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Abstract

Background: Alcohol abuse affects the brain regions responsible for memory, coordination and emotional
processing. Binge alcohol drinking has shown reductions in brain activity, but the molecular targets have
not been completely elucidated. We hypothesized that brain cells respond to excessive alcohol by releasing
a novel inflammatory mediator, called cold inducible RNA-binding protein (CIRP), which is critical for the
decreased brain metabolic activity and impaired cognition.

Methods: Male wild type (WT) mice and mice deficient in CIRP (CIRP−/−) were studied before and after exposure to
binge alcohol level by assessment of relative brain glucose metabolism with fluorodeoxyglucose (18FDG) and positron
emission tomography (PET). Mice were also examined for object-place memory (OPM) and open field (OF) tasks.

Results: Statistical Parametric Analysis (SPM) of 18FDG-PET uptake revealed marked decreases in relative glucose
metabolism in distinct brain regions of WT mice after binge alcohol. Regional analysis (post hoc) revealed that
while activity in the temporal (secondary visual) and limbic (entorhinal/perirhinal) cortices was decreased in WT
mice, relative glucose metabolic activity was less suppressed in the CIRP−/− mice. Group and condition interaction
analysis revealed differing responses in relative glucose metabolism (decrease in WT mice but increase in CIRP−/− mice)
after alcohol in brain regions including the hippocampus and the cortical amygdala where the percent changes in
metabolic activity correlated with changes in object discrimination performance. Behaviorally, alcohol-treated WT mice
were impaired in exploring a repositioned object in the OPM task, and were more anxious in the OF task, whereas
CIRP−/− mice were not impaired in these tasks.

Conclusion: CIRP released from brain cells could be responsible for regional brain metabolic hypoactivity leading to
cognitive impairment under binge alcohol conditions.
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Introduction
Binge drinking is a popular mode of alcohol intake
in young adults and the worldwide prevalence of
such occurrence is about 16% (Global status report
on alcohol and health 2018, Geneva: World Health
Organization, https://www.who.int/substance_abuse/
publications/global_alcohol_report/en/). The National
Institute of Alcohol Abuse and Alcoholism (NIAAA)
defines binge drinking as ≥4 drinks for a woman
and ≥ 5 drinks for a man in about 2 h. A blood alco-
hol concentration (BAC) of 17.4 mM (0.08%) indi-
cates excessive drinking and it is the legal BAC limit
for driving in the US. Alcohol abuse negatively af-
fects nearly all body tissues, and particularly the
brain regions essential in memory, coordination and
emotional processing (Guerri and Pascual 2010; Jacobus
and Tapert 2013). Assessment of glucose metabolism has
long been used to measure brain synaptic activity and func-
tion. Measurement of relative glucose utilization with fluor-
odeoxyglucose (18FDG) and positron emission tomography
(PET) has the potential to detect early brain dysfunction
prior to any abnormal findings in neuropsychological test-
ing (Thanos et al. 2008). 18FDG-PET imaging has been uti-
lized to acquire neural snapshots of glucose metabolism in
alcoholics and non-alcoholic healthy subjects (Volkow et al.
1992; Volkow et al. 1990). Oral administration of moderate
to high doses of alcohol to non-alcoholic healthy adults
markedly reduces their relative brain glucose metabolism
(Schreckenberger et al. 2004; Volkow et al. 2006). However,
the molecular targets for high alcohol in the brain have not
been completely elucidated.
Cold inducible RNA-binding protein (CIRP) is a 172

amino acid protein belonging to a family of cold shock
proteins (Nishiyama et al. 1997). It consists of a con-
served N-terminal RNA binding domain, and a C-
terminal glycine rich domain. Recent work has identified
a novel function of CIRP in that, upon cellular stress, it
is released from the cell and functions as a danger asso-
ciated molecular pattern (DAMP) that promotes inflam-
mation. Thus, extracellular CIRP represents a novel
inflammatory mediator in stress conditions (Qiang et al.
2013). Functional brain imaging studies reveal that binge
alcohol drinking in human adolescents causes structural
alterations in distinct brain regions including the pre-
frontal cortex and the hippocampus (De Bellis et al.
2000; De Bellis et al. 2005). These structural anomalies
have been correlated with cognitive impairment and
neurophysiological abnormalities in young binge
drinkers (De Bellis et al. 2000; De Bellis et al. 2005).
Therefore, we hypothesize that binge alcohol increases
the release of CIRP from brain cells and leads to de-
creased metabolic activity in regions associated with
memory formation and cause impaired cognition. In the
present study, to determine whether CIRP influences

alcohol-mediated changes in brain metabolic activity, we
exposed WT mice and mice deficient in CIRP (CIRP−/−)
to binge levels of alcohol followed by 18FDG-PET im-
aging to assess relative brain glucose metabolism. The
same cohort of mice was assessed behaviorally with the
object place memory (OPM) and open field (OF) tasks.
In an additional cohort of WT and CIRP−/− mice, a test-
retest study was conducted where the mice underwent
an identical experimental protocol with the exception of
being treated with normal saline instead of alcohol.

Materials and methods
Experimental animals
Breeder pairs of CIRP−/− mice were a gift from Dr. Jun
Fujita (Kyoto University, Japan). CIRP−/− mice were 10x
backcrossed on C57BL/6 background, and were bred in
our animal facility (Qiang et al. 2013). Only male
CIRP−/− animals aged 10–12 weeks were used in this
study. Male C57BL/6 mice aged 10–12 weeks (20–25 g,
Taconic Labs, Albany, NY) were used as wild type (WT)
controls. WT mice were acclimated to the environment
for 5 days prior to any experiments. All mice were given
food and water ad libitum. All animal protocols were
performed based on the NIH Guide and Care of Labora-
tory Animals and were approved by the Institutional
Animal Care and Use Committee of the Feinstein Insti-
tute for Medical Research.

Model of binge alcohol in mice
WT and CIRP−/− mice were anesthetized with 3% isoflur-
ane inhalation and the right jugular vein was cannulated
with a PE-10 catheter while maintaining anesthesia at 1–
2%. Mice were infused with a bolus of 1.5 g per kg ethanol
(23% v/v) in normal saline through the cannula and the
other end of the catheter was connected via a mouse har-
ness (SAI infusion technologies, Libertyville, IL) to an in-
fusion pump (KD Scientific, Holliston, MA). The harness
allowed free movement of the animal. Mice were allowed
to recover from anesthesia and the initial bolus infusion
for 1 h, after which they received 300mg per kg per h
ethanol via the infusion pump for 15 h totaling 6 g per kg
alcohol. Afterwards, they were lightly re-anesthetized, the
cannula was removed and the vein ligated.

MicroPET imaging
Metabolic PET studies were performed following an
established imaging protocol. Briefly, awake mice were
given 18FDG (0.34–1.0 mCi/kg) intraperitoneally and
were allowed unrestrained tracer uptake for 45 min.
Mice were then anesthetized with 2–3% isoflurane inhal-
ation and maintained at 1–2% while positioned in the
Siemens Inveon PET scanner (Siemens AG, Munich,
Germany). A 10-min static emission scan then was ob-
tained within a field of view (FOV) of 12.7 cm, with a
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full width half maximum (FWHM) resolution of 1.2 mm
at the center of FOV and a slice thickness of 0.796 mm.
All mouse images were reconstructed using 3-dimensional
Ordered Subset Expectation Maximization with Maximum
A Priori (OSEM/3-D MAP). The resulting whole-body
image had a matrix size of 128mm X 128mm X 159mm
and a pixel size of 0.776 X 0.776 X 0.796 cubic millimeters,
which is consistent with the image resolution of the micro-
PET scanner. Whole blood glucose values were taken after
each scan using a commercially available kit. 18FDG-PET
images underwent a series of preprocessing procedures
described below.

Acquisition and preprocessing of images
All mouse scan acquisitions were reconstructed using
identical parameters and subsequently preprocessed on an
Apple Mac Pro (Mac OS X 10.8.5, 2 × 2.93 Ghz 6-core
intel Xeon microprocessors) using PMOD software ver-
sion 3.3 (PMOD Technologies Ltd., Zurich, Switzerland).
To extract the brain from the whole-body, each raw ro-
dent image was cropped and re-oriented using a bounding
box with a matrix size of 14.9mm× 20.7mm× 11.9mm,
and of the identical voxel size as the unprocessed image.
For anatomical alignment, all reconstructed images were
placed into the mouse brain stereotaxic space (Paxinos
and Franklin 2008) using 18FDG-baseline template avail-
able on the PMOD website as a fusion tool (http://www.
pmod.com/files/download/v36/doc/pbas/4996.htm). The
18FDG baseline template (Mirrione et al. 2007) was cre-
ated using male C57/BL6 mice aged 2–5months (24–34
g), and is based on a segmented MRI mouse brain dataset
(Ma et al. 2005). The 18FDG template was opened in the
PMOD reference window with activity set to milliCurie
(mCi). Each reconstructed mouse scan file contained brain
information for two mice, which necessitated loading
image files in top-to-bottom configuration, and with the
Z-axis perpendicular to the coronal slice. With these set-
tings in place, manual co-registration of images proceeded
in the following order: for each file, the first (top) mouse
brain image was manually aligned to the reference 18FDG-
template and saved. The second (bottom) mouse brain
was then manually flipped into position by mirroring180°
along the x-axis and registered to the 18FDG template.
Implementing this method for all mouse images permitted
individual registration in sagittal, coronal, and transverse
anatomical planes. In addition, mouse brain images were
“skull stripped” to remove all non-brain metabolic regions
in the following manner: Each file was loaded together
with an 18FDG-brain mask file (created using the 18FDG-
baseline template) in the PMOD manual co-registration
window to eliminate all pixel values outside of the brain
image/18FDG-brain mask. The resulting images were con-
verted into maps of standard uptake value (SUV) using
injected dose and body weight for each animal to account

for individual variability in injected radiotracer activity
and weight. These images were then subsampled by ap-
proximately a factor of 10 to satisfy the theoretical re-
quirement of Gaussian random field for subsequent brain
mapping analysis described below with SPM.

18FDG-PET image analysis
PET images of SUV were analyzed using a mouse ver-
sion of statistical parametric mapping software (SPM 5;
Wellcome Department of Imaging Neuroscience, Insti-
tute of Neurology, London, UK) running in MATLAB
7.3 (The Mathworks Inc., MA). The baseline microPET
brain images and those acquired post-alcohol were
spatially aligned to each other, and then transformed
into the standardized anatomical space using the 18FDG
mouse brain template described above. Each image was
normalized by its global value to minimize inter-
individual variability and to increase statistical power.
Analyses were performed on a voxel-by-voxel basis over
the whole brain using general linear models imple-
mented in SPM. A paired t-test model was first used to
produce a set of brain regions in the WT mice showing
highly significant decreases in globally normalized meta-
bolic activity. Additionally, a two-way ANOVA was per-
formed to reveal the effect of group x condition
interaction. This analysis was conducted to examine ex-
plicitly the statistically significant group differences in
regional metabolic activities between the two groups
after treatment. The regions detected by each SPM run
were then overlaid onto a mouse MRI brain template
and identified using a mouse brain stereotaxic coordi-
nates atlas (Paxinos and Franklin 2008). Globally nor-
malized metabolic values were measured post-hoc in all
PET images of WT and CIRP−/− mice over each of the
regions defined by separate SPM analysis above. Changes
in regional metabolism between pre- and post-alcohol
conditions were computed using percent change [(post
alcohol – pre alcohol) × 100/pre-alcohol] in each animal.

Behavioral testing
One week prior to behavioral assessment, mice were
maintained on a reverse schedule of 12-h darkness (07:
00 to 19:00) and 12-h light, with food and water ad libi-
tum. For 3 days before testing, the mice were handled in
daily sessions of 5–10min. Animal handling and the ini-
tial testing were done during their dark circadian period.
The mice were subjected to object-place memory (OPM)
and open field (OF) tasks.
OPM testing was conducted as previously described

(Faust et al. 2013). The apparatus consisted of a square
base chamber (40 cm on each side X 60 cm high) built
of polyvinyl chloride, which was painted gray. An
orange-red light bulb (50W) illuminated the chamber
from above. An infrared sensitive camera (Marshall
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Electronics, model CV502-MB) was mounted above the
chamber and connected to the video input for the be-
havior tracking software (Ethovision XT11.5, Noldus),
which tracked the mouse position at 30 frames per sec.
The chamber and the objects were cleaned with 70%
ethanol between subjects and groups. The OPM task
consisted of a familiarization trial (T1), a sample trial
(T2) and a choice trial (T3) interspersed by 10-min in-
tervals in the familiar square base chamber. For T1, mice
were placed in the empty chamber for 10 min. For T2,
mice explored the chamber for 10 min in the presence
of two identical objects. For T3, mice explored the
chamber for 10 min when one object remained at the
same place as T2 (S) but the second object was moved
to a different location in the chamber (M). The object
exploration was measured with a software (Ethovision
XT11.5, Noldus) algorithm that assigned a circular zone
around each object and recorded the events in which
the animal’s snout was in close proximity (< 1 cm) to the
object. The sum of number of visits and the times spent
on exploring both objects in T2 and T3 were also
assessed. During T3, the discrimination ratio was calcu-
lated as “the time exploring the moved object (M) minus
that of the stable object (S) over the times of the sum of
both objects” or “[(M –S) / (M + S)]”.
For the OF task, the movements of the mice were auto-

matically recorded for 10min in the same chamber as the
OPM task, and expressed as percent of total time the mice
remained at the center of the chamber as opposed to the
periphery, using an automated method (“arena setting
tab” within Ethovision). The amount of time (sec) that the
mice spent self-grooming was also measured during the
OF task, using an automated method (“mouse behavior
recognition module” within Ethovision).

Experimental design
On Day 1 of the experiment, mice underwent pre-
alcohol behavior tests in the behavior suite located adja-
cent to the microPET imaging suite. The cyclotron ra-
diotracer preparation facility is also located adjacent to
the microPET suite, and prior arrangements were made
to have the radiotracer prepared for use at 9:00 AM. Ten
minutes after the baseline behavior test, the unanesthe-
tized and unrestrained mice were injected intraperitone-
ally with the 18FDG radiotracer in the microPET suite
and 45 min allowed for 18FDG uptake to take place. In-
traperitoneal (I.P.) injection of 18FDG is a valid alterna-
tive to intravenous (I.V.) injection, and it has been
shown to have similar pharmacokinetics to IV adminis-
tration in small animal studies (Wong et al. 2011). After
allowing sufficient time for 18FDG uptake, mice were
anesthetized with 3% isoflurane inhalation and placed on
the microPET scanner with 1–2% isoflurane anesthesia
maintained during scanning. After scanning, the mice

were allowed to remain in the climate and light-
controlled room within the microPET suite for 24–30 h
to allow for radiotracer decay. On Day 2, mice were
returned to the vivarium and anesthetized with 3% iso-
flurane inhalation, and the right jugular vein cannulated
with a PE10 catheter while anesthesia was maintained at
1–2%. They were then infused with alcohol bolus (1.5 g
per kg) and allowed 1 h for recovery from anesthesia and
the bolus injection. Afterwards, the other end of the
PE10 catheter was connected to an infusion pump and
infused with alcohol (300mg per kg per h) for 15 h.
Mice were fitted with a harness allowing free movement
of the animal during infusion (https://www.sai-infusion.
com). At the end of 15 h, they were lightly anesthetized
and the catheter was removed and the vein ligated. Im-
mediately after the infusion, on Day 3, the mice were
transferred to the microPET suite and injected intraperi-
toneally (IP) with 18FDG. During the 18FDG uptake,
mice were subjected to post-alcohol behavior tests in an
identical manner as the pre-alcohol behavior tests. After
45 min, the second microPET scan (post-alcohol) was ac-
quired. Mice were then euthanized by CO2 asphyxiation
(see Table 1 for a detailed timeline of each experiment).
Using this timeline, experiments were performed in
batches of 4 mice (2 WT and 2 CIRP−/− mice) until com-
pletion of the study.
A total of 14 mice per group were included in the

study. Despite our attempt to utilize the same mice for
behavioral assessment and microPET analysis, 3 WT
mice and 1 CIRP−/− mouse died prior to the post-
alcohol scan and the second behavior analysis due to
technical difficulties encountered during vein cannula-
tion. In addition, behavioral testing failed in one CIRP−/−

mouse at the pre-alcohol test, and behavioral testing was
not conducted in one WT mouse but the pre-alcohol
and post-alcohol scans were completed.
All mice had ad libitum access to food and water

throughout the experiment. During the 15 h continuous
infusion, mice were awake and were given food pellets
and water gels inside the cages to allow easy access to
food and water. Those animals that died prior to the sec-
ond scan and behavioral tests died during vein cannula-
tion. There were no mortality events during continuous
infusion or during pre- or post-alcohol scanning periods.
A separate cohort of mice (n = 3) received 1.5 g per kg
alcohol bolus and 1 h later, they were re-anesthetized
with 3% isoflurane inhalation, euthanized by CO2 as-
phyxiation and blood collected via cardiac puncture.
Blood alcohol concentration (BAC) was measured im-
mediately using a commercially available kit (Pointe Sci-
entific). BAC reached to 37–38 mM (0.17%) at 1 h after
the initial bolus dose, which constitutes binge alcohol
levels. In an additional cohort of WT and CIRP−/− mice
(n = 5/group), a test and re-test study was conducted.
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The same experimental protocol and timeline as de-
scribed earlier were followed with the exception that all
mice were treated with normal saline instead of alcohol.

Statistical analysis
Data of regional glucose metabolism or measures of be-
havioral testing were compared separately between con-
ditions and groups. Changes between conditions were
assessed by paired t-tests and differences between
groups were evaluated by unpaired t-tests and Mann-
Whitney test. Analysis for group and conditions inter-
action was conducted using two-way analysis of variance
(ANOVA). Correlation analysis of regional metabolic
values among different regions and with spatial cogni-
tion tasks was conducted by Pearson correlation.

Results
Relative brain glucose metabolic activity was decreased
regionally in mice after binge alcohol
The analysis of WT brains consisted of defining regions of
metabolic changes between the pre-alcohol and post-
alcohol treatment conditions, by using a paired t-test
model with the display parameter (Threshold (T) = 4.297,
P < 0.001). We found several brain structures that showed
decreased glucose metabolism, which were identified
based on the 3D mouse brain atlas (Fig. 1a). Specific brain
regions, their peak coordinates and t-value (actual thresh-
olds) are presented (Tables 2 and 3).

CIRP deficiency attenuated the decrease in brain
metabolic activity observed in WT mice after binge
alcohol
We observed, using the region-of-interest analysis, that
the percent (%) changes of the globally normalized meta-
bolic values were decreased to a smaller degree in CIRP−/−

mice compared to WT mice. Among these regions, the %
changes were significantly smaller in CIRP−/− mice for the

following cortical regions: agranular insular, secondary vis-
ual, primary somatosensory, and reached a trend level in
entorhinal/perirhinal cortex (Fig. 1b, Table 4). In a correl-
ation analysis where the data were combined between WT
and CIRP−/− mice (n = 22), changes in regional metabolic
values in the entorhinal/perirhinal cortex correlated with
those in agranular insular cortex and primary somatosen-
sory cortex (r > 0.5; P < 0.02).

CIRP deficiency reversed the decrease in brain metabolic
activity observed in WT mice after binge alcohol
The percent changes of the globally normalized meta-
bolic values from WT mice and CIRP−/− mice were ana-
lyzed in SPM using a two-way ANOVA to examine the
effect of group x condition interaction. When the display
parameter was set to Threshold = 2.42, P < 0.01, the ana-
lysis produced 7 regions where metabolic activity de-
creased in WT mice but increased in CIRP−/− mice
(Fig. 2a, b, Table 5). The same 7 regions were also sig-
nificant with the display parameter set to P < 0.005. The
two-way ANOVA revealed similar regions to the original
analysis including the insular, visual and primary som-
atosensory cortices. Interestingly, this analysis identified
two additional regions, i.e., the hippocampus and the
cortical amygdala (specifically, the posteromedial cortical
amygdaloid area, PMCoAA). In a correlation analysis
when the data were combined between WT and CIRP−/−

mice (n = 17), strong correlations between regions were
identified in treatment induced changes in relative meta-
bolic values. The fimbria of the hippocampus correlated
with PMCoAA (r > 0.5; P = 0.02), and primary somato-
sensory cortex, barrel field (r > 0.4; P = 0.05).

Regional brain metabolic activity was similar in WT and
CIRP−/− mice after saline control treatment
Normalized glucose metabolic values were computed
post-hoc in test-retest acquisitions using the same regions

Table 1 Timeline for each experiment. Abbreviations: FDG, fluorodeoxyglucose; PET, positron emission tomography

DAY Time Procedure

1 9:00–10:00 Object Place Memory task #1

1 10:10–10:55 FDG injection and uptake

1 10:55–11:05 Pre-alcohol microPET scan under anesthesia

1–2 11:05–16:00 Tracer decay for 29–30 h

2 16:00–18:00 Vein cannulation, alcohol bolus (i.v.) under anesthesia

2 18:00–19:00 Recovery

2–3 19:00–9:00 Alcohol infusion via pump, without anesthesia

3 9:00–9:10 Vein ligation after 15 h under light anesthesia

3 9:20–10:05 FDG injection

3 9:20–10:05 Object Place Memory task #2 (assessed during FDG uptake)

3 10:05–10:15 Post-alcohol microPET scan under anesthesia

3 10:20 Euthanasia
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that were defined using paired t-test in the WT group
(Table 2) and ANOVA in the WT and CIRP−/− groups
(Table 3) respectively. The post-hoc analysis for regions in
Table 2 showed that regional 18FDG uptake values were
stable in the WT or CIRP−/− mice (P > 0.05, P > 0.08,
paired t-tests) in all regions except primary somatosensory
cortex (barrel field), where the retest values were lower (P
< 0.008) than those in the test scans (Table 4). Similar

analyses for regions in Table 3 were conducted on regions
identified in the ANOVA (Table 5). Interestingly, with the
exception of the same region, primary somatosensory cor-
tex (barrel field), (P < 0.001), no significant difference in
percent changes were observed between pre- and post-
saline in any other region in the WT or CIRP−/− mice
(P > 0.05, P > 0.12, paired t-test). Nevertheless, no group
differences were detected in any regions in terms of percent

Fig. 1 Regional metabolic activity was decreased in the WT mice after binge alcohol and deficiency in CIRP attenuated these decreases in
metabolic activities. a 18FDG-PET images from WT mice were analyzed by SPM8 software. Regions with decreased metabolic activity were aligned
onto a standard mouse MRI brain template and regions anatomically identified based on a three-dimensional mouse brain atlas (Paxinos and
Franklin 2008). Using bregma as the reference point, the Y-coordinate corresponds to the anterior-posterior (AP) distance from bregma in the
coronal plane, the X-coordinate corresponds to the sagittal or mediolateral (ML) plane, and the Z-coordinate corresponds to the axial or
dorsoventral (DV) views of the brain regions. b Percent changes in globally normalized metabolic values in WT and CIRP−/− (KO) mice of specific
regions identified in the WT group. Data are expressed as mean ± SE; * P < 0.05, * P < 0.001; # P = 0.069, KO vs. WT mice of respective regions
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changes in regional glucose metabolic values between post-
and pre-saline conditions in both analyses (P > 0.08, un-
paired t-tests).
The possible influence of plasma glucose levels on the

observed results was also analyzed. This is important
not only to indicate rigorous quality control of the study,
but also to support the robustness of regionally specific
differences in cerebral glucose metabolism detected in
the brain between the treatment conditions and animal
groups. Indeed, no treatment-related changes were
found for the injected dose, plasma glucose, global SUV
values before and after correction with plasma glucose
concentration in WT (P > 0.17, paired t-test) or CIRP−/−

(P > 0.07) group or in the combined group (P > 0.11). No
group differences were detected in these variables except
in global SUV values corrected for plasma glucose at
post-alcohol treatment (P < 0.05, unpaired t-test). In the
test re-test study, no treatment-related changes were
found for the injected dose, plasma glucose, global SUV
values before and after correction with plasma glucose
concentration in WT (P > 0.06, paired t-test) or CIRP−/−

(P > 0.35) group or in the combined group (P > 0.11). No
group differences were detected in these variables in the
WT (P > 0.09, unpaired t-test) and CIRP−/− (P > 0.14)
groups. No group differences were seen (P > 0.07, un-
paired t-test) in these variables in terms of % changes
between pre- and post-saline conditions. A detailed stat-
istical analysis is shown in Table 6.

CIRP deficiency prevented the impaired spatial cognition
observed in WT mice after binge alcohol exposure
For the OPM task (Fig. 3), a positive discrimination ratio
indicates the preferential exploration of a moved object
and spatial memory. The total time exploring objects
during the sample phase and test phases were signifi-
cantly decreased in the WT mice post-alcohol but in the
CIRP−/− mice, these times were not altered from the
pre-alcohol tests (Fig. 3b). Both WT and CIRP−/− mice
had similarly positive discrimination ratios at pre-
alcohol. The alcohol treatment did not perturb spatial
cognition in CIRP−/− mice as they continued to examine
a recently moved object during the OPM task (T = 0.15,
P = 0.87, t test). Conversely, WT mice showed signifi-
cantly impaired OPM performance (T = 3.9, P = 8.75 ×
10− 4, t test) (Fig. 3c). A two-way ANOVA of the dis-
crimination ratios revealed a significant difference by
genotype (F = 5.22, P = 0.027) as well as genotype x alco-
hol treatment (F = 4.21, P = 0.021).

CIRP deficiency inhibited the altered OF behavior shown
by WT mice after binge alcohol exposure
WT and CIRP−/− mice spent similar time in the center
and periphery of the chamber at pre-alcohol. However,
the alcohol treatment resulted in CIRP−/− mice displaying
higher exploration of the center of the OF than the WT
group, demonstrating their familiarity to the chamber
(Fig. 4b). The total distances traversed were significantly

Table 2 Regional metabolic activity was decreased in WT mice after binge alcohol. Regions identified by SPM with decreases in
metabolic activity in WT mice post-alcohol (T = 4.3, P = 0.001)

Regions Anatomical Regions X (mm) Y (mm) Z (mm) Threshold Voxels

R11 Agranular insular cortex, dorsal part 2.2 2.1 −2.8 10.07 2677

R13 Secondary visual cortex, lateral area −3.8 − 3.2 − 1.5 7.04 819

R14 Glomerular layer of the olfactory bulb 1.3 4.8 −2.9 6.93 1567

R15 Entorhinal/perirhinal cortex −4.7 −3.6 −2.9 6.65 1181

R17 Spinal trigeminal tract 1.8 −7.8 −4.6 6.4 945

R18 Spinocerebellar tract − 1.5 −8.1 − 5.8 5.86 2714

R19 Primary somatosensory cortex, barrel field 3.2 0.3 −2.0 5.24 142

Table 3 Regional metabolic activity was decreased in WT mice after binge alcohol. Regions identified using two way ANOVA by
SPM with decreases in metabolic activity in WT mice post-alcohol (T = 2.4, P < 0.01)

Regions Anatomical Regions X (mm) Y (mm) Z (mm) Threshold Voxels P

R1 Olfactory bulb, glomerular layer −1.9 3.8 −2.4 3.99 429 0.001

R2 Agranular insular cortex, ventral part 1.7 2.6 −2.6 3.38 936 0.001

R3 Cerebellum, third lobule of cerebellar vermis −1.5 −5.9 −2.9 3.23 297 0.001

R4 Posteriomedial cortical amygdaloid area −2.7 −3.3 −5.3 3.22 243 0.001

R5 Hippocampus, fimbria −2.7 − 2.0 − 3.9 3.22 948 0.001

R6 Primary visual cortex −4.1 −4.0 −1.5 3.15 359 0.002

R7 Primary somatosensory cortex, barrel field 2.9 0.3 −2.0 3.13 596 0.002
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decreased from pre-alcohol to post-alcohol in both WT
and CIRP−/− mice, but the decrease was smaller in
CIRP−/− mice (Fig. 4c). A two-way ANOVA of the dis-
tance demonstrated no difference by genotype (F = 3.41, P
= 0.07), but significant variance by alcohol treatment (F =
24.36, P = 1 × 10− 5) as well as genotype x treatment (F =
13.56, P = 2.2 × 10− 5). Additionally, both groups showed
increased levels of self-grooming after the alcohol treat-
ment (Fig. 4d).

Regional metabolic activity is significantly correlated with
spatial cognition after binge alcohol exposure
In a correlation analysis where the data were combined
between WT and CIRP−/− mice (n = 17), there was a
strong correlation between the changes in discrimination
ratio and the percent changes in metabolic activity the
fimbria of the hippocampus (r = 0.73, P < 0.001) and in
the PMCoAA (r = 0.53, P = 0.03) (Fig. 5).

Discussion
Binge level of alcohol administration in healthy non-
alcoholic subjects showed decreased brain glucose metab-
olism using 18FDG-PET (Volkow et al. 2006) but similar
studies have not been done in rodent models of binge

alcohol exposure. The objective of the current study was
to first identify regions in WT mice where brain glucose
metabolism decreased due to binge alcohol exposure, and
then determine whether those specific regions were less
suppressed in the CIRP−/− mice after alcohol. In order to
address the first objective, SPM analysis with paired t-test
using general linear models were performed on the data
obtained from the WT mice during pre- and post-alcohol.
This model produced a set of brain regions of 18FDG up-
take in the WT mice showing highly significant decreases
in globally normalized metabolic activity. The regions
were overlaid onto a mouse MRI brain template, and iden-
tified using an anatomical mouse brain atlas (Paxinos and
Franklin 2008). To address the second objective, globally
normalized metabolic values of WT and CIRP−/− brain re-
gions were analyzed post hoc in each of the regions identi-
fied by SPM analysis. The initial analysis revealed marked
differences between the two animal groups in several re-
gions, including the temporal (secondary visual) cortex
and a trend difference in the limbic (entorhinal/perirhinal)
cortex. This simple strategy tested the main hypothesis of
neuroprotection in CIRP−/− mice versus WT mice follow-
ing binge alcohol exposure. The SPM analysis was then
performed using two-way ANOVA to reveal the effect of

Table 4 Regional metabolic activity in regions identified in the WT mice after binge alcohol. Percent changes in regional metabolic
activity in the WT and CIRP−/− mice treated with alcohol or normal saline (mean ± SE). * P < 0.05 and ** P < 0.01 between pre- and
post-saline treatment within groups

Regions Anatomical Regions Alcohol Saline

WT (% change) KO (% change) P WT (% change) KO (% change) P

R11 Agranular insular cortex, dorsal part −12.7 ± 1.4 −3.5 ± 1.9 0.001 −3.6 ± 3.1 −1.3 ± 3.1 0.84

R13 Secondary visual cortex, lateral area −10.8 ± 1.6 0.6 ± 4.4 0.029 1.0 ± 5.0 7.7 ± 7.1 0.46

R14 Glomerular layer of the olfactory bulb −16.1 ± 2.4 −15.5 ± 2.8 0.887 10.6 ± 10.3 −12.5 ± 5.1 0.08

R15 Entorhinal/perirhinal cortex −17.2 ± 2.4 −8.6 ± 3.5 0.069 −11.1 ± 3.9 −7.2 ± 7.1 0.64

R17 Spinal trigeminal tract −15.8 ± 2.3 −16.5 ± 3.2 0.501 −2.9 ± 6.7 −19.0 ± 5.1 0.09

R18 Spinocerebellar tract −31.7 ± 4.9 − 32.9 ± 6.1 0.878 0.03 ± 13.2 −7.2 ± 14.0 0.72

R19 Primary somatosensory cortex, barrel field −11.9 ± 2.3 −3.4 ± 2.4 0.02 −10.3 ± 1.9** −10.9 ± 3.7* 0.88

Table 5 Regional metabolic activity in regions identified by the two way ANOVA analysis. Percent changes in regional metabolic
activity in the WT and CIRP−/− mice treated with alcohol or normal saline (mean ± SE). ** P < 0.01 between pre- and post-saline
treatment within groups

Regions Anatomical Regions Alcohol Saline

WT (% change) KO (% change) P WT (% change) KO (% change) P

R1 Olfactory bulb, glomerular layer −14.5 ± 5.1 5.2 ± 3.1 0.004 13.1 ± 12.4 10.5 ± 12.2 0.89

R2 Agranular insular cortex, ventral part −10.1 ± 4.0 4.7 ± 2.0 0.002 −5.8 ± 4.8 4.7 ± 3.8 0.13

R3 Cerebellum, third lobule of cerebellar vermis 1.5 ± 2.9 12.3 ± 2.1 0.006 −0.3 ± 4.8 10.3 ± 5.4 0.18

R4 Posteriomedial cortical amygdaloid area −11.3 ± 5.5 3.1 ± 3.2 0.03 1.2 ± 3.8 2.1 ± 6.4 0.91

R5 Hippocampus, fimbria −5.3 ± 2.5 5.1 ± 2.1 0.004 2.8 ± 4.0 1.1 ± 3.4 0.75

R6 Primary visual cortex −18.6 ± 5.1 −1.1 ± 4.8 0.022 4.2 ± 5.5 14.4 ± 8.2 0.1

R7 Primary somatosensory cortex, barrel field −8.5 ± 2.3 2.1 ± 2.5 0.006 −10.0 ± 0.9* −6.6 ± 3.1 0.34
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group X condition interaction. The two-way ANOVA
revealed similar regions of 18FDG uptake to the original
analysis including the insular, visual and primary som-
atosensory cortices. Interestingly, this analysis identified
additional regions such as the hippocampus and the
cortical amygdala.
The present study showed that binge alcohol exposure

in WT mice leads to decreases in relative brain glucose
(18FDG) uptake within several neocortical areas, includ-
ing the temporal lobe. The medial temporal lobe con-
sists of the hippocampal region and the adjacent
perirhinal, entorhinal and the parahippocampal cortices,

which are essential for spatial and episodic memory
(Squire et al. 2004). In rodent models, dysfunction of
these regions results in impaired object place memory
(Faust et al. 2013). Acute ethanol exposure can also re-
sult in deficient spatial reference memory (Matthews et
al. 1995; Matthews et al. 1999; Matthews and Morrow
2000). We found that binge alcohol-exposed WT mice
showed abnormalities when exploring a moved object in
the OPM task and when exploring an open field. In con-
trast, similar exposure to alcohol in CIRP−/− mice did
not lead to impairments in the OPM and the OF tasks.
Pearson correlation analysis between the changes in

Fig. 2 Deficiency in CIRP reversed the decreased regional metabolic activity in the WT mice after binge alcohol. a Regions identified by SPM
analysis using two way ANOVA in which metabolic activity was decreased in WT mice but increased in KO mice during post-alcohol were aligned
to mouse MRI brain template and regions anatomically identified based on a three dimensional mouse brain atlas (Paxinos and Franklin 2008). b
Percent changes in globally normalized metabolic values decreased in WT mice but increased in CIRP−/− (KO) mice over specific regions revealed
by the two-way ANOVA. The regions are as follows: R1-Olfactory bulb, glomerular layer, R2-agranular insular cortex, ventral part, R3-cerebellum,
3rd lobule of cerebellar vermis, R4- posteromedial cortical amygdaloid area, R5-hippocampus, fimbria, R6-primary visual cortex, R7-primary
somatosensory cortex, barrel field. See Table 2 for the stereotaxic coordinates and anatomic volumes of these regions. Data are expressed as
mean ± SE; * P < 0.05, ** P < 0.005, KO vs. WT mice of respective regions

Jacob et al. Molecular Medicine           (2019) 25:24 Page 9 of 15



relative metabolism in the 7 regions identified by two-way
ANOVA and the changes in OPM ratio showed strong
correlations in the hippocampus and the cortical amyg-
dala. The revelation that the metabolic activity is de-
creased in the hippocampus after binge alcohol further
strengthens the observation of the significant decrease in
the OPM ratio in WT mice. The data also revealed a
strong correlation between regions identified in the two-
way ANOVA analysis. Interestingly, the changes in re-
gional metabolic activities in the hippocampus correlated
with those in the cortical amygdala. Therefore, the current
study strongly suggests that binge alcohol exposure de-
creases metabolic activity in brain regions associated with
memory and cognition of WT mice, whereas these activ-
ities are relatively preserved in the CIRP−/− mice, indicat-
ing a crucial role of CIRP during binge alcohol exposure.
Since its discovery in 1997, diverse functions of CIRP

have been increasingly recognized, from being an RNA
chaperone, to a mediator of inflammation (Nishiyama et

al. 1997; Sheikh et al. 1997; Xue et al. 1999; Gualerzi et al.
2003; Wellmann et al. 2004; Morf et al. 2012; Qiang et al.
2013). CIRP is expressed at low levels in nearly all tissue,
and upon cellular stress, it can be translocated to the cyto-
sol where it binds to 3′ regions of target mRNAs to either
increase or decrease their translation. This interaction reg-
ulates cell proliferation, survival, apoptosis and the circa-
dian rhythm. While CIRP may function as a protective
protein intracellularly, it can be released from cells and
the extracellular CIRP may work as a DAMP that pro-
motes inflammation (Qiang et al. 2013; Rajayer et al. 2013;
Zhou et al. 2013). Since in the present study, CIRP−/− mice
were protected from the decreases in metabolic brain ac-
tivity and cognitive deficits that occur after binge alcohol
exposure, it can be speculated that the observed protec-
tion is due to the elimination of either the intracellular or
extracellular CIRP.
A major limitation to our study is that we did not dis-

criminate whether the observed decrease in metabolic

Table 6 Absolute SUV values corrected for plasma glucose concentration. Global SUV values corrected for glucose levels at post-
alcohol between WT and CIRP−/− mice are significant (P = 0.034, unpaired t-test). No group differences were seen in global SUV
values in percent changes between pre- and post-saline treatment (P > 0.07, unpaired test)

Weight (g) Injected dose
(mCi)

Blood glucose (mg/
dl)

Global SUV Global SUV x blood
glucose

Cohort 1

WT-baseline 25.2 ± 0.53 0.98 ± 0.21 209 ± 10.0 84.62 ± 5.87 16.84 ± 1.68

WT-post-alcohol 23.6 ± 0.43 0.67 ± 0.10 203 ± 11.9 82.86 ± 8.58 14.88 ± 1.05

WT baseline vs. post-alcohol (P value) 0.029 0.218 0.807 0.780 0.171

KO-baseline 28.6 ± 1.11 1.00 ± 0.20 212 ± 19.0 91.48 ± 7.82 18.90 ± 1.60

KO-post-alcohol 27.8 ± 1.23 0.79 ± 0.11 193 ± 7.80 108.47 ±
9.51

21.18 ± 2.42

KO baseline vs. KO post-alcohol (P value) 0.181 0.348 0.421 0.072 0.528

WT + KO (baseline) 27.0 ± 0.7 0.99 ± 0.14 211 ± 12.0 88.37 ± 4.98 18.08 ± 1.27

WT + KO (post-alcohol) 25.8 ± 0.81 0.73 ± 0.07 198 ± 6.67 96.28 ± 6.90 18.20 ± 1.52

WT + KO baseline vs WT + KO post-alcohol (P
value)

0.009 0.113 0.403 0.146 0.991

Cohort 2

WT-baseline 23.60 ±
0.81

0.67 ± 0.04 184 ± 11.8 99.32 ±
10.86

16.41 ± 2.31

WT-post-saline 24.40 ±
0.60

0.83 ± 0.04 175 ± 14.6 67.07 ± 7.09 12.09 ± 0.55

WT baseline vs. post-saline (P value) 0.242 0.09 0.73 0.058 0.211

KO-baseline 23.0 ± 0.55 0.61 ± 0.04 190 ± 12.4 71.80 ± 9.29 12.66 ± 0.56

KO-post-saline 23.4 ± 0.40 0.66 ± 0.11 197 ± 9.5 72.57 ± 4.67 13.58 ± 0.72

KO baseline vs. KO post-saline (P value) 0.374 0.678 0.499 0.934 0.346

WT + KO (baseline) 23.30 ±
0.47

0.64 ± 0.03 187 ± 7.8 85.56 ± 8.15 14.53 ± 1.35

WT + KO (post-saline) 23.90 ±
7.56

0.74 ± 0.23 186 ± 9.0 69.82 ± 4.11 12.83 ± 4.54

WT + KO baseline vs WT + KO post-saline (P
value)

0.111 0.135 0.377 0.114 0.322
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activity in WT mice was due to extracellular or intracel-
lular effects of CIRP. A previous study that included sur-
gical intensive-care patients, as well as rodent models of
hemorrhagic shock and sepsis, found detectable levels of
CIRP protein in the blood (Qiang et al. 2013). Blocking
CIRP, either by neutralizing antibody or the use of
CIRP−/− mice, showed decreased inflammation and im-
proved survival in several rodent models of inflamma-
tory diseases including hemorrhagic shock and sepsis
(Qiang et al. 2013; Godwin et al. 2015; Cen et al. 2016).
In vitro experiments with macrophage cells exposed to

hypoxia/reoxygenation, or LPS stimulation, have shown
that CIRP is translocated from nucleus to cytosol and se-
creted into the medium (Qiang et al. 2013). In addition,
exogenous administration of recombinant murine CIRP
in healthy rats increased markers of liver injury and in-
flammatory cytokines (TNF-α, IL-6 and HMGB1), indi-
cating that extracellular CIRP is an inflammatory
mediator that can trigger inflammation under stress con-
ditions (Qiang et al. 2013). The extracellular action of
CIRP is mediated by TLR4/MD2 and acts as a DAMP to
promote inflammation (Qiang et al. 2013). Released

Fig. 3 Deficiency in CIRP prevented the decreased spatial cognition observed in the WT mice after binge alcohol. a Scheme for the object-place
memory (OPM) task in which a mouse explores two objects, with one object being moved in the last session. b Total time exploring both
objects during sample phase and test phases. c Left, representative heat maps of WT and CIRP−/− mice exploring the moved object, Right,
discrimination ratio (moved minus stable object over moved plus stable object [(M-S)/(M + S)]) between WT and CIRP−/− mice at pre-alcohol and
post-alcohol conditions. Data are expressed as mean ± SE; * P < 0.05; ** P < 0.005 by t-test
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CIRP has been shown to induce endothelial cell pyropto-
sis and initiate adaptive T-cell responses (Yang et al.
2016; Bolognese et al. 2018). CIRP can also be released
from BV2 microglia cells in response to alcohol (Rajayer
et al. 2013). These previous findings strongly suggest
that extracellular CIRP could be responsible for the
binge alcohol-induced regionally specific brain hypoac-
tivity leading to impaired cognition. A behavioral limita-
tion is that the testing was solely selected based on
previous reports (Garcia-Moreno and Cimadevilla 2012).
Specific behavioral analysis related to the regions identi-
fied in the 18FDG-PET analysis should provide insights
into the role of CIRP and behavioral dysfunction in
binge alcohol exposure.
It is important to examine several experimental factors

that may impact the methodology of PET imaging

acquisition and analysis. With the exception of a slight
decrease in body weight in the post-alcohol WT mice (P
= 0.03), there were no treatment related changes in
whole blood glucose values, injected dose or global SUV
values before and after correction with plasma glucose
concentrations in either the WT mice, CIRP−/−, or in
the combined group. No group differences were detected
in these variables except in global SUV values corrected
for plasma glucose levels at post-treatment (P = 0.03).
These observations confirmed adequate quality control
for the imaging portion of the study, and justified the
use of globally normalized metabolic values in the ana-
lysis of the imaging data. Of note, it is not useful to
show specific metabolic characteristics in individual ani-
mals due to the limited signal to noise ratios present in
each 18FDG-PET image. Therefore, regionally specific

Fig. 4 Deficiency in CIRP inhibited the altered open field behavior exhibited by WT mice. a Representative heat map of WT and CIRP−/− mice
exploring the chamber. b Percent time spent exploring either the center or periphery of the chamber. c Total distance traversed during the test.
d Time spent for self-grooming during the OF tasks. Data are expressed as mean ± SE; * P < 0.05; ** P < 0.005, *** P < 0.001 by t-test
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effects can be detected only by performing brain-
mapping analysis with SPM as shown in this study. We
focused on the group x treatment interaction to interro-
gate the main hypothesis of the study that brain glucose
metabolism is less suppressed in CIRP−/− mice than WT
mice following binge alcohol exposure.
It can be speculated that the difference between pre-

and post-alcohol scans are due to simple repetition ef-
fects or multiple anesthesia exposures, and not specific
for ethanol. To this end, a test-retest study was per-
formed in WT and CIRP−/− mice that followed the same
experimental protocols, but were treated with saline in
both groups. No treatment-related changes were ob-
served in WT or CIRP−/− group in regard to the injected

dose, plasma glucose or global SUV values before and
after plasma glucose correction. No group differences
were detected in these variables in the WT and CIRP−/−

groups, nor were there differences in terms of % changes
between pre- and post-saline conditions. The regional
metabolic values were stable in all regions except the
primary somatosensory cortex (barrel field) in pre- and
post-saline in both groups. Nevertheless, no differences
were observed between groups for percent changes in
the test/retest saline group in any of the regions identi-
fied in the alcohol treated groups. Therefore, it is highly
unlikely that the differences observed between pre- and
post-alcohol scans are simply due to repetition effects.
For the initial behavior analysis, the light-dark cycles

were reversed so that the testing was done during the
dark circadian period. It can be speculated that the re-
verse cycle impacted the outcome of the study. However,
in order to conduct behavioral studies, it was important
to reverse their light-dark cycles, otherwise, the experi-
ment had to be done in the night, i.e., during their day.
Since our objective was to correlate the microPET data
with the behavior, the behavior tasks were conducted in
conjunction with the microPET scans, i.e., 9:00 AM.
After the basal behavior and basal scan, mice were kept
in the microPET suite for 24–30 h undisturbed with the
normal 12-h light/dark cycles. Afterwards, the mice
underwent alcohol infusion in the aid of a mouse har-
ness so that they were again undisturbed for 15 h with
the normal 12-h light/dark cycles. It is expected that
stress of the reverse light-dark cycle and sleep
deprivation could similarly impact both groups. There-
fore, it is highly unlikely that the changes seen in the be-
havior between groups and conditions are simply due to
experimental stress. In addition, the initial behavioral
testing was done prior to IP injection of FDG to
minimize radioactivity exposure to the personnel. After
15 h, mice underwent behavior during FDG uptake to
prevent time lapse between behavior and microPET
scans post-alcohol. Since the same experimental proced-
ure was followed for both groups, the IP injection could
not have impacted the observed changes between groups
and conditions. Separate experiments conducted each
for behavior and microPET scan with the two groups
could have circumvented these experimental technical
discrepancies encountered in this study. However,
choosing to conduct both behavior and FDG-PET in the
same mice allowed to perform the correlational analysis
between the two parameters which was the fundamental
reason for the current experimental design.
The dose of 6 g/kg alcohol could be considered as too

high dose to model binge alcohol drinking. However,
mice were injected with 1.5 g/kg alcohol bolus for a
period of 20 min. This initial dose is the maximum toler-
ated bolus dose for a mouse and at 1 h after the alcohol

Fig. 5 Regional metabolic activity is correlated with spatial cognition
after binge alcohol. Pearson correlation analysis of percent changes
in globally normalized metabolic values in the WT (open circles) and
CIRP−/− mice (closed circles) with changes in OPM ratio of the
hippocampus (r = 0.73, P < 0.001) and posteromedial cortical
amygdaloid area (PMCoAA; r = 0.53, P = 0.03)
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bolus, the blood alcohol was 38mM which constituted
the binge alcohol level. Although continuous infusion for
15 h at 300mg/kg/h totals the alcohol dose to 6 g/kg, the
actual blood alcohol level is expected to decrease even
from the bolus dose due to rapid metabolism of alcohol in
mice. In the future, we plan to use additional lower doses
of bolus to ascertain the minimum dose necessary to in-
fluence brain hypoactivity and impaired cognition.
The primary objective of this study was to test the hy-

pothesis that CIRP−/− mice have a neuroprotective effect
when compared to WT mice in the context of binge al-
cohol exposure. In the present study we have fulfilled
our objective with two approaches: (1) we have identified
hypometabolic brain regions in WT mice whose neuro-
biological substrates remain intact; (2) we have identified
hypometabolic brain regions using ANOVA to tease out
the interaction between WT and CIRP−/− mice. Regional
metabolic values extracted from these sets of regions
were then compared across the experimental conditions
and animal groups. Both approaches revealed regional
brain metabolic decreases in the WT that were less sup-
pressed metabolically in the CIRP−/− mice after binge al-
cohol exposure. Further studies are needed to replicate
our findings in large samples, and to investigate possible
mechanisms of spatial co-variation using more powerful
multivariate brain mapping analysis.

Conclusion
These data suggest that extracellular CIRP released from
brain cells could be responsible for brain metabolic hypoac-
tivity and impaired cognition in binge alcohol exposure.
Blocking released CIRP from brain cells could be a poten-
tial therapeutic strategy for binge alcohol drinking.
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