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Abstract 

Background:  Hepatocellular carcinoma (HCC) is a common malignant primary cancer with high mortality. Previ-
ous studies have demonstrated that RNA binding proteins (RBPs) are involved in the biological processes of cancers, 
including hepatocellular cancer.

Methods:  In this study, we aimed to identify the clinical value of RNA-binding proteins for hepatocellular carcinoma. 
We obtained gene expression and clinical data of hepatocellular carcinoma patients from the TCGA and ICGC data-
bases. The prognostic value of RBP-related genes in patients with hepatocellular carcinoma and their function were 
studied by comprehensive bioinformatics analyses. The gene signature of SMG5, EZH2, FBLL1, ZNF239, and IGF2BP3 
was generated by univariate and multivariate Cox regression and LASSO regression analyses. We built and verified 
a prognostic nomogram based on RBP-related genes. The gene signature was validated by the ICGC database. The 
expression of RBP-related genes was validated by the Oncomine database, the Human Protein Atlas and Kaplan–
Meier plotter.

Result:  Most RBP-related genes were significantly different in cancer and normal tissues. The survival of patients in 
the different groups was significantly different. The gene signature showed good performance for predicting the 
survival of HCC patients by having a better area under the receiver operating characteristic curve than other clinico-
pathological parameters.

Conclusion:  Gene signatures based on RNA-binding proteins can be independent risk factors for hepatocellular 
carcinoma patients.
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Background
Hepatocellular carcinoma (HCC) is a common cancer 
with high mortality (Nakano et  al. 2020). Cancer of the 
liver and intrahepatic bile ducts was responsible for an 
estimated 841,000 new cases and approximately 780,000 
deaths in 2018 alone (Park 2015). Moreover, the over-
all 1- and 3-year survival rates are only 36% and 17%, 

respectively, in hepatocellular carcinoma patients (El-
Serag 2004). Although we have made great progress in 
radiofrequency ablation, systemic therapy, liver trans-
plantation, targeted therapies, and immunotherapy 
for treating HCC, the prognosis of HCC remains poor 
(Zheng 2015). Moreover, patients with the same tumor 
stage may have different prognoses because of individual 
differences. Therefore, it is essential to explore alterna-
tive biomarkers to predict the prognosis of hepatocellular 
carcinoma.

RNA binding proteins are a type of protein that 
can interact with various types of RNAs, including 
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mRNAs, rRNAs, ncRNAs, snRNAs, miRNAs, tRNAs, 
and snoRNAs (Gerstberger et  al. 2014). Currently, 
approximately 1542 RBP genes have been identi-
fied through genome-wide screening of the human 
genome(Gerstberger et  al. 2014). RBPs can regulate 
post-transcriptional regulation (mRNA stability, RNA 
processing, splicing, localization, and translation) by 
binding to their target RNAs to form ribonucleopro-
tein complexes (Masuda and Kuwano 2019). Post-tran-
scriptional regulation plays a key role in life processes. 
Therefore, aberrantly deregulated RBPs are closely 
related to the occurrence and progression of numerous 
human diseases. Some studies have shown that RBPs 
are pivotal regulators that regulate the occurrence and 
progression of cardiovascular diseases by mediating a 
wide range of post-transcriptional events (Bruin 2017). 
Previous studies have shown that RBPs are widely 
expressed in tumor cells, which affects the translation 
of mRNA into proteins and is involved in carcinogen-
esis (Pereira et  al. 2017; Chatterji and Rustgi 2018). 
Currently, only a few RBPs have been reported to play 
key roles in cancer development, such as HuR, AGO2, 
QKI-5, and ESRP1 (Xie 2019; Zhang 2019; Zong 2014; 
Jeong 2017). Thus, we will better understand the 
function of RBPs in cancer through comprehensive 
analysis.

In this work, we conducted an extensive analysis 
based on transcript and clinical data obtained from 
the TCGA and ICGC databases. We applied consensus 
clustering analysis, least absolute shrinkage and selec-
tion operator (LASSO) regression analysis and Cox 
regression analysis to develop prognostic RBP-related 
gene signatures. We developed a prognostic model 
based on RBPs as independent risk factors to predict 
the prognosis of hepatocellular carcinoma and to sug-
gest therapeutic targets for hepatocellular carcinoma.

Materials and methods
Data download and processing
We analyzed the differential expression of RBPs 
between HCC and adjacent normal tissues using the 
limma package, with thresholds of false discovery rate 
(FDR) < 0.05 and a |log2-fold change (FC)|> 2. Accord-
ing to the existing literature, a total of 1542 RBPs were 
obtained. RNA-Seq transcriptome and clinical data of 
hepatocellular carcinoma were downloaded from the 
TCGA database. The expression values at the probe 
level were converted into the corresponding gene sym-
bol according to the annotation files without further 
standardization. When several probes matched an 
identical gene symbol, the mean value was calculated as 
the expression value of this gene.

GO and KEGG enrichment analysis
GO enrichment analysis of differential expression of 
RBPs mainly includes 3 parts: biological processes (BPs), 
cellular components (CCs), and molecular function 
(MF) (Ashburner 2000). The KEGG database is an inte-
grated database resource for the biological interpretation 
of genome sequences and other high-throughput data 
(Kanehisa 2016). GO and KEGG enrichment analyses 
were performed using the clusterProfiler package, with 
thresholds of P and FDR values less than 0.05, indicating 
statistical significance (Yu 2012).

Construction of gene signature
Univariate Cox regression analysis was performed on 
the differential expression of RBPs to obtain RBPs sig-
nificantly related to survival. Then, we employed least 
absolute shrinkage and selection operator (LASSO) 
regression analysis to remove highly correlated survival-
related RBPs (Sauerbrei et  al. 2007). We identified the 
prognostic RBPs and their coefficients by multivariate 
Cox regression analysis, on which we constructed the 
gene signature. The risk score was calculated as follows: 
Risk score = 

∑
n

i=1
vi × ci (where vi is the mean expres-

sion of the gene and ci means the regression coefficient of 
the gene).

According to the gene signature, a Kaplan–Meier sur-
vival curve was plotted to evaluate the high- and low-risk 
groups by the log-rank test. Moreover, we determined 
the accuracy of the gene signature by generating receiver 
operating characteristic (ROC) curves. Independent 
prognostic analysis was used to predict whether the gene 
signature could be used as an independent prognostic 
factor for HCC patients.

The establishment of RBP the nomogram
Nomograms can predict the likelihood of an event 
based on the patient’s personal data, such as survival 
and recurrence. In this study, the establishment of the 
RBP nomogram was based on the hub RBPs. The predic-
tive accuracy and discriminative value of the nomogram 
mainly included the concordance index (C-index), AUC 
and calibration curve (Wang 2013).

Gene signature validation by the ICGC database
External validation of the gene signature was performed 
by the International Cancer Genome Consortium 
(ICGC) database. The risk score of each HCC patient was 
calculated by the same formula. RNA microarray and 
clinical data of Japanese HCC patients were downloaded 
from the ICGC database.
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Verification of the expression and prognostic significance 
of RBPs
The Oncomine database is a cancer microarray database 
and web-based data-mining platform that is used to mine 
cancer gene information (Rhodes 2004). The Oncomine 
database was applied for differential expression classifi-
cation of common cancer types and their respective nor-
mal tissues as well as clinical and pathological analyses. 
In addition, The Human Pathology Atlas allowed for the 
generation of personalized genome-scale metabolic mod-
els for cancer patients to identify key genes involved in 
tumor growth. In this study, we explored the expression 
of RBPs between HCC tissues and liver tissues using the 
Oncomine database and The Human Protein Atlas. The 
prognostic value of the RBPs in HCC was verified by the 
Kaplan–Meier plotter online tool.

Statistical analysis
All statistical analyses were performed using the Perl 
language and R language. LASSO regression analysis 
and Cox regression analyses were utilized to screen the 
RBPs related to survival. All significant comparisons were 
defined as P < 0.05.

Results
Differentially expressed RBPs
Differentially expressed RBPs were obtained from data 
analysis (Fig.  1a). All the RBPs were included in the 
analysis, and 56 RBPs met the screening standard of this 
study. We visualized the expression pattern of the differ-
entially expressed RBPs using volcano plots and box plots 
(Fig. 1b, c). The clinical characteristics of the TCGA and 
ICGC cohorts are shown in Table 1.

GO and KEGG enrichment analyses
GO enrichment analysis showed that the differentially 
expressed RBPs were mainly associated with the BP 
terms mRNA processing, regulation of mRNA metabolic 
processes, regulation of cellular amide metabolic pro-
cesses, and RNA catabolic processes. In addition, the CC 
terms showed that the RBPs were associated with cyto-
plasmic ribonucleoprotein granules, ribonucleoprotein 
granules, P granules, and pole plasms. Moreover, the 
MF terms mainly included mRNA binding, translation 
regulator activity, mRNA 3′-UTR binding, and trans-
lation repressor activity (Fig.  2a). We also performed 
KEGG pathway enrichment analysis of mRNA process-
ing, regulation of mRNA metabolic processes, regulation 
of cellular amide metabolic processes, and RNA catabolic 
processes (Fig. 2b, c).

Construction of the gene signature
A total of 19 RBPs were identified as closely related to 
HCC patient survival by univariate Cox regression anal-
ysis (Fig. 3). Then, we removed coexpressed RBP-related 
genes to prevent data overfitting by LASSO regres-
sion analysis (Fig.  4a, b). Finally, 6 RBPs were further 
submitted to a multivariate Cox proportional hazards 
model, and 5 candidate RBPs (SMG5, EZH2, FBLL1, 
ZNF239, and IGF2BP3) were identified to construct the 
gene signature (Table 2). The risk score of each patient 
was calculated based on the following formula: risk 
score = (the mean expression of SMG5*0.013774) + (the 
mean expression of EZH2*0.095776) + (the mean 
expression of FBLL1*0.054092) + (the mean expression 
of ZNF239*0.156661) + (the mean expression of IGF
2BP3*0.147735).

All HCC patients were divided into high- and low-
risk groups according to the median risk score. The 
Kaplan–Meier survival curves showed that the low-
risk group had a better survival rate than the high-
risk group (HR 1.372, 95% CI 1.246–1.511, P < 0.001) 
(Fig.  5a). In addition, we assessed the accuracy of the 
5-OS-related gene signature by constructing a ROC 
curve, and compared other clinicopathological parame-
ters, the AUC of the risk score was significant (Fig. 5b). 
Finally, we ranked the HCC patients according to the 
gene signature to analyze the survival distribution. We 
identified the mortality rate of HCC patients with their 
risk scores. Moreover, with the increase in risk score, 
the mortality rate of patients increased (Fig. 5c, d). We 
describe the expression level of RBPs with the different 
risk scores of samples using heat maps (Fig.  5e). The 
Cox regression analysis showed that the gene signature 
can be used as an independent prognostic factor for 
HCC patients (Fig. 6a, b).

Construction of RBP nomogram
We established an RBP nomogram to connect the gene 
signature with 1-year, 2-year, and 3-year survival. We 
analyzed the RBPs that affect the prognosis of HCC 
patients and established an RBP nomogram using 
Cox multivariate analysis. Ultimately, the nomogram 
included 5 prognostic RBPs (SMG5, EZH2, FBLL1, 
ZNF239, and IGF2BP3) (Fig.  7a). The C-index of the 
nomogram for OS prediction was 0.686 (95% CI 0.634–
0.738). The 1-year, 3-year and 5-year survival AUCs of 
the nomogram explained that our nomogram was suit-
able for clinical application (Fig.  7b). The calibration 
curve for predicting 1-year, 3-year and 5-year survival 
also showed that the nomogram was suitable for clini-
cal practice (Fig. 7c–e).
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Validation of the gene signature
We calculated the risk score of each HCC patient in 
the ICGC data portal project Liver Cancer-RIKEN, 
JP (LIRI-JP) as an independent external validation 
by the same formula. The HCC patients were divided 
into high- and low-risk groups based on the median 
risk score. The Kaplan–Meier survival curves show 
the prognostic value of our gene signature (P < 0.001) 
(Fig.  8a). In addition, the ROC curve also showed the 
good ability of the OS-related gene signature to pre-
dict the prognosis of HCC patients (Fig. 8b). With the 
increase in the risk score, the mortality rate of patients 
increased (Fig. 8c, d). Heat maps were used to describe 

Fig. 1  Differentially expressed RBPs between HCC and normal tissues. a Heatmap of differentially expressed RBPs. b The volcano plot for the 
differentially expressed RBPs. Red, higher expression; green, lower expression; Black, no difference. c The expression patterns of differentially 
expressed RBPs. Red, tumor tissues; Green, normal tissues

Table 1  Clinical characteristics of TCGA and ICGC cohorts

Clinical characteristics TCGA cohorts ICGC cohorts

Total cases 365 260

Survival status

 Alive 248 (68.0%) 214 (82.3%)

 Dead 117 (32.0%) 46 (17.7%)

Age

 < 65 213 (58.4%) 91 (35%)

 ≥ 65 152 (41.6%) 169 (65%)

Gender

 Male 243 (66.6%) 192 (73.8%)

 Female 122 (33.4%) 68 (26.2%)
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Fig. 2  Go and KEGG analysis of differentially expressed RBPs. a Bubble plot of enriched GO terms. b Bubble plot of KEGG



Page 6 of 13Wang et al. Mol Med          (2020) 26:125 

Fig. 3  Univariate Cox regression analysis of differentially expressed RBPs

Fig. 4  The LASSO regression analysis applied to screening RBPs that optimal used for the construction of the gene signature. a Screening 
of optimal parameter (lambda) at which the vertical lines were drawn. b LASSO coefficient profiles of the 6 RBPs with non-zero coefficients 
determined by the optimal lambda
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the expression of RBPs with the different risk scores 
of samples (Fig. 8e). Therefore, these validation results 
confirmed the prognostic ability of our gene signa-
ture. The sensitivity and specificity of prognostic model 
was shown in Additional file 1.

The expression of RBPs in the Oncomine database, human 
protein Atlas, and Kaplan–Meier plotter
We analyzed the expression of SMG5, EZH2, FBLL1, 
ZNF239, and IGF2BP3 in liver cancer using the 
Oncomine database. The expression levels of SMG5, 
EZH2, ZNF239, and IGF2BP3 in different hepatocel-
lular carcinomas were higher than those in the normal 
group in the Roessler Liver (34868_ at), Roessler Liver 
(203358_s_at), Roessler Liver (206261_at), and Roessler 
Liver (203819_s_at) studies (Fig. 9a–d). However, FBLL1 
was not detected in the Oncomine database.

In addition, we verified the histological levels of SMG5, 
EZH2, FBLL1, ZNF239, and IGF2BP3 using the Human 
Protein Atlas database, and the results showed that 
EZH2 and IGF2BP3 were upregulated in HCC tissues 
and downregulated in normal tissue (Fig. 9e, f ). The his-
tological level of ZNF239 was not significantly different 
between tumor and normal tissue (Fig.  9g). However, 
SMG5 and FBLL1 were not detected in the Human Pro-
tein Atlas database.

The prognostic significance of SMG5, EZH2, FBLL1, 
ZNF239, and IGF2BP3 was identified using the Kaplan–
Meier plotter server. The results showed that the 5 RBPs 
were closely related to OS of HCC patients (Fig. 9h–l).

Conclusion
The carcinogenesis and development of HCC involve 
a complex regulatory network. Currently, compared to 
using a single clinicopathological parameter, gathering 
diverse biomarkers and establishing a gene signature and 
nomogram are effective ways to predict the prognosis of 
tumors. RBP dysregulation has been reported in various 
malignant tumors (Pereira et  al. 2017; Wu 2019). The 
gene signature and nomogram based on RBPs may be 
more precise than a single clinicopathological parameter.

In this study, we aimed to analyze the relationship 
between RBPs and the prognosis of HCC patients. First, 
we downloaded the RNA expression profiles of RBPs 
from HCC patients from the TCGA database. Then, the 
results of GO analysis showed that the RBPs were mainly 
enriched in mRNA processing, regulation of mRNA 
metabolic processes, RNA catabolic processes, transla-
tion regulator activity, and mRNA binding. The KEGG 
analysis results showed that the ARGs were primarily 
enriched in mRNA processing, regulation of mRNA met-
abolic processes, regulation of cellular amide metabolic 
processes, and RNA catabolic processes. In addition, a 
total of 56 survival-related RBPs were identified as signif-
icantly related to HCC survival by univariate Cox regres-
sion analysis. Finally, we determined 5 RBP genes (SMG5, 
EZH2, FBLL1, ZNF239, and IGF2BP3) and constructed 
the gene signature by multivariate Cox regression analy-
sis. The gene signature could be an independent prognos-
tic biomarker for HCC patients.

Nomograms, a user-friendly graphical composite 
model, have been shown to be more accurate than con-
ventional staging systems for predicting prognosis in var-
ious cancers (Sternberg 2006). A nomogram can predict 
the likelihood of an event based on the patient’s personal 
data, such as survival and recurrence. To make our gene 
signature achieve a more credible and valuable prediction 
power for clinical application, a nomogram including 
SMG5, EZH2, FBLL1, ZNF239, and IGF2BP3 was devel-
oped to assess the individualized survival risk of patients 
and demonstrated satisfactory discrimination.

SMG5 nonsense-mediated mRNA decay factor (SMG5) 
is involved in nonsense-mediated mRNA decay (Ohnishi 
2003). Previous studies have indicated that SMG5 is an 
important nonsense-mediated mRNA decay factor (Jin 
2016). Enhancer of zeste 2 polycomb repressive com-
plex 2 subunit (EZH2) is involved in various biological 
processes (Comet 2016; Crea 2011). Increasing research 
has indicated that EZH2 is widely associated with car-
cinomas, such as hepatocellular carcinoma, colorectal 
cancer, melanoma and neuroendocrine tumors (Xiao 
2019a; Di 2019; Emran 2019; Faviana 2019). Recently, a 
study showed that the epigenetic modifier EZH2 can sup-
press the expression of the immune checkpoint inhibitor 

Table 2  The regression coefficient of five candidate RBPs genes

Gene Coef HR HR.95L HR.95H p-value

EZH2 0.095775967 1.100512485 1.020712414 1.186551386 0.012640121

SMG5 0.013773739 1.013869034 1.001508311 1.026382315 0.027751472

ZNF239 0.156660532 1.169598506 1.015670904 1.346854241 0.029559955

FBLL1 0.054092276 1.055582002 1.014381356 1.098456076 0.007747078

IGF2BP3 0.147735119 1.159205805 0.987378077 1.360935724 0.071107802
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Fig. 5  Gene signature of hepatocellular carcinoma patients in TCGA cohort. a Kaplan–Meier curve of high-risk and low-risk HCC patients. b ROC 
curve of OS-related gene signature. c Risk score distribution of HCC patients with different risks. d Scatterplots of HCC patients with different survival 
status. e Heatmap of expression of 5 RBPs in HCC patients
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PD-L1 by directly upregulating the level of the promoter 
H3K27me3 for CD274 and IRF1 in hepatoma cells and 
may serve as a potential therapeutic target for immu-
notherapy for treating immune-activated HCC (Xiao 
2019b). Insulin-like growth factor 2 mRNA binding pro-
tein 3 (IGF2BP3), a member of the IMP family, plays an 
important role in cell migration in early embryogenesis 
(Gong et  al. 2014; Vikesaa 2006). IGF2BP3 has gained 
considerable interest as a cancer-associated protein. A 
previous study reported IGF2BP3 overexpression in a 

variety of types of human cancers (Burdelski 2018). These 
studies suggest that IGF2BP3 may represent a valuable 
prognostic marker in human cancer.

The gene signature was validated by the ICGC cohort. 
The expression of SMG5, EZH2, FBLL1, ZNF239, and 
IGF2BP3 was determined using the Oncomine database, 
the Human Protein Atlas and Kaplan–Meier plotter. 
Post-transcriptional regulation is a dynamic and contin-
uous process. It is still not clear if analyzing changes in 
RNA binding protein‑related genes is sufficient to reflect 

Fig. 6  Independent prognostic analysis. a Univariate factor independent prognostic analysis. b Multivariate factor independent prognostic analysis
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RBPs. Therefore, there are some limitations in our work. 
First, there are no experimental studies regarding the link 
between expression data and functional autophagy states 
to verify our results. Second, there are not enough clini-
cal studies to confirm our results.

In conclusion, our study constructed a gene signature 
based on RNA binding protein‑related genes for HCC 
patients. Moreover, we further established a prognostic 
nomogram for hepatocellular carcinoma patients. Our 
gene signature and nomogram have great value for appli-
cation in clinical practice. However, these RBPs still need 

Fig. 7  The RBPs nomogram for prediction on survival probability in HCC patients. a Development of nomogram for predicting 1-, 3-, and 5-years 
OS for HCC patients. b 1-year,3-year, and 5-year survival ROC of nomogram. c The calibration curve for predicting HCC patient 1-year survival. 
d The calibration curve for predicting HCC patient 3-year survival. e The calibration curve for predicting HCC patient 5-year survival. X-axis: 
Nomogram-predicted probability of overall survival; Y-axis: actual overall survival
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Fig. 8  Gene signature of hepatocellular carcinoma patients in ICGC cohort. a Kaplan–Meier curve of high-risk and low-risk HCC patients. b ROC 
curve of OS-related gene signature. c Risk score distribution of HCC patients with different risks. d Scatterplots of HCC patients with different survival 
status. e Heatmap of expression of 5 RBPs in HCC patients
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further research to explore whether they may be helpful 
for molecular-targeted therapy of liver hepatocellular 
carcinoma.
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