
RESEARCH ARTICLE Open Access

Ethyl pyruvate protects against sepsis-
associated encephalopathy through
inhibiting the NLRP3 inflammasome
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Abstract

Background: With the advance of antibiotics and life support therapy, the mortality of sepsis has been decreasing
in recent years. However, the incidence of sepsis-associated encephalopathy (SAE), a common complication of
sepsis, is still high. There are few effective therapies to treat clinical SAE. We previously found that ethyl pyruvate
(EP), a metabolite derivative, is able to effectively inhibit the NLRP3 inflammasome activation. Administration of
ethyl pyruvate protects mice against polymicrobial sepsis in cecal ligation and puncture (CLP) model. The aim of
present study is to investigate if ethyl pyruvate is able to attenuate SAE.

Methods: After CLP, C57BL/6 mice were intraperitoneally or intrathecally injected with saline or ethyl pyruvate
using the sham-operated mice as control. New Object Recognition (NOR) and Morris Water Maze (MWM) were
conducted to determine the cognitive function. Brain pathology was assessed via immunohistochemistry. To
investigate the mechanisms by which ethyl pyruvate prevent SAE, the activation of NLRP3 in the hippocampus and
the microglia were determined using western blotting, and cognitive function, microglia activation, and
neurogenesis were assessed using WT, Nlrp3−/− and Asc−/− mice in the sublethal CLP model. In addition, Nlrp3−/−

and Asc−/− mice treated with saline or ethyl pyruvate were subjected to CLP.

Results: Ethyl pyruvate treatment significantly attenuated CLP-induced cognitive decline, microglia activation, and
impaired neurogenesis. In addition, EP significantly decreased the NLRP3 level in the hippocampus of the CLP mice,
and inhibited the cleavage of IL-1β induced by NLRP3 inflammsome in microglia. NLRP3 and ASC deficiency
demonstrated similar protective effects against SAE. Nlrp3−/− and Asc−/− mice significantly improved cognitive
function and brain pathology when compared with WT mice in the CLP models. Moreover, ethyl pyruvate did not
have additional effects against SAE in Nlrp3−/− and Asc−/− mice.

Conclusion: The results demonstrated that ethyl pyruvate confers protection against SAE through inhibiting the
NLRP3 inflammasome.
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Introduction
Sepsis is a systemic inflammatory response syndrome
(SIRS) caused by infection (Buras et al. 2005; Singer
et al. 2016). Due to the advance of medicines and life-
support techniques, the mortality of sepsis have been
decreasing in recent years (Martin et al. 2003; Tanriover
et al. 2006; Gaieski et al. 2013; Kaukonen et al. 2014;
Stevenson et al. 2014; O’Neill 2016; Kaufmann et al.
2018). In addition to high mortality at the early stage,
sepsis can cause sepsis-associated encephalopathy (SAE),
which significantly increases the mortality of patients
and largely influences the life quality of sepsis survivors
(Eidelman et al. 1996; Ebersoldt et al. 2007; Widmann
et al. 2014; Annane and Sharshar 2015). SAE is charac-
terized by diffuse brain dysfunction after the onset of
sepsis, without infection in the central nervous system
(Eidelman et al. 1996; Ebersoldt et al. 2007; Chen et al.
2014; Widmann et al. 2014; Annane and Sharshar 2015).
It has been reported that approximately 70% of survivors
recovered from severe systemic infection have cognitive
deficits (Iwashyna et al. 2010; Gofton and Young 2012).
However, the underlying mechanisms of SAE are not
fully uncovered and effective medicines for treating SAE
are not available in clinics.
Previous studies have suggested that inflammatory

responses, especially the inflammasome activation, is
critical for the development of SAE (Yende et al. 2008;
Erickson and Banks 2011; Annane and Sharshar 2015).
Among different types of the inflammasomes, the
NLRP3 (NLR family pyrin domain containing 3) inflam-
masome is the most well-characterized inflammasome
(Hise et al. 2009) and contributes to the development of
a number of monogenic autoinflammatory diseases, in-
cluding the inherited CAPSs Muckle–Wells syndrome
(MWS), familial cold autoinflammatory syndrome and
neonatal-onset multisystem inflammatory disease (Masters
et al. 2009), as well as various metabolic and neurodegener-
ative disorders(Wen et al. 2012), (De et al. 2014). However,
whether pharmacological inhibition of the NLRP3 inflam-
masome could attenuate SAE is not known.
Pyruvate (CH3COCOO−), a key intermediate molecule

in glucose metabolism, plays a protective role in many
organ system damage models in vitro and in vivo (Bunton
1949; O'Donnell-Tormey et al. 1987; Salahudeen et al.
1991; Deboer et al. 1993; Nath et al. 1995; Cicalese et al.
1996; Crestanello et al. 1998; Dobsak et al. 1999). How-
ever, the poor stability in solution limits its therapeutic
application in clinics (Montgomery and Webb 1956; Korff
1964). In 2001, Sims et al. discovered a stable derivative of
metabolic intermediates pyruvate, named ethyl pyruvate
(EP) (Sims et al. 2001), which is commonly used as a non-
toxic food additive. Studies show that Ethyl pyruvate (EP)
exerts protective effects in burn injury, shock, necrotizing
pancreatitis and radiation-induced complications (Fink

2007) in a manner similar to pyruvate (Ulloa et al. 2002).
In addition, EP treatment exerts an anti-inflammatory ef-
fect in various diseases such as sepsis (Miyaji et al. 2003;
Sappington et al. 2003), alcoholic liver injury (Yang et al.
2003) and acute kidney injury (Salahudeen et al. 1991).
We recently found that EP is a novel NLRP3 inhibitor
(Li et al. 2018). However, whether EP treatment could
improve cognitive function in SAE is still unknown.
The aim of present study is to investigate the effect
of EP in the SAE.

Methods
Animals
C57BL/6 (WT), Nlrp3−/− and Asc−/− male mice with age
of 8–10 weeks and body weight of 20–25 g were used in
the present study. C57BL/6 (H-2Kb, Thy-1.2) mice were
purchased from Hunan SJA Laboratory Animal Co.Ltd.
(Changsha, China). The Nlrp3−/− mice and Asc−/− mice
(Mariathasan et al. 2004) were donated by Rongbin
Zhou (CAS Key Laboratory of Innate Immunity and
Chronic Disease, School of Life Sciences, University of
Science and Technology of China). Mice were housed in
the animal facility of Central South University and were
maintained under standard condition (room temperature
22–25 °C with a 12-h light-dark cycle). Mice had free ac-
cess to standard chow and water and had been acclima-
tized for at least 1 week before conducting experiments.
Animal care and experimental procedures were per-
formed with the approval from the Institutional Animal
Care and Use Committees of Central South University.

Sepsis model
Cecal ligation and puncture
After the mice anesthetized by 10mg/kg xylazine hydro-
chloride and 200mg/kg ketamine hydrochloride, a 1.5 cm
longitudinal midline incision was made at the shaved and
disinfected skin of lower quadrants of the abdomen and
the cecum was exteriorized. The cecum was ligated at half
between distal pole and the base of the cecum with 4–0
silk suture and a through-and-through puncture was
made from mesenteric toward antimesenteric direction
after medium ligation using 21-gauge needles. A small
amount (droplet) of feces was extruded from both the
mesenteric and antimesenteric penetration holes to ensure
patency. The abdomen was closed and the mice were
injected with pre-warmed normal saline (37 °C; 5ml per
100 g body weight) subcutaneously to allow mice to re-
cover from anaesthetization. Sham-operated animals were
submitted to laparotomy and the cecum was taken out
without puncture after laparotomy for sham operation.

Intrathecal injections
Intrathecal injection was performed according to the
protocol of Hayden and Wilcox (Hylden and Wilcox
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1983). Anesthetized mice were slowly injected with 5 μL
of PBS or EP between the L5 and L6 regions of the
spinal cord using a 30-gauge needle 30 min after CLP
operation.

Behavioral tests
Open field test
As described previously, open field tests were carried
out to evaluate the locomotor activity of mice (Zhang
et al. 2013). To put it simply, the mice were gently
placed in the center of the open field (50 × 50 cm). The
movement of the mouse was recorded by computerized
video tracking system (Logitech, Suzhou, China). The
total traveled distance and average speed are analyzed by
smart junior software 3.0 (Panlab, Cambridge, USA).

Novel object recognition
Novel object recognition experiment was carried out in
a field arena of 20 cm × 30 cm × 30 cm. The test consists
of two stages, namely, the training phase and the test
phase (Bevins and Besheer 2006; Leger et al. 2013; Vol-
mar et al. 2017; Briz et al. 2017). During the training
phase, two identical objects are placed in symmetrical
positions at equal distances from the center of the arena
and from the walls of the arena. The mice were gently
placed in the center of arena, with their heads opposite
to the two identical objects, allowing them to explore
freely for 10 min. Twenty-four hours post the training,
one of the familiar items was replaced with a novel item,
and the mouse was allowed to explore for 10 min in the
arena. The objects and the chamber were cleaned with
75% alcohol solution between trials during training and
testing. The preference index is defined as previous
study (Qing et al. 2018).

Morris water maze test
The Morris water maze test was performed on the 15th
day after the operation to evaluate spatial learning and
memory of the mice. We used a computer video track-
ing system (Logitech, Suzhou, China) to record the
movement of mice in water maze, according to previous
research methods (He et al. 2012). To put it simply, a
transparent circular platform is placed in the southwest
quadrant of the circular pool 1 cm below the water sur-
face. During the training period, the mice were first
placed on the platform for 30 s to conform themselves
to the environment, and then the mice were released
into the water. In each experiment, mice were allowed
to find the platform for a maximum of 60 s. If the mouse
fails to find the platform within 60 s, it is guided to the
platform and stays on the platform for 30 s. All mice
were trained for 4 days, three times a day, changing re-
leasing quadrant each trial, and the latency to platform
was recorded in each experiment. After 4 days of

training, take the platform out of the swimming pool on
the fifth day. The mice were released into the water from
the northeast quadrant. The movement trajectory of
mice within 60 s was recorded. The memory ability of
mice was evaluated by the number of platform crossings
and the percentage of search time in the target
quadrant.

Immunostaining
The brains were obtained from the anesthetized mice.
Half of the brain is used for immunostaining and the other
half for Western blotting. The hemi-encephalon used for
immunostaining was fixed overnight in 4% paraformalde-
hyde. After dehydration with sucrose, the brain was
embedded in OCT and the coronal section (20 μm) of the
brain was cut continuously by hypothermia thermostats.
The slices were blocked with 5% BSA and 0.1% TritonX-
100 for 1 h at room temperature, and incubated with
rabbit polyclonal antibody (rabbit polyclonal antibody to
ionized calcium binding adaptor molecule 1(IBA1):1:500,
Wako, Japan, 10,904; rabbit polyclonal antibody to double
cortin:1:500, CST, 4604) at 4 °C overnight. The slices were
incubated in secondary antibody (1: 500) for 2 h. Three
times of washes using 0.01M PBS were conducted be-
tween each step. All the pictures were taken by micro-
scope (Eclipse80i, Nikon, Japan) at the same light intensity
and exposure time, and the executors were blind to the
experimental conditions.
For immunofluorescence staining of ASC speck, mouse

microglia loaded on 6-well slides were primed with ultra-
pure LPS (100 ng/ml for 3 h. in the presence or the ab-
sence of EP (10mM), and then stimulated with nigericin
(10 μM) for 30min. The microglia was fixed for 15mins in
4% paraformaldehyde, and blocked with 5% BSA and 0.1%
TritonX-100 for 1 h at room temperature, followed by an
incubation with rabbit polyclonal antibody (rabbit poly-
clonal anti-ASC antibody Adipogen AL177: 1:200, Invivo-
Gen, A120-100D2) at 4 °C overnight. Afterward, the
microglia were incubated in secondary antibody (1:500)
for 2 h. Three times of washes using 0.01M PBS were
conducted between each step. All the pictures were taken
by microscope (Eclipse80i, Nikon, Japan) at the same light
intensity and exposure time, and the executors were blind
to the experimental conditions.

Western blot
To detect the NLRP3 and the DCX level of hippocam-
pus (neonatal neurons), the frozen hippocampus was ho-
mogenized for proteins in a lytic buffer containing
protease inhibitor cocktails (Roche, Germany, catalog
number: 11873580001), followed by a centrifugation at
12,000 g for 20 min at 4 °C. The supernatant of the hip-
pocampal homogenate was then collected. To determine
the expression of NLRP3 and cleavage of pro-IL-1β in
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microglia, supernatant and cell lysates of microglia were
analyzed using western blot. Cell-free supernatants were
used to extracted proteins by methanol/chloroform pre-
cipitation as previously described (Wang et al. 2004; Li
et al. 2018). Briefly, cell culture supernatants were pre-
cipitated by the addition of an equal volume of methanol
and 25% volumes of chloroform, then were vortexed and
centrifuged for 5 min at 20,000 g. The upper phase was
discarded and 400 μl methanol was added to the inter-
phase. After a centrifuge for 5 min at 20,000 g, the super-
natants were removed. The protein pellet was dried at
55 °C for 2 min, and resuspended in Laemmli buffer and
boiled for 10 min at 100 °C. Cell extracts were prepared
as described previously (Wang et al. 2004). The protein
samples were separated by SDS-PAGE and transferred to
PVDF membrane (Millipore). After washing, 5% non-fat
milk in TBST buffer was used to block the membrane for
1 h, and then incubated with primary antibodies (rabbit
polyclonal antibody to double cortin: 1:1000, Cell Signaling
Technology, catalog number: #4604; mouse anti-NLRP3
antibody:1:1000, AdipoGen, catalog number: AG-20B-
oo14; goat anti-IL-1B polyclonal antibody:1:1000, RD sys-
tems, catalog number: AF-401-NA; Mouse anti-β-actin
polyclonal antibody: 1:5000, Cell Signaling Technology,
catalog number: #3700 s) overnight on 4°C. After washes
for three times, the membranes were incubated with sec-
ondary antibody at room temperature for 2 h. Finally, the
protein was visualized by Western Bright ECL-Spray
(advansta, catalog number: K-12049-D50), and the inten-
sity of each band was measured by density method.

Statistical analysis
All statistical analyses were performed using GraphPad
Prism Software (version6.0) and P < 0.05 was considered
statistically significant. Analysis of Variance (ANOVA)
and post-hoc test were used to compare more than two
groups. The mean and Standard Error of Mean were cal-
culated in experiments with multiple data points.

Results
Ethyl pyruvate attenuates cognitive decline in
experimental sepsis
To determine whether ethyl pyruvate could improve
learning and memory dysfunction in septic mice, we
used NOR and MWM test after the mice subjected to
moderate CLP or sham operation. After the mouse re-
stored its mobility (Day 12, Fig. 1b), we carried out NOR
test (Day 13) which was followed by MWM test (Day
15). We found that the mice in the CLP group had a dis-
crimination index around 0.5 in the test phase (Fig. 1d),
which indicated that the mice lost the memory of the
old object and were unable to identify the novel object.
The mice in the EP-treated and sham group had dis-
crimination indices over 0.6, which significantly higher

than that of the CLP group. In addition, the CLP ren-
dered mice reduced capacity to find the underline plat-
form during both training and test stages as compared
to the sham group. EP treatment significantly restored
the learning and memory after CLP (Fig. 1e-h). Thus,
Ethyl pyruvate attenuates cognitive decline in experi-
mental sepsis..

Ethyl pyruvate attenuates microglia activation and
restores formation of neonatal neurons in septic mice
Next we investigate the mechanisms by which EP atten-
uates cognitive dysfunction in sepsis, we first assessed
the activation of microglia, which is one of the most im-
portant signs of neuro-inflammation. In young adult
mice, the activation of microglial cells in the CA1 region
was significantly increased after CLP, and the activation
of microglial cells was significantly decreased after EP
administration (Fig. 2a&b). It has been reported that de-
creased neurogenesis in the granular cell layer of the
dentate gyrus is a causal factor of cognitive dysfunction
in a series of encephalopathy (Abe 2000; Kim and Dia-
mond 2002; Monje et al. 2002; Nixon and Crews 2010;
Encinas et al. 2011). To test whether EP treatment exerts
a protective role in improving neurogenesis in SAE, we
detected the expression of Doublecortin (DCX), the
marker of newborn neuron, in the dentate gyrus (DG)
region using immunofluorescence. We found that the
level of DCX in the DG region after CLP was signifi-
cantly decreased, and that EP treatment restored the ex-
pression of DCX after CLP (Fig. 2c&d). These results
demonstrated that EP might play a protective role in
SAE by promoting neurogenesis and inhibiting the
microglia activation in sepsis.

Ethyl pyruvate inhibits NLRP3 inflammasome activation in
mouse hippocampus and microglia
To investigate the effect of EP to NLRP3 inflammsome
in the SAE, the levels of NLRP3 of hippocampus in the
mice challenged with or without CLP were determined
via WB. The results suggested that the CLP model
boosted the level of NLRP3 in the hippocampus, and EP
significantly restored the increase of NLRP3 (Fig. 3a). In
addition, our previous study suggests that EP inhibits
the NLRP3 inflammasome activation in mouse macro-
phages (Li et al. 2018). To determine whether ethyl
pyruvate (EP) also inhibits the NLRP3 inflammasome ac-
tivation in mouse microglia, LPS-primed mouse micro-
glia were stimulated with nigericin in the presence or
the absence of EP. EP administration notably inhibited
cleavage of pro-IL-1β at the concentration of 10 mM
(Fig. 3b&c). Furthermore, EP significantly inhibits ASC
speck formation in LPS-primed mouse microglia in-
duced by nigericin (Fig. 3d). These results indicate that
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EP inhibits the NLRP3 inflammasome activation in
mouse hippocampus and microglia.

Ethyl pyruvate treatment attenuates SAE through
inhibition of the activation of NLRP3 inflammasome
Previous studies showed that ethyl pyruvate inhibited the
activation of NLRP3 inflammasomes at the cell level. Thus,
we speculate that ethyl pyruvate might inhibit the activa-
tion of the NLRP3 inflammasomes in the brain of septic
mice. In order to further prove that EP does play a protect-
ive role through inhibiting NLRP3 inflammasome, we

carried out further experiments on Nlrp3 and Asc knock-
out mice. We found that NLRP3/ASC deficient mice
showed the same degree of cognitive impairment as WT
intact mice, and there was no additive protective effect
after EP administration (Fig. 4). In addition, we found that
Nlrp3 and Asc knockout mice displayed better neurogen-
esis than WT septic mice (Fig. 5a&c&d), and the activation
of microglia was significantly decreased (Fig. 5b&e). These
results suggest that EP may inhibit the activation of micro-
glial cells and ameliorate cognitive dysfunction in septic
mice by inhibiting the activation of NLRP3 inflammasome.

Fig. 1 Ethyl pyruvate can improve cognitive dysfunction in septic mice. a Strategy of experiment. Eight-week-old male C57BL/6 J mice were
subjected to CLP Operation, followed by the intervention of EP (40 mg/kg) or vehicle (PBS) once every 2 days during the infection period. b
Traveled distance of the shamed or the septic mice treated with EP (40 mg/kg) or vehicle (PBS) in the open field test. c The preference indices of
the four groups of mice in the training stage of novel object recognition test. d The preference indices of the four groups of mice in the testing
stage of novel object recognition test e The escaped latency to platform of the four groups of mice during the training (the 15th to 18th days
after surgery). f, g and h showing Total distance traveled, numbers of crossings through the platform area, and time percent spent in the target
quadrant in probe trail, respectively. Data are presented as mean ± standard error of mean (SEM) (n ≥ 10 mice/ group) and compared by one-way
ANOVA and post-hoc test. *p < 0.05; **p < 0.01
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Fig. 2 Ethyl pyruvate attenuates microglia activation and restores formation of neonatal neurons in septic mice. a Microglia activation of shamed or
septic mice treated with EP (40mg/kg) or vehicle (PBS) was assessed by Iba-1 immunofluorescence on postoperative day 12. Photomicrographs of
CA1 areas of the hippocampus are shown infection activated microglia as noted by morphological changes on day12, including enlargement of cell
bodies, unsmooth synapse, and so on, which was attenuated by EP treatment. Scale bar = 50 μm. b & c showing area percentage of activated
microglia in the CA1 region and DCX positive cells in the dentate genus (DG) of septic mice hippocampus in Sham+Saline, Sham+EP, CLP + Saline and
CLP + EP groups. Data presented as mean ± SEM (n≥ 3 mice/ group) and compared by one-way ANOVA and post-hoc test, * P < 0.05, **P < 0.01,
****P < 0.0001. d Photomicrographs of representative DCX immunofluorescence (Doublecortin, green, neurogenesis) of shamed or septic mice treated
with EP (40mg/kg) or vehicle (PBS) in the DG areas on postoperative day 12. Scale bar =100 μm
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Intrathecal injection of EP rescued the SAE in the CLP model
To test whether EP improves SAE by directly affecting
central nervous system or by improving systemic sepsis
(secondary effect), we rescued the CLP-challenged mice
with the intrathecal injection of EP. NOR tests were con-
ducted to assess the cognitive function in mice after the
mice subjected to moderate CLP or sham operation. We
found that EP local administration rescued the SAE in
the CLP model. The results suggested that local admin-
istration of EP significantly restored cognitive impair-
ment in the CLP model (Fig. 6), which indicates that EP,

at least in part, has direct effect on brain to improve
SAE.

Discussion
In this study, we found that Ethyl pyruvate treatment
significantly attenuated cognitive decline, microglia acti-
vation, and impaired neurogenesis in experimental sep-
sis, at least in part, through inhibition of the NLRP3
inflammasome..
Aberrant activation of the NLRP3 inflammasome in

the central nerve system leads to abnormal function of

Fig. 3 Ethyl pyruvate inhibits NLRP3 agonists-induced inflammasome activation in mouse microglia. a The expression of NLRP3 in hippocampus
were assessed by Western-blot (b) mouse microglia were primed with ultra-pure LPS (100 ng/ml) for 3 h in the presence or the absence of EP
(10 mM), and then stimulated with nigericin (10 μM) for 30 min. The release of IL-1β in supernatants and expression of NLRP3 in cell were
assessed by Western-blot. c Levels of IL-1β in the culture medium were determined by ELISA. Data presented as mean ± SEM (n = 3 independent
repeats/ group) and compared by one-way ANOVA and post-hoc test, ***P < 0.001, ****P < 0.0001. d immunofluorescence of ASC speck in LPS-
primed microglia after incubation with nigericin (10 μM) for 15 min in the presence or the absence of ethyl pyruvate (10 mM). Shown in panel c
are representative images of normal and ASC speck. Scale bars, 50 μm

Zhong et al. Molecular Medicine           (2020) 26:55 Page 7 of 12



microglia, which contributes to a number of neurodegen-
erative disorders (Polazzi and Contestabile 2002; Block
et al. 2007). The activated microglia can release a range of
pro-inflammatory factors, particularly TNF-α and IL-1β
(Delgado et al. 1998; Delgado and Ganea 2003; Qin et al.
2004; Burguillos et al. 2011). Previous studies have docu-
mented that the activated microglia disrupts neurogenesis,
which is implicated in cognitive impairment and mood
disorders (Kohman and Rhodes). In the present study, EP
significantly restores the cognitive function in sepsis
model by inhibiting microglia activation.
The inflammatory cytokines, in particular IL-1β, should

be the major culprit in the decline of neurogenesis (Koh-
man and Rhodes). It has been reported that neural pro-
genitor cells (NPCs) express IL-1 receptor and high levels
of IL-1β significantly inhibits the proliferation of NPCs
and the growth of neurospheres (Green et al. 2012). In
addition, the presence of IL-1β facilitates the differenti-
ation of NPCs into astrocyte rather than neurons, which
eventually results in the reduction of neurogenesis (Green
et al. 2012). These in-vitro studies are phenocopied by in-
vivo studies in which over-expression of IL-1β decreases
the number of DCX+ cells (newborn neurons) in the
granular layer of the hippocampus (Wu et al. 2012).

Importantly, it is reported that neuroinflammation con-
tributes to the pathogenesis of long-term cognitive impair-
ment of SAE (Wu et al. 2013; Da-ming et al. 2016; Fu
et al. 2018). The NLRP3 inflammasome is an intracellular
supramolecular complex composed of NLRP3, ASC and
caspase-1. Upon activation, ASC is self-assembled into
ASC speck (Fernandes-Alnemri et al. 2007), and then acti-
vate pro-caspase-1 by proximal induced autocatalytic acti-
vation (Hoss et al. 2016). Finally, activated caspase-1
triggers the maturation of interleukin-1 (IL-1) family cyto-
kines (e.g. IL-1β and IL-18) and facilitates the release of
these cytokines via the N-terminal of GSDMD constituted
transmembrane pores. Thus, the activation of NLRP3
inflammasome can result in a hyperactive status of im-
mune cells and facilitate the release of IL-1β(Kohman and
Rhodes 2013), and may facilitate the disruption of neuro-
genesis. Previous works reveal that the NLRP3 inflamma-
some contributes to the pathogenesis of a number of
neurodegenerative diseases including Alzheimer’s (Heneka
et al. 2014; Walsh et al. 2014; Zhang and Jiang 2015), Par-
kinson’s disease (Franchi et al. 2010; Amor et al. 2014;
Yan et al. 2015) and Multiple Sclerosis (MS) (Jha et al.
2010; Guo et al. 2015; Weinberg et al. 2015; Yeung et al.
2015; Matthews et al. 2016). In addition, the excessive

Fig. 4 NLRP3 or ASC deficiency restored learning and memory impairment in septic mice. a Traveled distance of septic WT mice and septic Nlrp3−/−

mice in the open field test. b The preference indices of WT mice and Nlrp3−/− mice subjected to CLP operation in the training stage of novel object
recognition test. c The preference indices of the four groups of mice in the testing stage of novel object recognition test. d Traveled distance of septic
WT mice and septic Asc−/− mice in the open field test. e The preference indices of WT mice and Asc−/− mice subjected to CLP operation in the training
stage of novel object recognition test. f The preference indices of the four groups of mice in the testing stage of novel object recognition test. Data
presented as mean ± SEM (n≥ 6 mice/ group) and compared by one-way ANOVA and post-hoc test, * P < 0.05, **P < 0.01, ***P < 0.001
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activation of NLRP3 inflammasome promotes memory
loss in these diseases (Miller et al. 2009; Kreisel et al. 2014;
Zhang et al. 2014; Sui et al. 2016). In line with these obser-
vations, we found that ethyl pyruvate treatment signifi-
cantly inhibited NLRP3 inflammasome activation and IL-
1β release of microglia, and improved the decline of DCX

positive cells and the cognition impairment in the CLP
model. Thus, EP attenuates SAE through inhibition of the
activation of NLRP3 inflammasome.
Ethyl pyruvate (EP), an anti-inflammatory reagent

(O'Donnell-Tormey et al. 1987; Han et al. 2005), is con-
sidered as a potential therapeutic drug for various

Fig. 5 Ethyl pyruvate specifically inhibits NLRP3 inflammasome activation in septic mice. Representative DCX immunofluorescence in the DG areas (a)
and Iba-1 immunohistochemical in the CA1 areas (b) of sham groups, WT groups, Nlrp3−/− groups and Asc−/− groups on postoperative day 12. Scale
bar = 50 μm for Iba1, and Scale bar =100 μm for DCX. c The levels of DCX in the hippocampus of septic mice in sham groups, WT groups, Nlrp3−/−

groups and Asc−/− groups were assessed by Western-blot on postoperative day 12. d & e showing area percentage of activated microglia in the CA1
region and DCX positive cells in dentate genus (DG) of septic mice hippocampus in sham groups, WT groups, Nlrp3−/− groups and Asc−/− groups. Data
presented as mean ± SEM (n≥ 3 mice/ group) and compared by one-way ANOVA and post-hoc test, **P < 0.01, ***P < 0.001, ****P < 0.0001
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diseases or disorders, including burn injury (Huang et al.
2008), shock (Tawadrous et al. 2002), spinal cord injury
(Genovese et al. 2009; Wang et al. 2009), hemorrhagic
shock (Slovin et al. 2001), acute endotoxemia (Wang
et al. 1999; Ulloa et al. 2002; Venkataraman et al. 2002),
severe acute alcoholic hepatitis (Yang et al. 2003) and
multiple models of ischemia-reperfusion (Tawadrous
et al. 2002; Woo et al. 2004). In sepsis model, EP im-
proves the survival rate of mice when mice administered
24 h after the onset of sepsis (Ulloa et al. 2002). Other
studies suggested that EP can attenuate multiorgan dys-
functions in endotoxemia or sepsis (Miyaji et al. 2003;
Hauser et al. 2005). It is important to note that the
safety of EP has been confirmed by the long-term appli-
cation as a food additive (Fink 2003; Organization, F. A.,
and W. H. Organization 2010). Thus, EP might be a
promising medicine in the protection against cognitive
dysfunction in sepsis.

Conclusions
In summary, our results suggest that ethyl pyruvate
treatment might improve cognitive function in sepsis
through inhibition of the NLRP3 inflammasome.
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