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Abstract

Background: The immune response of the critically ill after severe trauma is sex-specific and may explain the
different progression of the disease. This may be explained by a different gene regulatory program of their peripheral
immune cells. We investigated the progression of the transcription profiles of peripheral immune cells of the patients
to elucidate their distinct physiological response and clinical course.

Methods: We compared transcription profiles of whole blood of male and female patients from a larger longitudinal
study of critically ill patients after trauma. We developed a statistical analysis pipeline that synchronized the time lapse
of the profiles based on the temporal severity score of each patient.

Results: This enabled to categorize the temporal progression of the disease into two pre-acute, an acute and two
post-acute phases. Comparing gene regulation of male and female patients at each phase, we identified distinctively
regulated molecular processes mainly in the immune response, but also in the regulation of metabolism allowing to
cluster these discriminative gene sets into sets of highly related cellular processes. Compared to male patients and
healthy controls, female patients showed upregulation of gene sets of innate immunity in the early phase,
upregulation of wound healing processes during the acute phase and upregulation of adaptive immunity in the late
phase indicating early recovery. In turn, during the pre-acute and acute phase, male patients showed less suppression
of gene sets coding for enzymes of energy metabolism and anabolism, most prominently the tricarboxylic acid cycle
and [-oxidation, and cellular maintenance, such as cell cycle, DNA replication and damage response, and RNA
metabolism.

Conclusions: A stronger innate immune response at the very early phase of the disease may support early clearance
of the pathogen and its associated molecular patterns. Upregulation of wound healing processes may explain reduced
multiple organ failure during the acute phase. Down regulated energy metabolism during the acute phase may make
female patients less susceptible to oxidative stress, the upregulated adaptive immune system reflects an earlier
recovery and rebuilding of the adaptive immune system that may protect them from secondary infections. Follow up
studies need to be performed confirming these observations experimentally.
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Introduction

Despite recent medical advancements, sepsis and mul-
tiple organ failure (MOF) continue to be a major cause
of morbidity and mortality in patients surviving severe
trauma (WHO 2018). Regardless of the type and severity
of the injury, gender dimorphism has been observed in
several previous studies. In a large study observing
681,730 trauma patients, female patients showed signifi-
cantly fewer complications and a 21% lower death rate
compared to male patients, despite the same average of
injury severity scores (ISS) (Haider et al. 2009). A recent
meta-analysis involving 19 studies with 140,328 trauma
patients reported less mortality, shorter hospitalization,
and fewer complications of female patients (Liu et al.
2015). Consistent with these findings, male gender was
associated with a higher risk of major infections and
MOF following trauma (Offner et al. 1999; Gannon et al.
2004; George et al. 2003). Mostafa et al. (Mostafa et al.
2002), Deitch et al. (Deitch et al. 2007) and Trentzsch et
al. (Trentzsch et al. 2014; Trentzsch et al. 2015) ob-
served that premenopausal female patients are better
protected from organ failure and sepsis after critical
trauma-induced haemorrhage. In particular, Trentzsch et
al. analyzed propensity matched-pairs (n = 3887) of male
and female severe-trauma patients and observed that
pre-menopausal females develop significantly less organ
failure despite matching injury, i.e. a matched
Abbreviated Injury Scale (for head, thorax, abdomen,
extremities), age and co-morbidities (Trentzsch et al
2015). Although male patients are consistently reported
to be associated with increased mortality of hospitalized
patients, Rappold et al. (Rappold et al. 2002) observed
no difference in mortality between male and female
trauma patients. However, their study cohort consisted
of rather less severe ill patients with an average mortality
rate below 3%. In turn, Napolitano et al. (Napolitano et
al. 2001) reported higher mortality in female trauma pa-
tients, particularly if they developed pneumonia. Also
here, the mortality rate was low (less than 5%). Notably,
the injury mechanisms differed in their cohort. Female
patients were injured mostly from car accidents while
male patients from falls, assaults and motorcycle
accidents.

It was reported that female patients respond better to
supportive treatments. In a study observing a cohort of
more than 4000 trauma patients, premenopausal women
had lower serum lactate levels and required less blood
transfusion despite more severe injuries (Deitch et al.
2007). In another, prospective clinical study, female pa-
tients required lower resuscitation volumes, less inotrope
and vasopressor support (36% vs 10%) and less interven-
tion based on the Starling curve to maintain oxygen de-
livery in the heart compared to similarly injured male
patients. The authors concluded that female patients
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responded better to standardized resuscitation than male
patients (McKinley et al. 2002).

Besides these clinical differences, male and female indi-
viduals differ fundamentally in their immune response
and metabolism. Female individuals show a more robust
humoral and cell-mediated immune response, making
them less prone to certain infections like tuberculosis,
hepatitis B, leptospirosis and other infectious diseases
(Klein and Flanagan 2016). They get a better protection
from an infection when vaccinated, however they are
more prone to autoimmune diseases (Klein and Flanagan
2016). Regarding metabolic differences, studies have
shown that energy metabolism differs between sexes as
healthy female individuals oxidize more lipids than carbo-
hydrates, they utilize less glycogen from skeletal muscle
and produce less hepatic glucose (Tarnopolsky and Ruby
2001). Notably, muscle cells of female individuals have a
significantly lower capacity for aerobic oxidation and an-
aerobic glycolysis (Green et al. 1984).

Trauma can lead to immune dysfunction and cause
metabolic derangements. Trauma is often followed by
sepsis. The hyper-inflammation during sepsis leads to
tissue damage that, in turn, evokes the release of pro-
and anti-inflammatory cytokines, but can also suppress a
variety of cell-mediated immune responses (Xiao et al.
2011; Desai et al. 2011). Traumatic stress is also known
to trigger increased hyperglycaemia, fatty acid oxidation,
and decreased ATP production resulting from mito-
chondrial dysfunction (Marik and Raghavan 2004; Singer
2014). In summary, the immune response and metabol-
ism are severely altered after trauma. Hence, studying
the implications of gender are crucial to better under-
stand the underlying pathomechanisms.

Transcriptomics analyses have been successfully used
for diagnostics identifying novel virulence factors, pre-
dicting antibiotic resistance and studying host-pathogen
interactions (Lowe et al. 2017; Leonor Fernandes Saraiva
et al. 2017). Also, gender dimorphism of the gene regula-
tory response to trauma has been investigated. Vught et
al. (van Vught et al. 2017) compared gene expression
profiles of septic and healthy male and septic and
healthy female individuals. Blood of the septic patients
was drawn at the day of admission. They identified ERK
and MAPK signaling, leukocyte extravasation signaling,
PDGF signaling, and ephrin receptor signaling being
specifically upregulated in male septic patients, com-
pared to male healthy individuals. They did not find
these gene sets to be differentially expressed when com-
paring female septic patients with female controls. How-
ever, they could not detect these differences by a direct
comparison. To note, this indirect way of finding male
and female specific gene sets may overestimate the regu-
lation in sepsis if the genes in the healthy individuals are
low expressed (problem of comparing ratios when there
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are low numbers in the denominator). Comparing tran-
scription profiles of patients ranging from 12h to 28
days after severe trauma, Lopez et al. (Lopez et al. 2016)
identified gender dimorphism in lymphocyte regulation,
response to TGF-P stimulus, ubiquitin dependent pro-
tein catabolic processes, and protein or macromolecule
catabolic processing. Notably, the authors compared the
data from all time points together to identify differen-
tially expressed genes between male and female patients.
The temporal progression of the disease was not ad-
dressed. These two studies reported gender-dimorphism
on a transcriptional level. However, they showed very
different results which may be due to neglecting the
temporal progression of the disease in each patient. Not-
ably, previous studies on healthy individuals reported
that expression changes between sexes considering genes
of the autosomal chromosomes are small but are dis-
tinctly associated with an increased response to cyto-
kines, response to type I interferon and lymphocyte
differentiation in females (Jansen et al. 2014).

We compared the genome-wide gene regulation re-
sponse to blunt force trauma over time of male and fe-
male patients tracking their temporal developments in
the transcriptomics of peripheral immune cells as the
disease progresses through the early, acute and
post-acute phase.

Methods

Patient characteristics

The investigated data was taken from the retrospective
observational study ‘Inflammation and host response
to injury (IHRI) (ClinicalTrials.gov  identifier:
NCT00257231). We accessed this data from the supple-
mentary material of the original publication (Desai et al.
2011). The major inclusion criteria were: blunt trauma
without isolated head injury, blood transfusion within
12h of injury, base deficit >=6 or systolic blood
pressure < 90 mmHg within 60 min after arrival at the
emergency department. The major exclusion criteria
were: traumatic brain injury (defined as Abbreviated
Injury Scale (AIS) score for head >4 or Glasgow Coma
Scale (GCS) motor score<3 within 24h of injury),
pre-existing immunosuppression or organ dysfunction.
These patients were admitted within 12h after injury
and monitored for up to 28 hospital days. For each pa-
tient, the first blood sample was taken within 12 h after
injury and approximately 1, 4, 7, 14, 21, and 28 days after
injury. Leukocytes from whole blood were isolated from
peripheral blood samples (more details in ref. (Desai et
al. 2011)). Genome-wide gene expression was profiled
using Affymetrix HU133 Plus 2.0 GeneChip microarrays.
The detailed protocols used for obtaining and processing
total blood leukocytes and for array hybridization are de-
scribed elsewhere (Cobb et al. 2005; Feezor et al. 2004).
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Among the available data of 168 patients, a subset of
132 (85 male, 47 female) was selected based on their age
(between 16 to 50 years) and their maximum MOF score
(maximum MOF without neuronal component > 1) dur-
ing their first 28 days in the hospital. These 132 patients
were included in our severity synchronization analysis.
The upper age limit of 50 years was set to study and
compare pre-menopausal female with male patients.
Among these 132 patients, for 129 (83 male, 46 female)
there was at least one transcriptomic profile available
which could be mapped to the analyzed time window of
the synchronized profile. Hence these patients were in-
cluded in the transcriptomic analysis. A detailed patient
selection scheme is given in Additional file 1: Figure S1.

Data retrieval and pre-processing

Microarray normalization and statistical analysis were per-
formed using R/Bioconductor (https://www.r-project.org).
The raw data was background corrected, and normalized
by Robust Multi-Array Average normalization employing
the affy package (Gautier et al. 2004). Only probe sets with
a detection significance of P < 0.05 were selected for further
analysis. Probes were annotated using [umiHumanIDMap-
ping and lumiHumanAll.db (Du et al. 2008), HGNC sym-
bols were received via Illumina nulDs. Normalized
expression values of probes with the same annotated gene
were merged by averaging expression values using the func-
tion avereps of the limma package (Ritchie et al. 2015).

The workflow
The workflow is sketched in Fig. 1 and comprised the
following steps:

1. Defining the acute phase: When mapping the ex-
pression profiles for each patient over time, we observed
that their temporal progression was very heterogeneous.
We addressed this issue by synchronizing the profiles
taking the severity score of the patients into account.
First, for each patient, we identified the time point of
his/her most severe state of the disease by selecting the
maximal Marshall MOF (Multiple Organ Failure) score
(without the neurological component, also in the follow-
ing) within day O to day 28. This selected day, ie. the
day of the highest MOF score was set as the “acute
phase” for the according patient. If a patient displayed
multiple days the highest MOF score, the time period
from the first to the last day with highest MOF score
(and maybe days of lower MOF scores in between) was
defined as the ‘unstable phase’. An example is given in
Additional file 1: Figure S2. Only patients with an un-
stable phase shorter or equal to 3 days were included in
the analysis (#z =132) and the whole time from the first
to the last day with highest MOF score was regarded as
the acute phase. The acute phase was set as a reference
for aligning the other days as explained in the next step.


http://clinicaltrials.gov
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Fig. 1 The workflow. a Time series expression profiles of the patients were synchronized according to their day of maximal MOF (multiple organ failure)
(denoted as acute phase). b The investigated days before, at and after the acute phase were grouped into major temporal phases. ¢ Gene expression
analysis provided sets of differentially expressed genes between male and female patients d The identified gene sets were grouped according to their

temporal appearance and the similar cellular processes they discribe

2. Setting the other phases: When regarding the
transcription profiles according to this reference day,
we observed a strong increase and decrease in sever-
ity within 7 days, i.e. from day -3 to +3 according
to the reference day. Hence, we used this time win-
dow for our analysis, i.e. 7 days, 3days before the
acute phase, the day of the acute phase and 3 days
after the acute day. For simplification and to get
enough samples for each analyzed time point, the
window of 7 days was categorized into five major
phases. These phases were defined as ‘early pre-acute’
(2 to 3days prior to the acute phase), ‘pre-acute’ (1
day prior to the acute phase), ‘acute phase’ (the most
severe day), ‘post-acute’ (1day after the acute phase)

and ‘late post-acute’ (2 to 3days after the acute
phase). The distribution of the samples in each time
point is given in Additional file 1: Table S1, compris-
ing data from altogether 330 samples of 129 patients.

3. Gene expression analysis: Each of the five temporal
phases was analysed separately. Differential gene expres-
sion between male and female patients was identified by
employing Student’s t-test to get the t-values. Only auto-
somal genes were regarded. The t-values were used for
gene set enrichment analysis to select Gene Ontology
terms employing the piano package (Vdremo et al. 2013)
(n =50,000 permutations, selecting ‘mean’ as the gene
set statistics, distinct directional, the t-statistic were used
from the t-tests). P-values resulting from the gene set
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enrichment tests were corrected for multiple-testing
using the method by ‘Benjamini-Hochberg’ (Benjamini
and Hochberg 1995).

4. Clustering temporal profiles of enriched gene sets:
We clustered gene sets with similar profiles according to
their temporal progression. For this, only gene sets were
considered which were highly significant (p <0.025) in
at least one of the time phases. LOD scores for these
gene sets were calculated by LOD = -log;o(p), in which
p were the adjusted p-values of the considered gene sets.
These values were made directional by adding a minus
sign for gene sets which were down regulated in female
patients. The gene sets were separated into gene sets
which were significantly differentially regulated in only
one phase (single phase cluster), and gene sets which
were significantly differentially regulated in more than
one phase (multiple phase cluster). From each of these
groups of gene sets, clusters were formed according to
the phase of their high significance. These phase-specific
clusters were then separated into male and female clus-
ters based on the directional LOD scores. The functional
relevence of the clusters was derived based on the bio-
logical interpretation of their consisting gene sets.

Validating our results by regarding transcription profiles
from critically ill patients after burn injury

We validated our results with a second publically avail-
able dataset. In this study, patients were recruited under
the observational and prospective study conducted be-
tween 2000 and 2009 in four centres for burn injuries in
the U.S. (Seok et al. 2013). These patients were admitted
within 96 h after a burn injury of over 20% of the Total
Body Surface Area (TBSA). Blood was drawn from the
time point of injury until 1 year. The patients underwent
at least one excision and grafting surgery. Major exclu-
sion criteria were: associated multiple injuries exclusive
of burns (Injury Severity Score (ISS) >=25) and several
pre-morbidity conditions (more details are given in ref.
(Seok et al. 2013)). In our analysis, we included only pa-
tients for which transcription profiles within the first
week from the time point of injury were available. A
subset of 103 (n =79 male; n =24 female) patients be-
tween the age of 16 to 50 years was included in our ana-
lysis. The raw data (downloaded from the NCBI GEO,
accession number GSE37069) was pre-processed and
normalized as described above.

Additional statistical analyses

All data analyses were performed using the R statistical
software environment (https://www.r-project.org/). Dis-
tributions were visualized by boxplots of normalized
gene expression followed by z-transformation,
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in which x is the normalized gene expression value of
gene X, p is the mean gene expression among all sam-
ples of this gene, o its standard deviation and z the
z-transformed value of gene X. Z-transformed expres-
sion values are referred to as ‘scaled expression’ values in
the following. The trend of MOF scores over time was
assessed by a linear regression t-test. Wilcoxon
rank-sum test was performed to compare injury severity
scores, MOF scores and comparing the distribution of
the days of maximal MOF between male and female
patients after synchronization. The expression data of
the patients was distributed among four different sam-
pling groups. We analysed if this had introduced a batch
effect when comparing male with female patients. The
batches could have been a serious confounder if samples
from male patients had been profiled in other batches as
from female patients. Hence, we counted the analysed
data of male and female patients in each of the four
batches (Additional file 1: Table S2), we found no signifi-
cant differences (p >0.1 employing a x> test). To find
out if the difference in expression of each of the identi-
fied significant gene sets can be explained solely by gen-
der dimorphism, or also by an interaction with the MOF
score, we performed an interaction effect analysis
employing analysis of variance. A linear model was cal-
culated using the ‘lm’ function, in which the average
scaled expression of gene sets was the independent vari-
able, and the MOF score, sex and the ‘product of MOF
score and sex’ of each phase were the dependent vari-
ables. An F-test was applied to assess the significance of
the coefficients. For the analysis of severity-matched pa-
tients, a subset of acute phase samples of male and fe-
male patients was selected with comparable AIS at
baseline and MOF score in their acute phase. The selec-
tion was made based on the method of propensity
score-matching. A propensity score was calculated for
each patient. The patient variables, i.e. AIS at baseline
and MOF score in their acute phase were matched for
male and female patients employing Matchit (Ho et al.
2011) (method = genetic). Expression data of the bal-
anced subset of male and female samples was analysed
to identify significantly enriched gene sets.

7z =

Results

Synchronizing the temporal progression of the disease
and setting the temporal phases

For the studied 132 patients, the difference in their abbre-
viated injury score (AIS) at admission was non-significant
between sexes (male patients: AIS =3.99 (95% CI, 3.81-
4.17); female patients: AIS=4.15 (95% CI, 3.91-4.39),
Additional file 1: Figure S3A). Independent from gender,
we observed heterogeneous severity profiles when
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comparing them in respect to the temporal progression.
To address this, we synchronized the profiles matching
their day of highest disease severity (peak of the
MOF scores, the most severe day) (Fig. 1). After
synchronization, the distribution of the day of highest se-
verity was comparable between male and female patients
(Additional file 1: Figure S4). Accordingly, also the tran-
scription profiles were synchronized by the day with the
maximal MOF score. The synchronization provided a dis-
tinct phase of increasing severity (increasing MOF), high-
est severity (MOF peak) and declining severity (declining
MOF), as shown in Additional file 1: Figure S3B.

The patients showed this strong increase and decrease
of severity within a 7 days window. As we were most in-
terested in this period, we focussed on this 7-days win-
dow, 3 days before the most severe day, the most severe
day and 3 days after the most severe day. For 129 pa-
tients, 330 transcriptomic profiles were available match-
ing this window. The patient characteristics are given in
the Additional file 1: Table S3. During this window, male
patients showed a significantly (p <0.01) higher degree
of organ dysfunction than female patients. For simplicity,
we binned the phases into five sets comprising ‘early
pre-acute’ (2 to 3days prior to the most severe day),
‘acute phase’ (the most severe day), ‘pre-acute’ (1 day
prior to the acute phase), ‘post-acute’ (1 day after the
acute phase) and ‘late post-acute’ (2 to 3 days after the
acute phase).

For each phase, differential expression analysis was
carried out to obtain differentially expressed gene sets
between male and female patients. These gene sets were
grouped according to their significance across the tem-
poral phases. The significant gene sets of all phases are
listed in Additional file 1: Table S4. We describe these
gene sets according to their chronology and after clus-
tering them into sets of similar biological processes.

The innate immune response is upregulated in the early
pre-acute phase of female patients

The early pre-acute phase was defined as the period of 2
to 3 days prior to the acute phase. As expected from the
synchronization, there was a significant (p < 0.0001) rate
of increase in the MOF score from this phase to the
acute phase across male and female patients. The com-
parison of the transcription profiles at this phase re-
vealed a distinct higher regulation of gene sets
associated with an acute-phase response in female pa-
tients compared to male patients. A total of seven gene
sets related to the innate immune response were identi-
fied in this cluster specific to females in the early
pre-acute phase. These included positive regulation of
NF-«B transcription activity, myeloid dendritic cell dif-
ferentiation and chemotaxis, cytokine response, and,
more specifically, IL-7 mediated signaling. Figure 2a
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shows the temporal profiles of all identified gene sets
corresponding to innate immune response. Additional
file 1: Figure S5 shows all gene sets which were upregu-
lated in females during this phase.

We identified another cluster of gene sets which were
upregulated in leukocytes of female patients. Gene sets
in this cluster were upregulated in at least two of the
first three temporal phases of the disease, i.e. in the early
pre-acute, pre-acute and acute phases. Also, this cluster
contained immune system related gene sets, such as cel-
lular response to tumour necrosis factor, positive regula-
tion of ERKI-ERK?2 cascade, and neutrophil chemotaxis.
Additional file 1: Figure S6 shows the temporal profiles
of all gene sets in this cluster. We compared the expres-
sion of these seven gene sets of innate immunity from
the first cluster to their expression in healthy controls
and observed that in both sexes these gene sets were up-
regulated, and in the female patients, these sets were sig-
nificantly more upregulated (Fig. 2b). The other gene
sets of both clusters contained sets for further signaling
processes like phosphatidylinositol mediated signaling,
transcriptional regulatory processes, protein modifica-
tion and neural processes (Additional file 1: Figures S5
and S6).

In summary, in the early pre-acute phase, genes coding
for the innate immune response were upregulated in fe-
male compared to male patients, and particularly, of the
innate immune system.

Wound healing and recovery processes are upregulated
early in female patients

During the pre-acute and the acute phase, we ob-
served a distinct upregulation of recovery processes in
female patients. The upregulated gene sets at the
pre-acute phase were predominantly associated with
the stages of early wound healing such as tissue res-
toration and blood coagulation. These included, posi-
tive regulation of vasoconstriction, platelet activation,
blood coagulation, intrinsic pathway and platelet de-
granulation. The process of fibrinolysis was also up-
regulated in female patients. Simultaneously, we
observed an upregulation of cellular processes govern-
ing leukocyte migration and positive regulation of
phagocytosis, together with signaling processes such as
positive regulation of MAPK cascade in female pa-
tients. There were eleven gene sets identified in this
cluster related to the early wound healing response.
Figure 3a shows the temporal profiles and lists of
representative gene sets. The complete cluster is given
in Additional file 1: Figure S7. During the acute
phase, the most prominent upregulated gene sets in
leukocytes of female patients were growth and devel-
opment related gene sets. These included anterior/
posterior pattern specification, artery morphogenesis,
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proliferation
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skeletal system development and gene sets for several
neural processes. Upstream to these, response to IL-1
signaling and cytokine-mediated signaling were also
upregulated. This cluster consisted of eleven gene sets
for growth and developmental processes. Figure 3c
shows the temporal profiles and lists of representative
gene sets, while the complete cluster is given in Add-
itional file 1: Figure S8. To note, the eleven gene sets
for early wound healing in the pre-acute phase and
further eleven gene sets for growth and developmen-
tal processes in the acute phase were upregulated in
male and female trauma patients, when compared to
healthy individuals. Still, these gene sets showed a

significantly higher expression in female compared to
male patients (Fig. 3b, d).

During the pre-acute and acute phases, genes for
transcription and translation, cell cycle, DNA damage and
repair and oxidative phosphorylation are downregulated
in female patients

Two third of the identified sex specific transcriptomic
gene sets were downregulated in female compared to
male patients. Most of these gene sets were observed
within the first three phases, i.e. during the early
pre-acute, pre-acute and acute phases. We grouped
these gene sets into two larger clusters. One cluster
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Fig. 3 Gene set clusters of the pre-acute (left) and acute phase (right). a The cluster of the pre-acute phase contained 11 gene sets being
upregulated in leukocytes of female patients. These gene sets are all related to wound healing processes. Eight representative gene sets are
shown here. The complete set is given in Additional file 1: Fig. S7. b In comparison to healthy controls, the gene sets were higher expressed in the

gene sets being upregulated in female patients. Eleven of these were associated with growth and development. Four representative gene sets are listed
here. The complete list is given in Additional file 1: Fig. S8. d In comparison to healthy controls, leukocytes of both sexes showed a higher expression of these

expression’ values. Significance of difference between the expression of genes of male and female patients was tested using two-sided Student’s t-tests

leukocytes of female patients. € The cluster of the acute phase contained 19

patients. The z-transformed expression values were referred to as ‘scaled

comprised gene sets that were downregulated in at
least two of these phases (Fig. 4), the other cluster
comprised gene sets which were downregulated only
in one phase, i.e. the acute phase (Additional file 1:
Figure S9).

The first cluster contained gene sets related to tran-
scription and translation, cell cycle, DNA damage and
repair and energy metabolism including oxidative phos-
phorylation (OxPhos). Compared to healthy individuals,
the expression of these gene sets was downregulated in
both sexes of the patients. Figure 4 shows the temporal
profiles and their representative gene sets. The complete
cluster is given in Additional file 1: Figure S10. Still,
these gene sets were distinctively more down regulated
in female than in male patients. ATP producing pro-
cesses such as regulation of glycolytic processes, TCA

cycle, fatty acid beta-oxidation and electron transport
chain were significantly down regulated in female, com-
pared to male patients. In line, ATP consuming pro-
cesses were also downregulated in female patients, such
as DNA repair by excision mechanisms, RNA process-
ing, and specifically transcription via RNA polymerase I,
II and III, RNA transport, RNA splicing, tRNA process-
ing, tRNA modification, RNA metabolism etc. and gene
sets for cell cycle comprising DNA replication to
telomerase maintenance, transition of mitotic cell cycle,
mitotic spindle assembly checkpoint, chromosome segre-
gation and anaphase promoting complex-dependent
catabolic process. The second cluster comprised gene
sets which were again related to transcription and trans-
lation, DNA damage and repair, and energy metabolism
(Additional file 1: Figure S9). In comparison to healthy
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Fig. 4 The gene set cluster of the early pre-acute, pre-acute and acute phase. a The cluster consisted of 85 gene sets being downregulated in
female patients. Most of these were associated to b energy metabolism and the mitochondrion (11 gene sets), c cell cycle (21 gene sets),

d transcription and translation (26 gene sets), and d damage and repair (9 gene sets). For each category, their representative gene sets are listed
here. The complete list is given in Additional file 1: Fig. S10. In comparison to healthy controls, for all categories, leukocytes of both sexes showed
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referred to as ‘scaled expression’ values. Significance of difference between the expression of genes of male and female patients was tested using
two-sided Student’s t-tests (* P < 0.05, mean bar and Whiskers of the boxplots: mean + se)

individuals, these gene sets were downregulated in male  cycle, repair, and energy producing and ATP consuming
and female patients during the acute phase, except for  processes were distinctively downregulated in female,
energy metabolism related gene sets, which gene expres- compared to male patients in the pre-acute and acute
sion in male patients and healthy individuals was com-  phases. This contrasted with the upregulation of these
parable (Additional file 1: Figure S11). In summary, cell  processes after the acute phase (see next section).
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Genes coding for the adaptive immune response are
distinctively higher expressed in leukocytes of female
patients in the late post-acute phase

After the acute phase, as expected from the
synchronization, the MOF scores declined at a significant
rate (p <0.0001) reflecting a phase of recovery in male
and female patients. For female patients, we observed this
also on the molecular level. Particularly in the late
post-acute phase, i.e. 2 to 3 days after the acute phase, we
observed distinct upregulation of genes of the adaptive
immune system in female patients. This comprised 7 cell
activation, T cell co-stimulation, T cell differentiation and
positive regulation of T cell proliferation. Additionally, in
female patients we observed a distinct upregulation of
cytokine production, and particularly of IL-4 production,
together with the upregulation of negative regulation of
type I interferon production. We also observed gene sets
for B cell activation, B cell receptor signaling to be upregu-
lated in female, compared to male patients. Figure 2c
shows the temporal profiles of gene sets from the adaptive
immunity cluster. This cluster consisted of nine gene sets
out of which five representatives are listed. The complete
cluster is given in Additional file 1: Figure S12. Comparing
the expression profiles to the profiles of healthy individ-
uals, showed that these nine gene sets for adaptive im-
munity where upregulated only in female patients. Male
patients expressed these comparably to the controls (Fig.
2d). In summary, leukocytes of female patients showed a
distinct higher expression of genes being responsible for
restoring the adaptive immune system during this
post-acute phase.

The divergent regulation can be attributed to gender

dimorphism rather than to the different disease severities
Male patients showed more MOF compared to female
patients at the acute phase. Thus, the identified tran-
scriptomic differences between male and female patients
could have been due to the differences in the severity
but not directly associated with gender dimorphism. To
justify if the identified transcriptomic differences can be
attributed to the sexes but not to the severity alone, an
analysis was performed in which we selected a subset of
transcription profiles (1 =28 female, n =34 male) from
the acute phase in such a way that the MOF scores and
AIS scores of the corresponding male and female pa-
tients were comparable at the acute phase. Comparing
the transcriptional profiles of male versus female samples
showed 123 gene sets to be significantly differentially
expressed (Additional file 1: Table S5), out of which 114
(93%) were identical to the previously identified gene
sets during the acute phase. As expected, the downregu-
lated gene sets in female patients were associated with
transcription and translation, cell cycle, DNA damage
and repair and oxidative phosphorylation, while
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upregulated gene sets were related to innate immune re-
sponse, and growth and development. To further clarify
if the identified gene sets depended on the according
MOF scores rather than the sex itself, we performed an
interaction analysis between MOF and sex in each phase.
This showed a significant dependence on sex and rather
independence of the MOF scores. (Additional file 1:
Figure S13). In summary, the identified gene sets were
not due to the differences in the severities but the gen-
der dimorphism itself.

Similar gender dimorphism of gene regulation in blood
of trauma patients and patients with severe burn injury
We studied the transcription profiles of patients with se-
vere burn injury (taken from a recent publication by
Seok et al. (Seok et al. 2013)). The studied patients were
16-50 years old with injury severity scores above 25. As
the longitudinal severity scores were not available for
synchronization, we studied the transcriptomic response
of the first week after burn injury. We observed that the
transcriptomic gender dimorphism was comparable to
the pre-acute and acute phase of trauma patients. This
included upregulation of the innate immune response,
wound healing and growth processes, and downregula-
tion of transcription and translation, cell cycle, DNA
damage and repair and energy metabolism in female pa-
tients with burn injury (Additional file 1: Figure S14).
The adaptive immune response in these patients was
overall suppressed and identical between sexes during
the first week of burn injury. Notably, female patients
showed significant upregulation of the adaptive immune
response after the first week. These results support the
results we observed for patients after blunt trauma.

Discussion

Previous clinical trials showed that female (in their pre-
menopausal phase) compared to male trauma patients
are better protected from organ failure, show fewer com-
plications, better tolerate critical trauma and develop
less severe organ failure. As differences in gene regula-
tion of healthy individuals have been described (Klein
and Flanagan 2016; Tarnopolsky and Ruby 2001; Green
et al. 1984; Wu and O’Sullivan 2011), we hypothesized
that gender dimorphism is also prominent in the gene
regulation of peripheral leukocytes of the critically ill
and may explain the better clinical course of female pa-
tients. As a case study, we investigated critically ill pa-
tients after blunt trauma. We developed a statistical
framework synchronizing the transcription profiles
based on the severity of the patients which enabled us to
track differences in male and female patients before, at,
and after the most acute phase of organ dysfunction. By
this, we detected a very divergent regulation of male and
female patients. As the findings were derived from
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trauma patients with significant heterogeneity and lim-
ited stratified samples in some temporal phases, we vali-
dated the main findings by a second, independent
dataset of transcription profiles from peripheral leuko-
cytes of patients with severe burn injuries. Male patients
had a higher MOF score compared to female patients.
This may have been a confounder in our analysis. Hence,
we investigated if the results can be replicated upon
comparing male and female patients of comparable
highest MOF scores. We selected such a balanced
sub-cohort by employing propensity score matching. We
got nearly the same significantly distinct gene sets as for
the non-balanced cohort, confirming that the divergent
regulation can be attributed to gender dimorphism ra-
ther than to the different disease severities.

In the early pre-acute phase, leukocytes of female pa-
tients showed a stronger innate immune response at the
transcriptional level. Here, we observed upregulation of
NF-kB transcription activity and the ERK1-ERK2 signal-
ing cascade. The role of NF-kB and ERK1-ERK2 signal-
ing are well described in the survival, activation and
differentiation of innate immune cells independent of
gender (Busca et al. 2016; Liu et al. 2017). Distinct gen-
der dimorphism had been described for components of
innate immunity such as higher efficiency of antigen
presenting cells (APCs), higher activation and phagocy-
totic activity of macrophages and neutrophils of female
patients (Klein and Flanagan 2016). This supports our
observations on a systems-view. We observed upregula-
tion in female patients of genes for higher myeloid den-
dritic cell differentiation and neutrophil chemotaxis.
Myeloid dendritic cells are the bridge linking innate and
adaptive immunity. They comprise a heterogeneous
population of cells presenting antigens to T-cells
(Chistiakov et al. 2015). During the same phase, we
observed IL-7 mediated signaling to be upregulated in
female patients. IL-7 signaling has been extensively stud-
ied in the context of survival and differentiation of
B-cells, and proliferation of B- and T-cells (Sammicheli
et al. 2012; Corfe and Paige 2012; Guimond et al. 2009).
Immunotherapy by application of IL-7 has been shown
to enhance the immune response in patients with lim-
ited naive T-cells (Unsinger et al. 2010; El-Kassar et al.
2012; Tuckett et al. 2014). Furthermore, high levels of
IL-7 have been reported to affect the selection of the
T- versus the B-cell lineage (El-Kassar et al. 2012). These
early triggers may support the recovery of adaptive im-
munity which we found upregulated in female patients
in the post-acute phase.

We observed upregulation of early wound healing and
recovery processes in female patients during the pre-
acute phase. Better wound healing in premenopausal
females has been evidenced in a few studies before
(Jorgensen et al. 2002; Ashcroft and Ashworth 2003;
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Gilliver et al. 2008). Wound healing is a highly organized
process involving several characteristic overlapping steps
comprising restoring skin and vessel integrity, inflamma-
tion for attracting leukocytes, proliferation to diminish
the lesioned tissue area and remodelling of the extra cel-
lular matrix (Gonzalez AC de et al. 2016). Indeed, in the
pre-acute phase, we observed that leukocytes of female
patients upregulated processes associated with restoring
tissue and vessel integrity. These included upregulation
of platelet activation/degranulation and blood coagula-
tion to restrict losing blood. The second stage of wound
healing is characterized by localized swelling and clear-
ance of damaged cells and pathogens from the wound
area. In line, leukocytes of female patients showed an
upregulation of genes for leukocyte migration and regu-
lation of phagocytosis. Higher activation and phagocy-
totic activity of macrophages and neutrophils have been
previously reported in females (Klein and Flanagan
2016). We observed upregulation of the MAPK cascade
and required protein phosphorylation gene sets in female
patients, which play a predominant role for cell prolifer-
ation, cell-cell adhesion and growth during early wound
healing (Thuraisingam et al. 2010). It is reasonable that,
at the transcriptomic level, healing processes are initi-
ated before the acute phase. These processes may form
the functional basis to initiate wound healing processes.
Upregulation of these processes was followed by upregu-
lated gene sets related to cell growth and development
at the acute phase. Leukocytes of female patients showed
an upregulation of IL-1 signaling. The family of IL-1 cy-
tokines activates the innate immune system and also
supports the activation and proliferation of T-cells (Sims
and Smith 2010). In line, we observed upregulation of
the adaptive immune system and T-cell growth in the
late post-acute phase.

The differential regulation of energy metabolism and
housekeeping processes covered almost two-third of the
identified sex specific gene sets. From the pre-acute to
the acute phase, leukocytes of female patients downregu-
lated energy metabolism and, in particular, oxidative
phosphorylation. We observed downregulation of ATP
producing and consuming processes. Surprisingly, per-
ipheral leukocytes of female patients may sustain a lim-
ited metabolism by such downregulation without being
driven into apoptosis, as we did not observe upregula-
tion of cell death associated processes compared to male
patients.

During the pre-acute phases of increasing multiple
organ failure, the reduced energy production may be
an advantage by limiting the production of reactive
oxygen species (ROS). It was reported that cells of
females are less exposed to oxidative stress in healthy
conditions. Ide et al. observed a lower abundance
of in vivo biomarkers for oxidative stress in
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premenopausal women (Ide et al. 2002). In an animal
model, lower oxidative stress was observed (Barp et
al. 2002), and ROS production was lower in endothe-
lial cells of female compared to male individuals
(Zhang and Lingappan 2017). Hence, higher exposure
to oxidative stress may be an intrinsic risk factor for
male individuals when getting critically ill. In his re-
view about the discrepancy between the need for en-
ergy and the potential risk of cell damage when
producing energy, Mervyn Singer describes that a
hallmark of survivors of sepsis is to better preserve
ATP and mitochondrial functions (Singer 2014). He
suggests that in these patients, cells may enter a “hi-
bernating state in the face of overwhelming inflamma-
tion”. Our observation supports this as particularly in
the critical pre-acute phases, we observed a distinct
downregulation of these energy producing and con-
suming processes in the leukocytes of female patients.
Taken together, the leukocyte transcriptomic response
to trauma point to a better bioenergetic tolerance and
oxidative damage resistance in female patients.

We observed that gene sets of the adaptive immune re-
sponse were distinctively higher expressed in leukocytes of
female, compared to male patients during the late
post-acute phase, and also compared to healthy controls.
Additionally, female patients showed a distinct upregulation
of IL-4 production. The presence of IL-4 during the re-
sponse of naive T helper cells has been shown in the devel-
opment of Th2 cells (Zhu et al. 2010). Interestingly,
negative regulation of type I interferon production was also
upregulated in female patients. Type I IENs are known to
be important for the host defending viruses. However, in
vivo studies have also identified their immune suppressive
mechanisms (McNab et al. 2015), hence low levels for IFN
type one’s negative regulation may support the immune re-
covery. This suggests that gene regulation in female, but
not in male patients, paves the way for better recovery of
the adaptive immune system at the later stages.

There are certain limitations of our study. The patients
with multiple acute phases that were more than 3 days
apart could not be considered in the study due to their lim-
ited number and the availability of their transcriptome data.
The primary goal of our study was to identify longitudinal
differences of the regulatory response of peripheral leuko-
cytes between male and female trauma patients. A higher
number of time-resolved transcription profiles followed up
by functional studies in vitro and in animal models may
provide a more comprehensive view of the complicated re-
sponse and the following recovery processes.

Conclusion
After critical trauma, female and male patients exhibited
a distinctively different transcriptomic behaviour. Before
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the most severe day (i.e. the day with the highest MOF),
female patients showed differential regulation for a
stronger innate immune response, before, and at the
most severe day better bioenergetic tolerance and better
oxidative damage resistance. They showed early upregu-
lation of wound healing mechanisms and, after the most
severe day, a distinct upregulation of the adaptive im-
mune system. These results support our understanding
of the better clinical course of female patients after
trauma.
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