (51). An in-
triguing possibility is the recent observation that
breast cancer lines and primary metastatic breast
cancer cells secrete IGF-2R/M6P (65). The secreted
material could act as a sink for granzyme B and thus
prevent it from acting on the cell surface receptor.
This would create a local immunosuppressive envi-
ronment in a fashion analogous to secreted tumor
necrosis factor receptor or Fas ligand (54). Down-
regulation of the IGF-2R/M6P promotes the growth
of transformed cells by sustaining IGF-2, which
binds to and activates IGF-1R and insulin receptor
to increase intracellular growth signals (66).

The soluble form of IGF-2R/M6P could be re-
leased by cells in culture and circulate in the serum.
It retains its ability to bind IGF-2 and blocks
IGF-2-stimulated DNA synthesis in isolated rat he-
patocytes. Scott and Weiss (67) showed that soluble
receptor, at physiologic concentrations, can block
proliferation of cells by IGF-2 and could therefore
play a role in blocking tumor growth mediated by
IGF-2.

IGF-Binding Proteins and Proteases

Several additional proteins regulate the function of
both IGF-1 and IGF-2. These include at least six
binding proteins (IGF BP1-6). The binding pro-
teins, which are expressed coordinately in high
tissue-specific and developmentally specific fash-
ion, regulate IGF function in several ways, includ-
ing transporting IGF-1 and IGF-2 in the circula-
tion, delivering the IGFs to their target cells and
modulating the interaction of IGFs with their re-
ceptors (68).

Decreased IGF-2 activity is accomplished by di-
rect binding of IGF to the binding protein complex.
Also, IGF feedback increases the synthesis of some
binding proteins, further changing their levels. In-
creased IGF-2 activity follows cleavage of IGF bind-
ing proteins by specific proteases (69), some of
which are dependent on IGFs for their enzymatic ac-
tivity. IGF BP have a diverse repertoire of activity
and play many roles in regulating the effects of
IGF-2 upon tumor cells.

IGF action can be modulated by IGF binding
proteases; they fall into three major categories.
Kallikrein-like serine proteases, which cleave IGF
BP-3, include PSA, gamma nerve growth factor (70),
and plasmin (71). Thrombin, another serine pro-
tease, cleaves IGF BP-5 at physiologically relevant
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concentrations (within one order of magnitude of
fibrinogen) (72). The second major category, cathep-
sins, are intracellular proteinases activated under
acid conditions and may therefore play a role in cer-
tain physiologic and pathologic processes such as
neoplastic infiltration (73). Matrix metallopro-
teinases comprise a family of peptide hydrolases
that function in tissue remodeling by degrading ex-
tracellular matrix components such as collagen and
proteoglycans (74). Proteolytic activity may play a
role in normal and abnormal tissue proliferation by
cleaving IGF BP into fragments with lower affinity
for IGFs; these fragments allow increased levels of
free IGFs to activate IGF-1R. The change in propor-
tion of IGFs to IGF BPs could affect IGF BP protease
activity, which in turn would modulate IGF/IGF
BP/IGF-1R interactions.

IGF-2-Induced Overgrowth and
Mechanisms of Overexpression

IGF-2 plays a fundamental role in human fetal
growth displaying both tissue-specific and develop-
mental regulation. The IGF-2 gene activity is regu-
lated by genomic imprinting. The paternally inher-
ited allele is expressed whereas the maternally
inherited allele is silent as a consequence of methy-
lation (75). As IGF-2 promotes mitogenesis and in-
hibits apoptosis, the growth disorders that involve
excessive growth, as well as malignant tumor cells
accumulation could be attributable to overexpres-
sion of IGF-2. Because genomic imprinting silences
one copy of the IGF-2 gene, several different molec-
ular errors can account for increased IGF-2 gene ac-
tivity. In general, overgrowth occurs as the conse-
quence of mutations that increase the availability of
IGF-2 in the tissues or that increase the number of
active IGF-2 genes. Molecular events that reactivate
the silent maternal allele (LOI) or duplication of the
functional paternal allele (loss of heterozygosity
[LOH]) can thus give rise to an overgrowth pheno-
type. In addition to these two events, increased ac-
tivity of the IGF-2 gene can be also accomplished by
excessive transcriptional activation, loss of tran-
scriptional suppression, or alteration in IGF BPs
(Table 2) (76).

LOI is the molecular abnormality observed first
in Wilms’ tumor, and later on in a variety of other
embryonal and adult tissue tumors (77-82). In
Wilms’ tumor it involves competition between IGF-
2/H19 imprinting cluster for the use of the en-
hancers. This includes activation of the normally
silent maternal IGF-2 allele, and silencing of the
normally active maternal allele of H19 gene, by
methylation of a differentially methylated region
(DMR) (83) (also called imprinting control center,
ICR) (84) upstream of the maternal copy of the H19
gene (80,82). As a consequence, there is abrogation
of binding of the CTCF transcription factor to
DMR (a core of five CpG islands), which acts as an

Table 2. Mechanisms of increased IGF-2
gene/protein activities

Normally IGF-2 is expressed from the paternal allele
with the Maternal allele being transcriptionally silent
(imprinting) (75).

Loss or imprinting (LOI)
Maternal allele becomes re-imprinted; transcription
occurs from two IGF-2 alleles (23-26,77-91).

Loss of heterozygosity (LOH)
LOH is associated with duplication of the active
paternal IGF-2 allele; transcription occurs from two
IGF-2 alleles leading to higher mRNA level (93-98).

Altered binding proteins
Cleavage of IGF BPs by binding protein-specific
proteases increase IGF-2 activity (69,100-102).

Loss of transcriptional suppressor protein
Suppressor proteins (WT-1, p53, and possibly CTCF),
which bind to sequences in the IGF-2 enhancer/
promoter regions, prevent transcription of IGF-2; when
absent or mutated IGF-2 gene transcription increases
(104-108).

Activation of transcription factors
Those that positively regulate IGF-2 (104-108).

Altered IGF-2 receptor/mannose-6-phosphate
Mutation in IGF-2 binding site required for the
degradation of the IGF-2 decreases IGF-2
bioavailability (57-64).

For details see reference 76.

insulator that prevents binding of enhancers to pro-
moter regions in the IGF-2 gene. Thus, enhancer re-
gions distal to H19 gene would have free access to
the IGF-2 gene promoter leading to IGF-2 activation
(85,86). However, because some Wilms’ tumors with
normal imprinting of IGF-2 gene also show in-
creased methylation of DMR regions, it seems that
methylation is necessary but not sufficient for LOI in
Wilms’ tumor (83). Although there is no doubt that
inactivation of H19, by methylation of 5’ enhancer
region, leads to relaxation of IGF-2 imprinting in
Wilms’ tumor, other methylation-sensitive elements
(CpG islands) located around and in promoter
(P2-P4) regions of IGF-2 are also included in
LOI development in Wilms’ tumor (24) and rhab-
domyosarcoma (25). It seems however, that Pl
promoter-specific expression might also be involved
in the biallelic expression of IGF-2, as has been
shown for human cervical and ovarian carcinomas
(26,87). Whether this is true for other human malig-
nancies is still an open question. The occurrence of
LOI, as well as LOH at 11p15 resulting in paternal
disomy, doubles the potential for IGF-2 gene tran-
scription, due to two active gene copies, leading to
higher mRNA level, as shown in different tumors
and overgrowth syndromes (88-99). Altered IGF BP
activity is another potential mechanism of increased
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IGF-2 activity (100-102). IGF-2 activity depends
on individual IGF BP in that binding of IGF-2 to
the binding proteins decreases its activity (103).
Alternatively, increased IGF-2 activity follows
cleavage of IGF BP by binding protein-specific
protease (69). The activation of transcription fac-
tors, that positively regulate IGF-2, as well as loss
of activity of transcriptional suppressor proteins
(WT1, p53, and possibly CTCF) which bind to
sequences in the IGF-2 enhancer/promoter or IGF-
2/H19 enhancer region and prevent transcription
of the IGF-2 gene, could also be a mechanism of
elevated IGF-2 (104-108). Finally, any disruption
in the IGF-2 receptor/M6P responsible for IGF-2
degradation will also increase IGF-2 bioavailabil-
ity. Thus, we conclude that IGF-2-dependent
cancers can occur due to both genetic and epige-
netic events.

Treatment of IGF-2-Dependent Tumors

IGF-2, together with other members of peptides
from insulin-like growth factor family of ligands
(insulin, IGF-1), receptors (IGF-1R, IGF-2R/M6P),
and IGF BP, form highly regulated network of inter-
actions. Disruption of these interactions or perturba-
tion in the level of any IGF can lead to cancer for-
mation. Considering the role of IGF-2 overexpression
in neoplastic growth, (Figure 1 and Table 3) a rea-
sonable choice for the treatment of IGF-dependent
cancers would be to reverse IGF-2 overexpression at
the gene level or to prevent its action by increased
degradation by IGF-2R/M6P and/or blocking by
IGF BPs. However, there are only a limited numbers
of papers that describe targeting of IGF-2 production
as cancer therapy strategy. For instance, it was
shown that an analog of gonadotropin-releasing
hormone (GnRH), tryptorelin, exerts a biphasic
growth effect on ovarian cancer cells (that express
GnRH binding sites), by a mechanism of diminished
autocrine production of IGF-2 (109). More precisely,

£ adenccarcinoma @ hyperplasia

25

Intensity of expression

IGF 2 IGF 1R

IGF 2R M6P

Fig. 1. Semiquantitative immunohistochemical detection
of IGF-2, IGF-1R, IGF-2R M6P in 82 primary endometrial
adenocarcinomas (stages I, II, and III) and 26 endometrial
hyperplasias. Details are presented in Table 3.

cellular proliferation was enhanced during the first
24 hr of cell exposure to tryptorelin, but longer
incubation resulted in growth inhibition. The mito-
genic effect of tryptorelin was inhibited after neu-
tralization of secreted IGF-2 with IGF BP or
anti-IGF-2 antibody, while growth inhibition was
accompanied by a complete lack of IGF-2 mRNA,
indicating that cessation of autocrine production of
IGF-2 participated in cancer growth inhibition. Sim-
ilarly, the GnRH antagonist, SB-75, inhibited
growth of ovarian (110), endometrial (111), and
breast cancer cells (112), again by inhibition of IGF-2
secretion. The inhibitory effect on cell growth via
down-regulation of IGF-2 production by certain
agents was observed by Csernus et al. (113) as well.
They suggested that antagonistic analogs of growth
hormone releasing hormone (GHRH) could inhibit
growth of certain tumors not only by binding the
GRHR-GR-IGF-1 axis, but also by reducing IGF-2
production and by interfering with the autocrine
regulatory pathway. Antagonists of GHRH directly
block the expression of mRNA IGF-2 and, as a con-
sequence, the production of IGF-2.

Blocking of IGF-1R seems to be a promising ap-
proach for the development of an IGF-2-dependent
cancer therapy strategy. Receptor function can be ab-
rogated by utilizing monoclonal antibodies against
receptors such as aIR3 (114), use of the polyanionic
compound suramine (115), utilizing phosphorylation-
defective analogs of the IGF-1 ligand (114), or ex-
ploiting antisense oligodeoxynucleotides directed
against the IGF-1R mRNA. The «IR3 monoclonal
antibody recognizes human IGF-1R and neutralizes
IGF-1 and IGF-2-mediated signal transduction
pathway. Its blocking effect on IGF-1- and IGF-
2-mediated responses has been shown in vitro and
in vivo (11,38,116,117). This approach was also
tested and supported with results of our previous
experiments conducted on malignant hemangioper-
icytomas (13,14). According to Arteaga (118) block-
ade of IGF-1R by aIR3 antibody is an effective ther-
apeutic approach, especially when wused in
conjunction with other agents that also target the
IGF system. The experiments based on antisense
strategies against the IGF-1R (118-120) have also
shown that a decrease in the number of IGF-1R
causes reversal of the transformed phenotype
(121,122).

Potential candidates in the therapy of IGF-2—
dependent tumors are IGF BP that have been shown
to neutralize the mitogenic effects of IGF-2. There
have been several recent reports indicating that
retinoids may affect growth of IGF-2-dependent
breast and prostate tumor cells by increasing the
production of IGF BP, especially IGF BP-3
(123-126). Alternatively, growth inhibition of
breast cancer could be achieved by inhibition
of IGF BP-3 protease activity by administration of
megestrol acetate, which reduces delivery of IGFs to
the tissue (127).
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Table 3.
(stages II and III)

IGF-2 and IGF-1 receptor immunostaining in endometrial adenocarcinomas of the corpus uteri

Intensity of Staining

Type of

Analysis 0 1 2 3 Total
IGF-2 12 (17%) 20 (28%) 16 (22%) 24 (33%) 72
IGF-1R 3 (4%) 12 (17%) 20 (28%) 37 (51%) 72

Seventy-two human primary endometrial adenocarcinomas (of stages II and III) were obtained from Croatia Human Tumor Bank.
Enodmetrial carcinomas were pure or endometroid adenocarcinomas, composed entirely of glandular cells. Immunohistochemical tests
were performed on formalin-fixed, paraffin-embedded tissue using the avidin—-biotin—peroxidase method. Sections, cut at 4 um, were
subjected to a heat-induced epitope retrieval technique in 10 mM citrate buffer (pH 6.0) in an 850 W microwave for 10 min. Anti—
1IGF-2, a mouse monoclonal antibody (Upstate Biotechnologies, Lake Placid, NY, USA), was diluted 1:50, and incubated for 15-18 hrs.
Anti-IGF-1R (Santa Cruz Biotechnologies, Santa Cruz, CA, USA), were diluted 1:100 and also incubated for 15-18 hrs. Detection was
achieved using the DAKO LSAB 2 Kkit, according to manufacturer’s instructions. Negative controls were stained by substitution of the
primary antibodies with non-immune mouse or rabbit immunoglobulins. Appropriate positive controls (thyroid gland tissue for
IGF-1R, and Wilms’ tumor for IGF-2) were stained positively. The tumor cells showed strong diffuse cytoplasmic immunopositivity for
IGF-2 and cytoplasmic and focal membranous reactivity for IGF-1R. The intensity of staining was arbitrary judged as weak (+),

moderate (++), or strong (+++).

Conclusion

The IGF-2 and their receptors are critically impor-
tant for normal growth and early development of the
organism. However, IGF-2 is also implicated in nu-
merous pathologic states, including malignancy,
where it serves as an endocrine, autocrine, and
paracrine stimulator of mitogenesis, survival, and
cellular transformation. IGF-2 is commonly overex-
pressed in many tumors and may enhance tumor
growth by binding to IGF-1R, a potential control
point for transformed cells. In addition to being
stimulated by IGF-2, IGF-1R may also be overex-
pressed in some tumors, leading to a phenotype of
anchorage-independent growth. In contrast to IGF-1R,
the IGF-2R/M6P mediates the clearance of IGF-2.
When mutated, the level of circulating IGF-2 in-
creases. Considering the role of IGF-2 in neoplastic
control, modulation of IGF physiology seems to be a
reasonable target for the treatment of IGF-2-
dependent tumors. Thus, targeting IGF-2 and/or its
receptors by “antisense” or monoclonal antibody ap-
proach may provide an effective and practical cancer
gene therapy.
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