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Abstract

Background: Chorioamnionitis, inflammation of the chorion and amnion, which often results from intrauterine
infection, is associated with premature birth and contributes to significant neonatal morbidity and mortality,
including necrotizing enterocolitis (NEC). Recently, we have shown that chronic chorioamnionitis is associated with
significant structural enteric nervous system (ENS) abnormalities that may predispose to later NEC development.
Understanding time point specific effects of an intra-amniotic (IA) infection on the ENS is important for further
understanding the pathophysiological processes and for finding a window for optimal therapeutic strategies for an
individual patient. The aim of this study was therefore to gain insight in the longitudinal effects of intrauterine LPS
exposure (ranging from 5 h to 15 days before premature delivery) on the intestinal mucosa, submucosa, and ENS in
fetal lambs by use of a well-established translational ovine chorioamnionitis model.

Methods: We used an ovine chorioamnionitis model to assess outcomes of the fetal ileal mucosa, submucosa and
ENS following IA exposure to one dose of 10 mg LPS for 5, 12 or 24 h or 2, 4, 8 or 15 days.

Results: Four days of IA LPS exposure causes a decreased PGP9.5- and S100B-positive surface area in the myenteric
plexus along with submucosal and mucosal intestinal inflammation that coincided with systemic inflammation.
These changes were preceded by a glial cell reaction with early systemic and local gut inflammation. ENS changes
and inflammation recovered 15 days after the IA LPS exposure.

Conclusions: The pattern of mucosal and submucosal inflammation, and ENS alterations in the fetus changed over
time following IA LPS exposure. Although ENS damage seemed to recover after prolonged IA LPS exposure,
additional postnatal inflammatory exposure, which a premature is likely to encounter, may further harm the ENS
and influence functional outcome. In this context, 4 to 8 days of IA LPS exposure may form a period of increased
ENS vulnerability and a potential window for optimal therapeutic strategies.
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Background

Chorioamnionitis, inflammation of the chorion and
amnion during pregnancy, is associated with premature
birth and contributes to significant neonatal morbidity
and mortality (Galinsky et al. 2013; Goldenberg et al.
2000; Kim et al. 2015). Chorioamnionitis typically results
from a bacterial infection ascending through the birth
canal (Goldenberg et al. 2000). It is often clinically silent
and therefore difficult to diagnose, but can nevertheless
affect the developing fetus (Gantert et al. 2010). As the
fetus swallows the amniotic fluid (AF), the intestine is
directly exposed to bacterial components and inflamma-
tory cytokines present in the AF, which can conse-
quently cause gut injury and inflammation (Wolfs et al.
2014). Moreover, during chorioamnionitis, the fetus can
develop a fetal inflammatory response syndrome (FIRS),
which is characterized by increased systemic interleukin
6 (IL-6) and interleukin 8 (IL-8) levels (Gussenhoven
et al. 2018). FIRS is an independent risk factor for
considerable neonatal morbidity, including the postnatal
intestinal disease necrotizing enterocolitis (NEC)
(Gantert et al. 2010; Been et al. 2013). NEC has a high
mortality of overall 25% with both significant short-term
and long-term morbidity (Neu and Walker 2011). Severe
intestinal inflammation is associated with NEC and can
result in gut necrosis (Neu and Walker 2011; Neu and
Pammi 2018). Gut specimens from NEC patients contain
alterations in the enteric nervous system (ENS) including
a loss of neurons and glial cells (Sigge et al. 1998; Wedel
et al. 1998; Fagbemi et al. 2013; Zhou et al. 2013). The
ENS resides in the intestinal wall and consists of two
plexuses; the submucosal and myenteric plexus (Furness
2012). It operates autonomously and regulates diverse
gastrointestinal functions such as motility, secretion,
absorption and maintenance of gut integrity (Furness
2012). ENS development is a complex process that
requires coordinated migration, proliferation and differ-
entiation of the involved cell types, directed outgrowth
of neurites and the establishment of an interconnected
neuronal and glial cell network (Rao and Gershon 2018;
Lake and Heuckeroth 2013). Importantly, ENS develop-
ment continues in the early postnatal period (Hao et al.
2016; Burns et al. 2009) during which it is shaped by
amongst others immune cells, microbiota and enteral
nutrition (Hao et al. 2016).

Recently, we have shown in a preclinical ovine model
that chronic chorioamnionitis is associated with signifi-
cant structural ENS abnormalities (Heymans et al. 2020).
Importantly, these alterations corresponded with those
found in infants with NEC, indicating that ENS changes
following chorioamnionitis may predispose to later NEC
development (Heymans et al. 2020). Since inflammation is
a dynamic process and the vulnerability of the fetus to in-
jurious exposure during intra-uterine development varies,
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ENS alterations in response to inflammation can be time-
dependent. As chorioamnionitis is often clinically silent
and infants born after chorioamnionitis have been ex-
posed to varying durations of intra-uterine inflammation,
understanding time-dependent effects of intra-uterine in-
flammation on the ENS is clinically important to define
optimal therapeutic strategies. Therefore, the aim of this
study was to evaluate the time-dependent effects of 5h to
15 days of intrauterine LPS exposure before premature de-
livery, on the intestinal submucosa, mucosa and ENS in
fetal sheep.

Methods

Animal model and experimental procedures

The experiments were approved by the animal ethics/
care committee of the University of Western Australia
(Perth, Australia; ethical approval number: RA/3/100/
928).

The ovine model and experimental procedures were
previously described (Gussenhoven et al. 2018; Kuypers
et al. 2013). In brief, 52 time-mated merino ewes carry-
ing singleton fetuses were randomly assigned to eight
different groups of six to seven animals. The pregnant
ewes were IA injected under ultrasound guidance with
10 mg Escherichia coli-derived LPS (O55:B5; Sigma-
Aldrich, St. Louis, MO, USA) dissolved in saline at 5, 12,
or 24-h, or 2, 4, 8 or 15 days before preterm delivery at
125days of gestation (equivalent of 30-32weeks of
human gestation for the gut; term gestation in sheep
around 150 days). The study design is based on the
clinically relevant situation that the gestational age of
the infant is known, but not the length of exposure to
inflammation. Hence, all samples were collected at the
same gestational age and inflammation was induced at
various times before sampling. Of importance, with a
half-life time of 1.7 days, LPS persists in AF and can still
be detected at 15 days (Newnham et al. 2003). A group
receiving IA injections of saline at variable gestational
ages comparable to LPS injections, ranging from 5h to
15 days before preterm delivery, served as the controls
(Fig. 1).

Fetuses were delivered by cesarean section at 125 days
of gestation and immediately euthanized with intraven-
ous pentobarbitone (100 mg/kg). Fetuses of both sexes
were used. At necropsy, the terminal ileum was sampled
and fixed in 10% formalin or snap frozen. Formalin-fixed
tissues were subsequently embedded in paraffin.

Antibodies

For immunohistochemistry, the following antibodies
were used: polyclonal rabbit anti-myeloperoxidase
(IMPO]J; A0398, Dakocytomation, Glostrup, Denmark)
for identification of neutrophils, polyclonal rabbit anti-
bovine protein gene product 9.5 ([PGP9.5]; Z5116,
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Fig. 1 Study design. Pregnant ewes received an IA injection with 10 mg LPS at 5, 12, or 24 h or 2, 4, 8 or 15 days (black arrows) before preterm
delivery at 122 days of gestation (term ~ 150 days). Control animals received an IA saline injection at comparable time points to LPS injections.
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Dakocytomation) for the detection of enteric neurons,
polyclonal rabbit anti-doublecortin (Ab18723, Abcam,
Cambridge, UK) for the detection of immature neurons,
polyclonal rabbit anti-glial fibrillary acidic protein
([GFAP]; Zo334, Dakocytomation) for identification of
activated enteric glial cells and polyclonal rabbit anti-
S100p (PA5-16257, Invitrogen, Carlsbad, CA, USA)
which is considered a general marker of enteric glial cells.

The following secondary antibodies were used:
peroxidase-conjugated polyclonal goat anti-rabbit (111-
035-045, Jackson, WestGrove, PA, USA) (MPO),
peroxidase-conjugated polyclonal swine anti-rabbit (P03
99, DakoCytomation) (doublecortin) and BrightVision+
Poly-HRP-Anti Mouse/Rabbit IgG Biotin-free (Immuno-
Logic, Duiven, the Netherlands) (PGP9.5), and biotin
conjugated polyclonal swine anti-rabbit (E0353, DakoCy-
tomation) (GFAP, S100p).

Immunohistochemistry

Paraffin embedded formalin-fixed terminal ileum was
cut into 4 um sections. Following deparaffinization and
rehydration, sections were incubated in 0.3% H,O,
diluted in phosphorylated buffer saline ([PBS]; pH 7.4) to
block endogenous peroxidase activity. For PGP9.5, dou-
blecortin and S100f, antigen retrieval was achieved with
citrate buffer. Non-specific binding was blocked for 30
min at room temperature with 10% normal goat serum
(NGS) in PBS (MPO), 5% NGS in PBS (doublecortin), or
5% bovine serum albumin (BSA) in PBS (GFAP and
S100p) or for 10 min at room temperature with 20% fetal
calf serum (FCS) in PBS (PGP9.5). Subsequently, sec-
tions were incubated with the primary antibody of inter-
est for 1 hour (MPO) or overnight (others) followed by
the secondary antibody for 30 min (MPO) or 1 hour
(others). MPO, PGP9.5 and doublecortin were recog-
nized using a peroxidase-conjugated secondary antibody;
antibodies against GFAP and S100p were detected with
avidin-biotin complex (Vectastain Elite ABC kit, Bio-
connect, Huissen, the Netherlands). Substrate staining
was performed with 3-amino-9-ethylcarbazole ([AEC];
Merck, Darmstadt, Germany) (MPO), nickel-DAB
(GFAP) or DAB (PGP9.5, doublecortin and S100p).
Hematoxylin (MPO, PGP9.5, doublecortin and S100p)
or nuclear fast red (GFAP) were used as nuclear
counterstains.

Quantification of immunohistochemical stainings

The Ventana iScan HT slide scanner (Ventana Medical
Systems, Oro Valley, AZ, USA) was used to scan stained
tissue sections. With the use of Pannoramic Viewer
(version 1.15.4, 3DHISTECH, Budapest, Hungary), an
overview picture of the transverse section of the ileum
was taken. Two investigators blinded to the experimen-
tal groups counted the number of mucosal MPO-
positive cells. Leica QWin Pro (version 3.4.0, Leica
Microsystems, Mannheim, Germany) was used to calcu-
late the mucosal surface area. The average number of
mucosal MPO-positive cells corrected for total mucosal
tissue surface area is reported as MPO-positive cells per
area per animal. Secondly, random images of the sub-
mucosal layer were taken (200x). In five non-overlapping
high power fields, the number of submucosal MPO-
positive cells was counted by two investigators blinded
to the experimental groups. The average number of sub-
mucosal MPO-positive cells per animal of the five power
fields is reported as MPO-positive cells per area. For
PGP9.5, doublecortin, GFAP and S100p, the surface of
positively stained areas in the submucosal and myenteric
ganglia and total surface area of the muscle layer were
measured (Leica QWin Pro version 3.4.0, Leica Micro-
systems, Mannheim, Germany) in five non-overlapping
high-power fields. The area fraction was calculated by
dividing the positively stained surface area by the total
surface area of the muscle layer. The average area
fraction of the five high-power fields per animal is given
as fold increase over the control value. The control value
will be stated at one. All area fraction measurements
were performed by one investigator blinded to the study
groups.

RNA extraction and real-time PCR

TRI reagent (Invitrogen)/chloroform extraction was used
to extract RNA from snap frozen terminal ileum. After-
wards RNA was reverse transcribed into ¢cDNA using
sensifast cDNA Synthese kit (Bioline, London, UK).
Quantitative real-time PCR (qPCR) was performed with
the specific primers in Sensimix SYBR & Fluorescein Kit
(Bioline) using a 384-wells qPCR plate. qPCR reactions
were performed in a LightCycler 480 Instrument (Roche
Applied Science, Basel, Switzerland) for 45 cycles. Gene
expression levels of tumor necrosis factor alpha (TNE-
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«), IL-8 and IL-10 were determined to assess terminal
ileum inflammation. mRNA expression levels of neur-
onal nitric oxide synthase (nNOS) and choline acetyl-
transferase (CHAT) were determined to assess ENS
motility signaling function. LinRegPCR software (version
2016.0, Heart Failure Research Center, Academic
Medical Center, Amsterdam, the Netherlands) was used
for qPCR data processing. The geometric mean of the
expression levels of three reference genes (ribosomal
protein S15 (RPS15), glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) and peptidylprolyl isomerase A
(PPIA)) were calculated and used as a normalization fac-
tor. Data are expressed as fold increase over the control
value. Sequences of the primers used are shown in
Table 1.

Data analysis

Statistical analyses were performed using GraphPad
Prism (version 6.01, GraphPad Software Inc., La Jolla,
CA, USA). Data are presented as median with interquar-
tile range. Differences between the groups and the
controls were analyzed using a nonparametric Kruskal—
Wallis test followed by Dunn’s post hoc test. Differences
are considered statistically significant at p <0.05. Differ-
ences with a p <0.10 are also taken into account because
of the small study groups and because of potential
biological relevance, and described as tendencies as
previously described (Willems et al. 2016). This assump-
tion will decrease the chance of a type II error, but
increases the chance of a type I error.

Results

Chorioamnionitis induced intestinal inflammation

A statistically significant increase in MPO-positive cells
was seen in the mucosa 4 and 8 days after IA LPS expos-
ure, compared to control (p < 0.05; Table 2).

In the submucosa, there was an increase of MPO-
positive cells in animals exposed to 4days of IA LPS,
and submucosal MPO-positive cells still tended to be
increased after 8 days of IA LPS exposure, compared to
control (p <0.05 and p = 0.08; Fig. 2).

Table 1 Primer sequences
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Examination of underlying cytokine levels revealed in-
creased ileal IL-8 mRNA levels after 24 h and 4 days of
IA LPS exposure, compared to control (both p <0.05;
Fig. 3). No differences were seen in IL-10 and TNF-a
mRNA levels, compared to control (Additional file 1).

Chorioamnionitis induced enteric nervous system
alterations

The PGP9.5-positive and doublecortin-positive surface
areas in the submucosal plexus were unchanged in all
groups compared to control (Additional file 2). In the
myenteric plexus, the PGP9.5-positive surface area was
decreased after 4 days of IA LPS exposure, compared to
control (p < 0.05; Fig. 4). This reduction was resolved after
8days of IA LPS exposure. At this time point, the
doublecortin-positive surface area tended to be decreased
in the myenteric plexus of LPS exposed animals,
compared to control (p = 0.07; Fig. 5).

In the submucosal plexus, no differences in the GFAP-
positive surface areas were observed (Additional file 3),
while in the myenteric plexus, the GFAP-positive surface
area was increased in animals exposed to 2days of IA
LPS, compared to control (p < 0.05; Fig. 6).

The S100B-positive surface area in the submucosal
plexus tended to be decreased in animals exposed to 8
days of IA LPS, compared to control (p = 0.09; Fig. 7). In
the myenteric plexus, the S100B-positive surface area
was decreased in animals exposed to 4 days of IA LPS,
compared to control (p < 0.05; Fig. 7).

No differences in nNOS and CHAT mRNA expression
were observed between the groups (Additional file 4).

Discussion

In the current study, mucosal and submucosal intestinal
inflammation was observed in the terminal ileum after 4
days of IA LPS exposure. On mRNA level, gut
inflammation (IL-8) also occurs after 24h of IA LPS
exposure, and this time point overlaps with the fetal
systemic immune response, characterized by increased
circulatory IL-6 levels (Gussenhoven et al. 2018). In
utero gastro-intestinal transit studies showed it takes

Primer Forward Reverse

RPS15 5"-CGAGATGGTGGGCAGCAT-3' 5"-GCTTGATTTCCACCTGGTTGA-3'
GAPDH 5"-GGAAGCTCACTGGCATGGC-3' 5-CCTGCTTCACCACCTTCTTG-3'

PPIA 5"-TTATAAAGGTTCCTGCTTTCACAGAA-3' 5"-ATGGACTTGCCACCAGTACCA-3'
IL-8 5"-GTTCCAAGCTGGCTGTTGCT-3' 5"-GTGGAAAGGTGTGGAATGTGTTT-3'
IL-10 5"-CATGGGCCTGACATCAAGGA-3' 5"-CGGAGGGTCTTCAGCTTCTC-3'
TNF-a 5"-GCCGGAATACCTGGACTATGC-3' 5"-CAGGGCGATGATCCCAAAGTAG-3'
nNOS 5"-CGGCTTTGGGGGTTATCAGT-3' 5"-TTGCCCCATTTCCACTCCTC-3'

CHAT 5-CCGCTGGTATGACAAGTCCC-3

5-GCTGGTCTTCACCATGTGCT-3'
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Table 2 Immune cells count in the mucosal layer
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Control (n=6) 5hLPS(n=6) 12hLPS(n=7) 24hLPS(n=7) 2dLPS(n=6) 4dLPS(n=6) 8dLPS(n=7) 15dLPS (n=6)
MPO+ cell count 102 74 159 76 151 354* 332* 224
SD (#) 110 77 166 51 105 162 101 96

Values are expressed as median numbers of cells per square millimeter. SD: Standard deviation. Kruskal-Wallis test with Dunn’s post hoc test was performed. *

p <0.05 compared to control

approximately 24 h for the swallowed AF to reach the
mid-ileum (unpublished findings). Hence, this early in-
flammatory response in the terminal ileum is probably
not caused by a local process, but solely the result of
fetal systemic inflammation. In line, previous research in
the same ovine model has shown that chorioamnionitis
induced gut inflammation is the combined effect of dir-
ect gut exposure to LPS and a lung-mediated systemic
inflammatory response (Wolfs et al. 2014). It is possible
that the early intestinal IL-8 peak contributes to the sub-
mucosal and mucosal increase of inflammatory cells at
4 days of IA LPS exposure through stimulation of
chemotaxis (Russo et al. 2014).

Interestingly, the most evident signs of ENS alterations
were also seen after 4 days, and after 8 days of IA LPS

exposure. After 4 days IA LPS exposure, the myenteric
plexus PGP9.5-positive surface area was decreased, indi-
cating a loss of enteric neurons and/or reduction of
PGP9.5 immunoreactivity of enteric nerve cells. Since
the doublecortin-positive (immature neurons) surface
area remained unchanged, this was probably the result
of affected mature neurons. The reduced PGP9.5-posi-
tive surface area after 4 days of IA LPS exposure was
recovered after 8days of IA LPS exposure. The
doublecortin-positive surface area tended to decrease
at this time point. These findings might indicate that
an initial loss of mature neurons is compensated by
an accelerated maturation of immature neurons.
Whether such an accelerated maturation is sufficient
to fully compensate for the identified loss of neurons
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Fig. 2 Representative images of submucosal neutrophil influx reflected by MPO-positive cell (indicated by white triangles) counts of the control
(a), 4 days of IA LPS (b) and 8 days of IA LPS group (c). d Increased MPO count in animals exposed to 4 and 8 days of IA LPS. * p <0.01 compared
to control. # p = 0.08 compared to control
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Relative IL-8 gene expression (AU)

Fig. 3 Relative gene expression of IL-8 in arbitrary unit (AU).
Increased IL-8 gene expression in animals exposed to 24 h and 4
days of IA LPS. * p < 0.05 compared to control

remains to be elucidated. These findings combined
with the unaltered PGP9.5-positive and doublecortin-
positive surface area after 2 and 7 days of IA LPS ex-
posure in a previous study (Heymans et al. 2020),
show that the ENS changes found are time-dependent
and may recover following prolonged intrauterine in-
flammation. Interestingly, in a previous study, a simi-
lar loss of mature neurons was observed after chronic
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inflammatory triggers can induce similar ENS damage
(Heymans et al. 2020).

Enteric glial cells are important for neuronal mainten-
ance, survival, and function (De Giorgio et al. 2012), and
are capable of generating enteric neurons in response to
injury (Joseph et al. 2011; Laranjeira et al. 2011). In
addition, enteric glia respond, in a manner similar as re-
active astrogliosis in the central nervous system, to ENS
injury and inflammation by changing both their morph-
ology and their expression of key proteins such as GFAP
(Boesmans et al. 2015; Rosenbaum et al. 2016). The
neuronal loss in the myenteric plexus after 4 days of LPS
exposure is accompanied with a reduced S100B-positive
surface area, likely representing a loss of glial cells and/
or loss of S100p immunoreactivity within glial cells, as
was earlier described during chronic IA UP exposure
(Heymans et al. 2020). Interestingly, this loss of neurons
and glial cells is preceded by an increased myenteric
plexus GFAP immunoreactivity after 2 days of LPS ex-
posure. It is likely that the observed glial cell response
results from fetal systemic inflammation and/or intes-
tinal inflammation, since pro-inflammatory cytokines
have been shown to induce GFAP expression in enteric
glial cells (von Boyen et al. 2004). Moreover, as activated
enteric glial cells can secrete various cytokines and other
mediators involved in the infiltration and activation of
immune cells (Stoffels et al. 2014; Sharkey 2015), the ob-
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Fig. 4 Representative images of PGP9.5 immunoreactivity in the submucosal and myenteric plexus of the control (a) and 4 days IA LPS group (b).
Area fraction of PGP9.5 in the myenteric plexus (c) as fold increase over the control value. ¢ PGP9.5-positive surface area was decreased in
animals exposed to 4 days of IA LPS. * p <0.05 compared to control
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Fig. 5 Representative images of doublecortin immunoreactivity in the submucosal and myenteric plexus of the control (a) and 8 days of IA LPS
group (b). Area fraction of doublecortin in the myenteric plexus (c) as fold increase over the control value. ¢ Doublecortin-positive surface area
tended to be decreased in animals exposed to 8 days of IA LPS. # p =0.07 compared to control

influx of neutrophils observed after 4 days of IA LPS ex- to the loss of neurons and glial cells, or is a protective
posure. Since a glial cell response in the context of intes-  mechanism that falls short with prolonged inflammation.
tinal inflammation can be destructive (Brown et al. In this study, the most profound ENS changes were
2016) and eventually neuroregenerative (Belkind-Gerson  found in the myenteric plexus, rather than the submuco-
et al. 2017), it is to date unclear whether it contributes  sal plexus. This is in concordance with earlier findings
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Fig. 6 Representative images of GFAP immunoreactivity in the submucosal and myenteric plexus of the control (a) and 2 days of IA LPS group
(b). Area fraction of GFAP in the myenteric plexus (c) as fold increase over the control value. ¢ GFAP-positive surface area in the myenteric plexus
was increased in animals exposed to 2 days of IA LPS. * p < 0.05 compared to control
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Fig. 7 Representative images of S1003 immunoreactivity in the submucosal and myenteric plexus of the control (a), 4 days of IA LPS (b) and 8
days of IA LPS group (c). Area fraction of S100B in the submucosal (d) and myenteric plexus (e) as fold increase over the control value. d S100(3-
positive surface area tended to be decreased in animals exposed to 8 days of IA LPS. # p =0.09 compared to control. e S1003-positive surface
area is decreased in animals exposed to 4 days of IA LPS. * p < 0.05 compared to control

N
(=}
1

-
o
1

S100p area fraction

o
o
1

&@\ PLLLLLE E
e vs“,(ﬁ‘,b&“ SO

in fetal lambs that were chronically IA exposed to UP
(Heymans et al. 2020). Moreover, inflammation driven
pathological changes of the ENS are more often found
in the myenteric plexus than in the submucosal plexus
(De Giorgio et al. 2004). The mechanisms behind this
apparent increased vulnerability of the myenteric plexus
remain to be elucidated. At present, we can only specu-
late about the mechanisms responsible for the observed
differences because multiple possible explanations are in
play. First, since the ENS undergoes rapid structural
growth in utero, the composition of the submucosal and
myenteric plexus might be differently altered by the
combination of ongoing developmental processes and
LPS exposure. Alternatively, the migratory pattern of
cells in these plexi might be different during this essen-
tial developmental period of the ENS. Second, the mac-
rophages in the plexus, which are in close proximity to
neuronal cell bodies and nerve fibers, undergo differenti-
ation towards a multitude of subsets depending on
microenvironment but also depending on developmental
stage and bacterial colonization. Our findings indicate
that these cells play a role in the differential response of
the submucosal and myenteric plexus, although the rea-
son for that remains speculative. Notably, the transcrip-
tional profiles of macrophages gradually differ from the
lumen to the myenteric plexus. As a result, the macro-
phages closer to the lumen play an important role by

sampling luminal bacteria and initiating adaptive im-
mune responses to clear pathogenic bacteria, whereas
macrophages in the muscularis, which are comparatively
more distant from luminal stimulation, are primarily in-
volved in tissue protection and regulation of the activity
of enteric neurons and peristalsis (Gabanyi et al. 2016;
De Schepper et al. 2018). It is tempting to speculate that
phenotypical differences of these immune cells following
exposure to a bacterial stimulus in the different plexi are
involved in the observed differences between the sub-
mucosal and myenteric plexus.

At present, it is unclear whether the observed changes
have postnatal functional consequences. As the mRNA
expression of CHAT and nNOS are unchanged, in utero
motility signaling function could be unaltered. This
confirms and extends previous findings in fetal lambs
chronically IA exposed to UP (Heymans et al. 2020).
The resolved inflammation and the recovery of (imma-
ture) neurons and glial cells after fifteen days of IA LPS
exposure indicate that damage due to IA LPS exposure
probably can be repaired in utero. Nevertheless, it is
likely that a child that is born prematurely with ongoing
inflammation due to FIRS will experience additional
postnatal inflammatory stimuli such as mechanical
ventilation (Bose et al. 2013) or sepsis (Machado et al.
2014). The effects of these postnatal exposures on the
ENS should be studied in order to shed light on the long
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term consequences of (intra-uterine) inflammation for
ENS development and function. Notably, 4 to 8 days
after the start of intrauterine infection could very well be
the window of vulnerability in which additional inflam-
mation may have a higher impact as the ENS is already
affected at this time point.

A limitation of this study is the relatively low number
of animals per group, which is an unavoidable shortcom-
ing of the translational large animal model. Secondly,
the current set-up with the fixed moment of premature
birth does not exclude a potential influence of gesta-
tional age at start of intrauterine infection. Thirdly, in
the current study we were unable to unravel the mecha-
nisms behind the observed changes, as no serial sam-
pling was applied following a specific injection time
point.

Conclusions

In the current study, submucosal intestinal inflammation
was detected after 4 days of IA LPS exposure that coin-
cided with gut mucosal and fetal systemic inflammation.
At the same time point, a loss of PGP9.5 and S100f im-
munoreactivity in the myenteric plexus was observed.
These changes are preceded by a glial cell response with
systemic inflammation and local gut inflammation.
Although initial ENS damage seemed to recover after
prolonged IA LPS exposure, additional postnatal inflam-
matory hits that a premature born child is likely to en-
counter may further harm the ENS and influence
functional outcomes. In this context, 4 to 8days after
the start of intrauterine inflammation may be a window
of increased ENS vulnerability, indicating that thera-
peutic interventions should ideally start before or at this
time point.
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