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Abstract

Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCAT
promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in
an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXAT, which plays a
critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic
cell clearance. ApoA-I increases ANXAT expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-l regulates
the signaling pathways by binding to ABCAT, suggesting that apoA-l increases ANXA1 expression by binding to
ABCA1. Furthermore, ANXAT may increase ABCA1 expression. ANXAT increases PPARy expression by modulating
STAT6 phosphorylation. PPARy also increases ANXAT expression by binding to the promoter of ANXAT. Therefore,
ABCAT1, PPARy, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXAT needs to
be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory
properties. ABCAT transports ANXAT from the cytoplasm to the cell membrane by regulating lipidization and serine
phosphorylation, thereby mediating ANXAT efflux, likely by promoting microparticle and exosome release. The
direct role of ABCA1 expression and ANXAT1 release in atherosclerosis has been unclear. In this review, we focus on
the role of ANXAT in atheroprogression and its novel interaction with ABCA1, which may be useful for providing
basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
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Introduction

Cardiovascular diseases (CVDs), including coronary ar-
tery disease (CAD), myocardial infarction (MI), and
heart failure (HF), are the leading cause of death in
humans and are manly caused by atherosclerosis. Ath-
erosclerosis, characterized by the formation of fat-laden
plaques in large- and medium-sized vessels, has been
identified as a chronic inflammatory disease of the artery
wall (Saigusa et al. 2020). Atherosclerosis occurs through
the recruitment of monocytes and their differentiation
into macrophages, which require lipids for foam cell
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generation, a process regulated by balancing the rates of
lipid uptake and efflux (Peng et al. 2020). The latter is
mainly controlled by ATP binding cassette transporter
Al (ABCA1), a membrane transporter that is abundant
in macrophages and mediates cholesterol efflux (Wang
et al. 2020). ABCA1 promotes the efflux of free choles-
terol to apolipoprotein A-1 (apoA-I) and is critical for
high-density lipoprotein (HDL) particle biogenesis.
These particles protect against atherosclerotic vascular
diseases by transferring cholesterol from peripheral cells
to the liver for biliary excretion, constituting the process
of reverse cholesterol transport (Libby et al. 2019;
Ahmadi et al. 2019).

Recently, several studies have shown that ABCA1 re-
duces inflammatory responses by inhibiting the secretion
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of interleukin-1p (IL-1B) and tumor necrosis factor
(TNF-a) and the NF-kB signaling pathway via the re-
moval of reactive oxygen species (ROS) (Babashamsi
et al. 2019), and ABCA1 may be linked to these func-
tions via apoA-I. Interestingly, ABCA1, in addition to
mediating cholesterol efflux, promotes the secretion of
annexin Al (ANXAI), which is associated with anti-
inflammatory reactions, cell differentiation and prolifera-
tion, cell phagocytosis and clearance, cholesterol homeo-
stasis, immunogenic cell death (ICD), autophagy,
apoptosis, and exosomes (Chapman et al. 2003; Omer
et al. 2006; Li et al. 2018). ANXAL1 is also a specific
marker of microparticles, and accumulating evidence has
shown that ANXA1 plays a key role in inhibiting the de-
velopment of atherosclerosis via an anti-inflammatory
reaction (Jeppesen et al. 2019). The ANXA1 mimetics
Ac2-26 and CGEN-855A have also been shown to pro-
tect against atherosclerosis and MI progression via an
anti-inflammatory reaction. CGEN-855A (TIPMFVPEST
SKLQKFTSWFM-amide) is a novel 21-amino acid mi-
metic peptide of ANXA1l. CGEN-855A was developed
by Compugen Ltd., Tel Aviv, Israel (Hecht et al. 2009;
Qin et al. 2015). The anti-inflammatory and cardio pro-
tective effects of CGEN-855A have been investigated by
pharmaceutical companies, but the direct effects of
ANXA1 on cholesterol transport, exosome and micro-
particle secretion, apoptotic cell clearance, and ICD in
atherosclerosis have rarely been investigated. Although
ABCA1 mediates ANXAL release, the effect of this func-
tion on atherosclerosis has been unclear. In addition,
ANXA1 may increase ABCA1 expression, but the effect
on atherosclerosis development is unknown (Zhou et al.
2009; da Rocha et al. 2019; Chawla et al. 2001; Parente
and Solito 2004). In this article, we review the roles of
ANXAL in atherosclerosis and focus on the crosstalk of
ABCA1 and ANXA1. We expect to promote the study
of the role of ANXALI in atherosclerosis and sincerely
hope that more scientists will study the relationship of
ABCA1 with ANXA1 and atherosclerosis development.

ANXA1 mediates anti-inflammatory effects,
cholesterol transport, exosome and microparticle
secretion, and apoptotic cell clearance

ANXALI, the first identified member of the annexin fam-
ily, is an anti-phospholipase protein that has Ca** and
phospholipid binding sites and high biological and struc-
tural homology to other family members (Parente and
Solito 2004). ANXA1 is highly expressed in neutrophils
and monocytes/macrophages, and its anti-inflammatory
activity is associated with interference of the leukocyte
migration and platelet aggregation (Parente and Solito
2004; Senchenkova et al. 2019). ANXA1 was predomin-
antly found within gelatinase granules and in the cyto-
plasm (Perretti et al. 2000; Solito et al. 2006). ANXA1
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binds to and activates the formyl peptide receptor (FPR)
on leukocytes and endothelial cells, thereby inhibiting
leukocyte migration to inflammatory sites (Senchenkova
et al. 2019; Parisi et al. 2019; Pessolano et al. 2019).
ANXAL1 also reduces inflammatory responses by inhibit-
ing phospholipase A, (PLA,), thereby inhibiting the syn-
thesis of arachidonic acid (AA) and AA-derived
metabolites, including thromboxane A2 (TXA,), prosta-
glandin E, (PGE,), PGI,, PGD,, and PGF2a (Sanches
et al. 2020; Seidel et al. 2012). ANXA1 also prevents in-
flammatory responses by reducing nitric oxide synthase
(iNOS) and the expression of cyclooxygenase-2 (COX-
2), which is a rate-limiting key enzyme of prostaglandin
synthesis (Seidel et al. 2012; Kiani-Esfahani et al. 2016).
ANXAL1 also induces macrophage polarization toward a
more anti-inflammatory phenotype that secretes IL-10,
an anti-inflammatory cytokine (Ferlazzo et al. 2003;
Butcher and Galkina 2015; Giannarelli and Wong 2019).
Thus, ANXA1 functions as an anti-inflammatory protein
via multiple mechanisms, and many studies suggest that
ANXAL1 reduces atherosclerosis progression via an anti-
inflammatory reaction. In human coronary atheroscler-
otic plaques, ANXA1 was found to localize in macro-
phages and endothelial cells in the tunica intima (de
Jong et al. 2017a). The expression of the ANXA1 gene
in the carotid plaques of asymptomatic patients was sig-
nificantly higher than in symptomatic patients (Cheuk
and Cheng 2011). The actions of ANXA1, which are me-
diated through its receptor FPR2, can be mimicked by
an amino-terminal peptide encompassing Ac2—26, dem-
onstrating a protective effect of ANXA1 on the early
stage of plaque development (Kusters et al. 2015; de
Jong et al. 2017b).

Recently, apoA-I was found to increase ANXAL ex-
pression via the ERK, p38 MAPK, AKT, and PKC path-
ways in human umbilical vein endothelial cells
(HUVECsS) (Pan et al. 2016). ApoA-I can bind to ABCA1
and then influence several signaling pathways, including
ERK, p38 MAPK, AKT, and PKC, and the synthesis of
apoA-I protein is generally thought to occur in the liver
and small intestine. However, apoA-I is also transcribed
in macrophages, and the endogenous apoA-I in macro-
phages has an anti-inflammatory effect, suggesting that
ABCAL1 increases ANXA1 expression through binding to
apoA-I, controlling the ERK, p38 MAPK, AKT, and PKC
pathways (Chen et al. 2020). The drugs associated with
apoA-I that are used to treat CVD, particularly CAD,
have an apoA-I mimetic peptide, including D-4F, L-4F,
6-F, 18A, 37pA, 5A ETC-642, FAMP, apoA-I milano in-
cluding MDCO-216 (Phase 2, Termination), rHDL parti-
cles that comprise human plasma-derived apoA-I and
soybean phosphatidylcholine including CSL111 (Phase
2) and CSL112 (Phase 3), HDL mimetics that comprise
recombinant full-length human apoA-I and two natural
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phospholipids including CER-001 (Phase 2), and BET-
inhibitor including RVX-208, which significantly stimu-
late apoA-I transcription (Phase 3) (Yu et al. 2019).
Many studies have shown that these drugs have an anti-
inflammatory effect by increasing apoA-I expression (Yu
et al. 2019). Based on the observed strong activation of
apoA-I with ANXA1 expression, these drugs may aug-
ment the anti-inflammatory effect by increasing the
apoA-I/ANXA1 axis. Therefore, we hypothesize that the
drugs associated with apoA-I have multiple functions
stimulating the apoA-I/ANXA1 axis, including anti-
inflammatory effects, cholesterol transport, exosome and
microparticle secretion, apoptotic cell clearance, and
ICD. According to this hypothesis, new drug targets may
exist, but more research is needed.

Many studies have shown a relationship between
ANXA1 and lipid metabolism. ANXA1 expression is
strongly increased in adipose tissue, including in mice
fed a high-fat diet (Akasheh et al. 2013) and obese chil-
dren (Aguilera et al. 2015), and in the subcutaneous fat
of young and old overweight patients (Alfadda et al
2013). ANXAT1 expression is also increased in the livers
of mice with nonalcoholic steatohepatitis (NASH), which
is characterized by hepatic lipid accumulation (Locatelli
et al. 2014). The plasma levels of ANXA1 in patients
with typel diabetes (T1D) and T2D are significantly
higher than in control patients. In addition, the levels of
ANXA1 in T2D patients are positively correlated with
serum low-density lipoprotein cholesterol (LDL-C)
levels, total cholesterol levels, and the fatty liver index
(FLI). ANXA1-/- mice have significantly higher serum
triglyceride levels, more extensive Oil Red-O staining in
the liver, and are more obese than wild-type mice, and
administration of hrANXA1l to these mice reduces
serum cholesterol and liver triglyceride levels, the extent
of Oil Red-O staining in liver, and weight gain (Purvis
et al. 2019a). These findings may suggest that ANXALI is
associated with lipid and glucose metabolism. Moreover,
ANXA1 mediates cholesterol transport from the endo-
plasmic reticulum (ER) to multivesicular bodies (MVB)
and then stimulates the secretion of exosomes from
MVBs via endosomal-sorting complexes required for
transport (ESCRT) and Alg-2 interacting protein X
(Alix) (Eden et al. 2016; Rentero et al. 2018). Inter-
estingly, exosomes also carry ANXA1 (Rentero et al.
2018; Raulf et al. 2018). Exosomes protect and trans-
port lipids, proteins, and RNAs, fostering intercellu-
lar communication among different cell types
involved in atherosclerosis, such as macrophages,
endothelial cells, and smooth muscle cells. Many
studies suggest that exosomes could be used for not
only the diagnosis but also the treatment of athero-
sclerosis (Reiss et al. 2017; Wang et al. 2019), but
whether the interaction of ANXA1l with exosomes
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also regulates atherosclerosis progression needs to be
further studied.

ANXA1 was also found in microparticles (also known
as microvesicles) from complex vesicular structures shed
from endothelial cells, insulin-secreting Rin-m5f p-cells,
ATRA-NB4 cells, neutrophils, and leukocytes (Kreutter
et al. 2017; Nadkarni et al. 2011; Tsai et al. 2012; Tsai
et al. 2013), and it serves as a specific marker of micro-
particles shed from the plasma membrane (Jeppesen
et al. 2019). However, the role of ANXA1 in microparti-
cles has not been investigated. Microparticles, heteroge-
neous extracellular vesicles that include exosomes,
nanoparticles, and shedding vesicles, are not only a
prognostic marker of atherosclerosis acceleration and
clinical presentation of familial hypercholesterolemia but
also therapeutic agents for CAD (Boulanger et al. 2017;
Loyer et al. 2014; Suades et al. 2019). Therefore, ANXA1
could regulate atherosclerosis development by mediating
the transport of cholesterol and the secretion of exo-
somes and microparticles. However, the relationship be-
tween ANXAIl-mediated cholesterol transport and the
secretion of exosomes and microparticles is unclear.

ANXAL is also an ICD hallmark. The ANXA1 secreted
from apoptotic cells binds to the FRP1 receptor on
antigen-presenting cells (APCs) and then helps guide the
APCs to the dying cells to promote their clearance
(Cruickshank et al. 2018). Many studies have demon-
strated that impaired clearance of apoptotic cells pro-
motes the development of atherosclerosis, suggesting
that the ICD process by ANXA1 may play a key role in
atherosclerosis development (Aprahamian et al. 2004;
Poon et al. 2014). Intensive studies of ICD have focused
on cancer, leaving its role in atherosclerosis development
largely unelucidated.

The crosstalk between ABCA1 expression and
ANXA1 efflux

ANXA1 secretion has been found to occur in many
types of cells, including monocytes/macrophages, mast
cells, epithelial cells, folliculo-stellate (FS) cells, neutro-
phils, and astrocytes (Purvis et al. 2019b; Sugimoto et al.
2016). It has also been detected in a variety of tissues,
such as heart, artery, skeletal muscle, small intestine,
colon, adipose, kidney, liver, lung, spleen, stomach, pan-
creas, skin, brain, and prostate tissue, wherein ABCA1 is
strongly expressed (Frambach et al. 2020). In addition,
the expression of ABCA1 and ANXAL are positively cor-
related in plaque macrophages with oxidized low-density
lipoprotein (oxLDL) and monocytes of hypercholesterol-
emic pigs (Geeraert et al. 2007; Orekhov et al. 2018).
Traditionally, ABCA1 has been mainly found to promote
cholesterol efflux, and its anti-inflammatory effect is as-
sociated with apoA-I (Phillips 2018). Previous studies
from our laboratory and others have demonstrated that



Shen et al. Molecular Medicine (2020) 26:84

the ABCA1 complex with apoA-I plays a critical role in
cholesterol efflux and anti-inflammatory activities
(Kuang et al. 2017; Yin et al. 2012; Chen et al. 2013;
Tang et al. 2012; Price et al. 2019). Interestingly, ANXA1
secretion has been shown to require ABCA1 in macro-
phages and endocrine cells. The ABCAL1 inhibitor gly-
buride blocks ANXA1 secretion (Seidel et al. 2012).
Chapman et al. revealed that ABCA1 promotes ANXA1
release in mouse FS and A549 cells. ANXA1 interacts
with ABCA1 via ANXA1 amino acids 196 to 274 and
colocalizes with ABCA1 in the cell plasma membrane
(Chapman et al. 2003), and an ABCAI1 inhibitor and
siRNA were shown to significantly reduce the membrane
localization of ANXA1. In contrast, ABCA1 overexpres-
sion in AtT20 D1 FS cells significantly increases plasma
membrane-associated ANXA1 expression (Omer et al.
2006). Importantly, ABCA1 mediated the secretion of
ANXA1 in Hensen cells, in which the majority of
ANXAL1 is stored inside lipid droplets. Myosin II pro-
motes ANXAI translation from lipid droplets to the ap-
ical region of Hensen cells, in which ABCA1 facilitates
the release of ANXAI1 to the external milieu (Kalinec
et al. 2009). Of note, ischemia-reperfusion injury in-
creases ABCA1 ubiquitination and degradation in the
ganglion cell layer, leading to decreased ANXAI trans-
location to the cell membrane, and its secretion facili-
tates retinal inflammation and retinal ganglion cell
apoptosis (Xiao et al. 2018). Notably, the LXR agonist
T0901317 induces ICD by increasing calreticulin (CRT)
and high mobility group protein (HMGB1) in colon can-
cer cells (Wang et al. 2018a). ABCAL1 is a target gene of
LXR. TO0901317 also increases ABCAI1 expression.
ABCA1 promotes ANXAL release, suggesting that the
ABCA1/ANXA1 axis plays a critical role in the ICD by
T0901317. Taken together, these data show that ABCA1
promotes the efflux of ANXAI, which is critical for the
activities of ANXAI.

Importantly, the ANXA1 needs to be externalized to
the cell membrane or secreted into the extracellular
fluids to exert its anti-inflammatory properties. The
transport of ANXA1 from the cytoplasm to the cell
membrane is dependent on serine phosphorylation and
lipidization (Solito et al. 2006). ABCA1 is a key regulator
of apoA-I (Wang et al. 2013) and apoE lipidation (Krim-
bou et al. 2004), and ABCA1 also contains serine resi-
dues in its intracellular segment; the phosphorylation of
ABCAL1 serine residues can increase cholesterol efflux
(Hu et al. 2009). ABCA1 mediates the secretion of
ANXA1, which is stored in lipid droplets and localized
in microparticles and exosomes. ABCA1 also mediates
microparticle (Duong et al. 2006; Nandi et al. 2009;
Hafiane and Genest 2017) and exosome secretion
(Hafiane and Genest 2017; Ma et al. 2011). ABCA1
transports ANXA1 from the cytoplasm to the cell
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membrane, likely by regulating lipidization and serine
phosphorylation, thereby mediating ANXA1 efflux most
likely by promoting microparticle and exosome release.
However, the role of the colocalization of both proteins
on the plasma membranes during ANXA1 efflux needs
to be determined. This hypothesis may be correct, at
least ABCA1 transports ANXA1 from the cytoplasm to
the cell membrane. Thus, ABCAl-mediated ANXA1
transport and release play a key role in the anti-
inflammatory action of ANXAL.

Interestingly, enhanced AA production through upreg-
ulation of cPLA, activity has been shown to inhibit LXR
expression and thereby reduce ABCA1 expression and
cholesterol efflux (Zhou et al. 2009). As mentioned be-
fore, ANXA1, which serves as the inhibitory protein of
PLA2, can reduce the synthesis of AA. ANXA1-/- mice
have shown increased serum triglyceride levels and Oil
Red-O staining of the liver as well as enhanced obesity
compared with wild-type mice. Administration of
hrANXA1 to mice reduced serum cholesterol and liver
triglyceride levels, Oil Red-O staining in the liver, and
weight gain, suggesting that ANXA1 increases ABCA1l
expression and cholesterol efflux. In addition, peroxi-
some proliferator-activated receptor-gamma (PPARYy),
which has been implicated in lipid metabolism, the in-
flammatory response, and glucose homeostasis, is in-
creased in ANXA1l-/- mice, suggesting a role for
ANXA1 in mediating PPARY expression (Akasheh et al.
2013). ANXA1 increases PPARy and CD36 expression
by modulating STAT6 phosphorylation in BV2 cells,
subsequently mediating phagocytosis of apoptotic cells
(da Rocha et al. 2019). Macrophage CD36 participates in
atherosclerotic arterial lesion formation via the promo-
tion of oxLDL uptake and foam cell formation. However,
ABCA1 and CD36 are induced by PPARy activation.
Thus, PPARy controls intracellular cholesterol balance,
including cholesterol uptake, processing, and cholesterol
removal, through ABCA1l and CD36 (Chawla et al
2001). IL-10 also increases CD36 and ABCA1 expres-
sion, thereby facilitating cholesterol uptake (minor) and
efflux (major) (Han et al. 2009). IL-19, which has a simi-
lar exon-intron structure and shares a 21% amino acid
identity with IL-10, also increases ABCA1 and ABCG1
expression and cholesterol efflux (Gabunia et al. 2016).
Administration of 10 ng/g/day IL-19 to LDLR-/- mice
almost completely inhibits plaque formation in the aortic
arch, and IL-19 at as little as 1ng/g/day reduces the
plaque area by 70%, suggesting that IL-19 has a strong
anti-atherosclerotic effect (Ellison et al. 2013). Mechanis-
tic studies have shown that IL-19 reduces cytokine-
induced inflammation by promoting the activation of
STAT3, STAT6, Kruppel-like factor 4 (KLF4), and
PPARYy (Gabunia et al. 2016). IL-19 regulates lipid me-
tabolism via the PPARy-dependent regulation of CD36-
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mediated cholesterol uptake and ABCA1-mediated chol-
esterol efflux (Gabunia et al. 2016). IL-19 reduces oxLDL
uptake by inducing the expression of miR-133a to re-
duce the expression of the target gene low-density lipo-
protein receptor adaptor protein 1 (LDLRAP1), which
functions to internalize the LDL receptor (Ellison et al.
2013; Gabunia et al. 2017). IL-19 reduces TNFa expres-
sion by inducing the expression of miR-133a to reduce
the expression of human antigen R (HuR), which is an
important regulator of TNFa mRNA stability (Ray et al.
2018), suggesting that IL-19 is a link between inflamma-
tion and cholesterol metabolism. In addition, ANXA1
decreases the expression levels of some miRNAs in
MCE-7 cells, including miR-26b*, miR-27a, miR-200c,
and miR-562 (Anbalagan et al. 2014). Previous studies
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by our laboratory and others have demonstrated that
miRNAs, including miR-27a and miR-10b, decrease
cholesterol efflux by binding to the 3’'UTR of ABCA1
(Zhang et al. 2014; Wang et al. 2018b; Wu et al. 2020).
Based on the aforementioned information, we
hypothesize that ANXA1 can also increase ABCA1 ex-
pression by regulating the expression of PPARy, IL-10,
and miRNAs, and then regulate cholesterol uptake and
efflux. Given that ANXA1 is a protective factor for ath-
erosclerosis, its role in cholesterol efflux may be domin-
ant. Interestingly, PPARy has also been shown to
increase ANXA1 expression by binding to the promoter
of ANXA1 in breast cancer cells (Chen et al. 2017).
Thus, ABCA1, PPARy, and ANXA1 may form a feed-
back loop and regulate each other. Notably, PPARY

apoAl

anti-inflammatory effects, cholesterol transport,
exosome and microparticle secretion. apoptotic cell
clearance., immunogenic cell death, etc.

N

anti-inflammatory
effects
' @
Cholesterol
efflux

apoAl

Fig. 1 The mechanism and function of the ABCAT interaction with ANXAT. ANXAT serves as an inhibitory protein of PLA2 (©) and increases the
expression of PPARy (@), IL-10 (®). The expression of ABCA1 is increased by the PLA, inhibitory protein (®), PPARy (®), IL-10 (®). Therefore,
ANXAT increases ABCAT expression and then combines with apoA-| to promote cholesterol efflux and anti-inflammatory effects (©). However,
this function has not been investigated and requires further study. ABCA1 increases ANXAT expression by binding to apoA-l, controlling the ERK,
p38 MAPK, AKT, and PKC pathways (®), and PPARy increases ANXAT expression by binding to the promoter of ANXAT (®). ABCA1 transports
ANXAT and thereby mediates ANXAT1 efflux and release (@), thereby promoting the functions of ANXAT1, including anti-inflammatory effects,
cholesterol transport, exosomes, microparticle secretion, apoptotic cell clearance, and immunogenic cell death (@). Thus, ABCAT, PPARy, and
ANXA1 may form a feedback loop and regulate each other. However, this interaction among ABCAT, PPARy, and ANXAT1 requires further study
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induces cholesterol efflux by binding to LXRa and con-
trolling the expression of the target gene ABCA1 (Wang
et al. 2018c; Tsuboi et al. 2020), suggesting that PPARy
may play a primary role in the feedback loop. However,
this interaction among ABCA1, PPARy, and ANXAI re-
quires further study.

Summary

ANXA1-mediated anti-inflammatory effects, cholesterol
transport, exosome and microparticle secretion, and
apoptotic cell clearance play key roles in atheroprogres-
sion. Importantly, ABCA1, in addition to mediating
cholesterol efflux and anti-inflammatory effects by bind-
ing to apoA-I, increases ANXA1 expression and trans-
ports ANXA1 from the cytoplasm to the cell membrane,
thereby promoting ANXA1 into the extracellular fluids
to facilitate anti-inflammatory activities and apoptotic
cell clearance. ANXA1 may also increase ABCA1 ex-
pression and cholesterol efflux by serving as the PLA,
inhibitory protein or increasing PPARy and IL-10 ex-
pression. ABCA1, PPARy, and ANXA1 may form a feed-
back loop and regulate each other (Fig. 1). Despite this
evidence for the relationship of mutual regulation be-
tween ABCA1 expression and ANXA1 efflux, less is
known regarding the potential role of this mutual regu-
latory effect in cardiovascular disease. Further studies
need to focus on the role of ABCAl-mediated ANXA1
efflux and ANXA1-mediated ABCA1 expression in the
development of atherosclerosis. In addition, ABCA1 is
not the only transporter that mediates ANXA1 secre-
tion, as ABCC1 also mediates this phenomenon (Wein
et al. 2004). The relationship between ABCA1l and
ABCC1 during ANXA1 efflux requires further study.
Taken together, these observations suggest that crosstalk
may exist between ANXA1l and ABCAI, IL-10, and
PPARy. However, the direct association of ANXA1 with
increased ABCA1 expression has not been investigated.
Finally, we sincerely hope that many more scientists will
focus on crosstalk in atherosclerosis.
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