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The role of the microbiome in ovarian 
cancer: mechanistic insights into oncobiosis 
and to bacterial metabolite signaling
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Abstract 

Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, 
oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female 
genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high 
inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. 
Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal 
infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacte-
rial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-
like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of 
lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile 
acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and 
probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacte-
rial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of 
oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant 
agents in therapy.
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Background
Ovarian cancer is leading oncological cause of death 
among women. Ovarian cancer is characterized by 
changes to different microbiome compartments that 
is termed oncobiosis. The aim of the current work is to 
provide a comprehensive review of changes to microbi-
ome and to give mechanistic insights to the role of the 
microbiome in the pathogenesis of ovarian cancer. These 

mechanistic steps involve, but are not limited to the 
induction of sustained inflammation and the production 
of procarcinogenic bacterial metabolites. The interfer-
ence between the oncobiome and the chemotherapeutic 
agents will be discussed, as well as, the possible applica-
tion of antibiotics, probiotics and nutrients in the man-
agement of ovarian cancer.

Etiology and treatment of ovarian cancer
Ovarian cancer is the second most common gynecologi-
cal malignancy in developed countries and has one of the 
worst prognosis and mortality (Torre et  al.  2015). Most 
ovarian tumors, approximately 90%, are of epithelial 
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origin (Heintz et al. 2001; Banks 2001). According to the 
presently accepted dualistic model, ovarian cancer is not 
a single homogenous disease, but consists of two major 
types, type I and II (Kurman 2013). Type I tumors (30%) 
are low-grade tumors, which are clinically slow-growing 
large cystic formations with mutations in KRAS, BRAF, 
PTEN, CTNNB1, PIK3CA, PPP2R1A, and ARID1A 
genes (Shih Ie and Kurman 2004; Wiegand et  al. 2010). 
On the contrary, type II tumors, accounting for 70% of 
all ovarian malignancies, are aggressive high-grade can-
cers that almost always present as advanced stage with 
high fatality. Type II tumors have alterations in the TP53, 
BRCA1, BRCA2 genes and have very high genetic insta-
bility (Kurman 2013; Kurman and Shih 2011). Approxi-
mately 90% of type II tumors are high-grade serous 
cancers (HGSC) and are derived from serous tubal 
interstitial carcinoma (STIC) of the fallopian tube (Kur-
man 2013; Carlson et al. 2008; Kindelberger et al. 2007). 
Hereditary factors are responsible for about 20% of all 
ovarian cancers, stemming from mostly BRCA1 and 
BRCA2 mutations (Lynch et  al. 1993; Risch et  al.  2006; 
Medeiros et  al.  2006). Somatic alterations of genes in 
the homologous repair pathways are more frequent than 
those of germ-line origin. More than 2/3 of patients pre-
sent with advanced-stage (FIGO III-IV) disease.

A complete tumor reduction, called primary debulking 
surgery, is the cornerstone of initial treatment for ovar-
ian cancer. Tumor reduction may necessitate multiple 
organ resections (bowel resection, peritonectomy, and 
splenectomy) (Chang et  al. 2012; Querleu et  al. 2017). 
The goal is to achieve “optimal” cytoreduction, which is 
defined as “no residual macroscopic disease”, according 
to the Vancouver Consensus Conference 2010 (Stuart 
et  al. 2011). If optimal tumor reduction is not feasible, 
neoadjuvant intravenous chemotherapy with paclitaxel 
and carboplatin is initiated and an interval debulking sur-
gery (IDS) is performed, if a partial or complete response 
is observed after 3 cycles (Querleu et  al. 2017; Vergote 
et al.2010; Zeng et al.2016; Fagotti et al. 2016). Since neo-
adjuvant chemotherapy increases the rate of complete 
tumor reduction, but does not improve survival, it is 
only non-inferior to upfront surgery, which is preferred 
if possible (Morrison et  al. 2012; Medina-Franco et  al. 
2017). In cases of HGSC, surgery is followed by adjuvant 
chemotherapy.

The standard of care for the past 20 years is a combina-
tion of paclitaxel and platinum, which is routinely admin-
istered intravenously (Jayson et  al. 2014). This therapy 
is superior, as the first-line treatment of ovarian cancer, 
over any other drug combination (Kyrgiou et  al. 2006). 
The modified dose-dense treatment with weekly pacli-
taxel regimen further improves survival, although side 
effects are more severe (Katsumata et al. 2009). Although 

intraperitoneal chemotherapy seems to have survival 
benefits over intravenous administration according to 
some trials, intraperitoneal treatment has a higher com-
plication rate (e.g. catheter-related problems) and is not 
routinely used, although the option is open for select 
cases (Jaaback and Johnson 2006).

Angiogenesis plays a very important role in the perito-
neal spread and metastasis forming potential of ovarian 
cancer (Yoneda et  al. 1998). Therefore, targeted thera-
pies against vascular endothelial growth factor (VEGF) 
have important therapeutic effects (Burger et al. 2011). If 
tumor reduction is not complete during surgery, patients 
receive bevacizumab, an anti-VEGF monoclonal antibody 
(NCCN Guidelines). Bevacizumab prolongs progression-
free survival and quality of life. However, bevacizumab 
is beneficial for overall survival only in poor prognosis 
groups (Stark et al. 2013; Tewari et al. 2019).

Poly[ADP-ribose] polymerase (PARP) plays an essen-
tial role in DNA repair (Curtin and Szabo 2013). Patients 
with germline or somatic BRCA1/2 mutations who 
show partial or complete response to platinum chemo-
therapy receive PARP inhibitors (olaparib or niraparib) 
as a maintenance therapy (NCCN Guidelines) [for an 
overview on the current studies see (Curtin et  al. 2020; 
Mateo et al. 2019; Curtin and Szabo 2020)]. Even patients 
without known BRCA 1/2 mutations may benefit from 
maintenance niraparib therapy after first-line treatment, 
because other homologous repair defects may be present 
in the tumor (NCCN Guidelines). If bevacizumab is part 
of the primary therapy, the addition of olaparib in com-
bination with maintenance therapy gives a significant 
progression-free survival benefit to patients regardless of 
BRCA1/2 mutation status (Ray-Coquard et al. 2019).

Despite initial therapy, the disease recurs in about 
70–80% of advanced-stage patients, and the 10  year 
disease-free survival rate is below 15% in these patients 
(Coleman et  al. 2019; Dood et  al. 2018). If the disease 
recurs 12 months or later after the end of platinum ther-
apy, the tumor is “platinum sensitive”, in a range between 
6 and 12  months the tumor is “partially platinum sen-
sitive”, and recurrence within 6  months means “plati-
num resistant” disease. Patients with platinum sensitive 
recurrence receive platinum reinduction therapy with 
paclitaxel and carboplatin, while the management of 
platinum-resistant disease is a much greater challenge. 
In the latter cases, single agent paclitaxel, topotecan, and 
pegylated liposomal doxorubicin (PLD) remain an option 
(Bergamini et al. 2019). These drugs can also be given in 
combination with bevacizumab as second-line therapy 
(Poveda et  al. 2015). In addition, PARP inhibitors have 
an important role in the management of recurrent dis-
ease (NCCN Guidelines; Ledermann et  al. 2012; Mirza 
et  al. 2016). There is strong evidence that secondary 
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cytoreductive surgery does not improve survival of 
recurrent ovarian cancer patients (Coleman et al. 2019).

Interactions between the oncobiome and cancer
A large set of neoplastic diseases are characterized by 
changes to microbiome compartment(s) that is termed 
oncobiosis, the opposite of which is eubiosis. Oncobio-
sis has a role in the pathogenesis of neoplastic diseases. 
Microbiome-neoplastic cell interactions are multi-
pronged (Miko et  al. 2016; Miko et  al. 2019; Zitvogel 
et al. 2017; Kovacs et al. 2020; Finlay et al. 2020) and can 
impact on multiple cancer hallmarks (for cancer hall-
marks, see the seminal papers of Hanahan and Weinberg 
(Hanahan and Weinberg 2011, 2000)). Microbiome-
related effects stem from basic cellular functions, such 
as changes to redox homeostasis (Kovács et  al. 2019; 
Smolková et al. 2020; Sári et al. 2020a, b) or changes to 
cellular metabolism (Sári et al. 2020a, b; Miko et al. 2018; 
Kovács et  al. 2019), via altered gene expression pat-
terns. These primary changes then modulate larger scale 
events, namely, epithelial-to-mesenchymal transition 
(Sári et  al. 2020b; Miko et  al. 2018; Kovács et  al.  2019; 
Buchta Rosean et  al. 2019; Ingman 2019; Vergara et  al. 
2019), cancer cellular movement, invasion, diapedesis 
and metastasis formation (Kovács et  al. 2019; Sári et  al. 
2020a, b, 2020; Miko et al. 2018; Kovács et al. 2019), angi-
ogenesis (Miko et al.  2018), the modulation of antitumor 
immunity (Sári et  al. 2020a; Miko et  al. 2018; Vergara 
et al. 2019; Sipe et al. 2020; Osman and Luke 2019; Zitvo-
gel et al. 2016; Routy et al. 2018a, 2018b; Gopalakrishnan 
et al. 2018; Elkrief et al. 2019; Derosa et al. 2020; Hall and 
Versalovic 2018; Viaud et al. 2014), and tumor-promoting 
inflammation (Kiss et al. 2020; Yu 2018).

The elementary events act together and the result of 
their action is dependent on the circumstances. A good 
example is oxidative stress or the modulation of the 
immune system. Sustained oxidative stress induces DNA 
damage and the accumulation of mutations increases 
the risk for carcinogenic transformation (Smolková et al. 
2020; Lau et al. 2008; Jezierska-Drutel et al. 2013). In this 
case, the dysbiotic microbiome drives local inflammation 
upon pathological colonization, such as in ovarian car-
cinoma (Wang et al. 2020) or pancreas adenocarcinoma 
(Kiss et  al. 2020). On the contrary, low oxidative stress, 
induced by bacterial metabolites, can exert cytostatic 
(but not cytotoxic) properties, as in the downregulation 
of NRF2 in breast cancer (Kovács et  al. 2019; Sári et  al. 
2020a, b).

Similar to the aforementioned oxidative stress, the 
immune system is a double-edged sword. The oncobi-
ome has different effects on the immune system than 
the eubiome. Bacteria themselves can act as baits for 
the immune system. Furthermore, immunomodulatory 

bacterial metabolites were identified in multiple carcino-
mas (Sári et al. 2020a; Miko et al. 2018) that can fine tune 
the behavior of the immune system. Hence, the oncobi-
otic transformation may tune the immune system differ-
ently (Zitvogel et  al. 2016). The tolerogenic state of the 
immune system jeopardizes the early elimination of can-
cer cells, reduces the efficiency of immunotherapy, and 
reduces oxidative stress (Zitvogel et al. 2016). In contrast, 
a more immunogenic microbiome supports immuno-
therapy (Routy et al. 2018a; Gopalakrishnan 2018), but in 
turn induce higher oxidative stress and increase the risk 
for mutations and may sustain tumorigenic inflammation 
(Buchta Rosean et al. 2019; Pagliari et al. 2018; Ochi et al. 
2012; Pushalkar et  al. 2018; Sethiet al.  2018; Ren et  al. 
2017).

What can drive oncobiotic transformation? Lifestyle 
choices are major contributing factors, including smok-
ing (Biedermann 2013), feeding, obesity (Schulz et  al. 
2014), changes to the diurnal rhythm (Zarrinpar et  al. 
2016, 2014; Paschos and FitzGerald 2017), aging (Zhang 
et al. 2019; Saffrey et al. 2014; Singh et al. 2019), under-
lying diseases such as diabetes (Devaraj et al. 2013), and 
exercise (Ticinesi et  al. 2019). In addition, antibiotic 
(Friedman et al. 2006) or probiotic use (Mendoza  2019; 
Ranjbar et  al. 2019) are associated with carcinogenesis. 
Recently, interbacterial signaling was identified, which 
depends on the release of components of bacterial cells 
that trigger resistance of the remaining live cells to the 
noxa that causes bacterial cell death (Bhattacharyya 
et al. 2020). The involvement of “dead cell signaling” has 
not been evaluated in controlling the composition of 
the microbiome. Sensing the numbers of bacteria in the 
environment (quorum sensing) is also a major player in 
fine tuning the microbiome (Li et  al. 2019; Juhász et  al. 
2017).The microbiome also interferes with all therapeu-
tic modalities, including chemotherapy, radiotherapy, 
and targeted therapeutic approaches (Bashiardes et  al. 
2017; Alam et al. 2020; Roy and Trinchieri 2017). Inter-
estingly, while bacteria can interfere with the metabolism 
or distribution of the elements of therapy (Perales-et al. 
Puchalt 2018), therapy can modulate the composition of 
the microbiome.

Oncobiotic transformation in ovarian cancer
Oncobiosis was identified in several compartments, 
including vaginal, cervicovaginal (Ness et al. 2003; Nené 
et al. 2019), upper genital tract (Zhou et al. 2019a; Brew-
ster et al. 2016), ovarian, intratumoral (Wang et al. 2020; 
Banerjee et al. 2017; Shanmughapriya et al. 2012; Poore 
et  al. 2020), peritoneal (Miao et  al. 2020), serum (Kim 
et  al. 2020), and fecal (Mori et  al. 2019) compartments 
(Table 1, Fig. 1). Oncobiosis can lead to lower diversity, 
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as in the cases of the intratumoral microbiome [Shan-
non index, Simpson index, and evenness index decrease 
(Wang et al. 2020)], the upper genital tract microbiome 
[Shannon index decrease, while in the Simpson index 
there is a borderline increase (Zhou et  al. 2019a)], and 
the peritoneal microbiome (Miao et  al. 2020). In other 
compartments, such as the serum, oncobiosis does not 
interfere with either α and β diversity. (Kim et al. 2020). 
[For the explanation of the diversity indices we refer the 
reader to (Alpha and beta diversity [http://​www.​metag​
enomi​cs.​wiki/​pdf/​defin​ition/​alpha-​beta-​diver​sity]; Vida 
et al. 2020)].

In the vaginal and cervicovaginal parts of the genital 
tract, Lactobacilli act as gatekeepers against bacterial and 
certain viral vaginal infections by maintaining low pH 
and epithelial tight junctions, as well as, producing anti-
microbial substances (Łaniewski et al. 2020). Importantly, 
Lactobacilli are protective species against ovarian can-
cer (Xu et  al. 2020). Vaginal communities that are poor 

in Lactobacillus are more prevalent in ovarian cancer 
patients compared to controls. Lactobacillus spp. poor 
communities are more prevalent in BRCA (1/2) mutation 
carriers, suggesting a role for oncobiosis in enhancing the 
effects of genetic mutations. Associations are stronger in 
younger patients (< 40 yrs. of age) (Nené et al. 2019).

In the tumor tissue, the Proteobacteria/Firmicutes 
ratio increases, since the abundance of Proteobacteria 
increase (Wang et al. 2020; Zhou et al. 2019a). Fusobac-
teria (Bacteroides) count in tumors is higher compared to 
healthy, untransformed tissues (Poore et  al. 2020). Both 
Proteobacteria and Fusobacteria are Gram-negative; 
hence, the microbiome gains more immunogenic char-
acter. The oncobiotic peritoneal microbiome is also rich 
in Gram-negative bacteria (Miao et al. 2020). In contrast, 
the gut oncobiome is enriched in Gram positive bacte-
ria, as Bacteroides abundance decreased and Firmicutes, 
Actinobacteria, and Proteobacteria increased in the 
gut microbiome. At the family level, Lachinospiraceae, 

Fig. 1  Changes to microbiome compartments in ovarian cancer. The center figure is  taken from https://​anato​mytool.​org/​conte​nt/​sagit​tal-​secti​
on-​female-​pelvis-​perit​oneum as a free image

http://www.metagenomics.wiki/pdf/definition/alpha-beta-diversity
http://www.metagenomics.wiki/pdf/definition/alpha-beta-diversity
https://anatomytool.org/content/sagittal-section-female-pelvis-peritoneum
https://anatomytool.org/content/sagittal-section-female-pelvis-peritoneum
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Bacteroideacea, and Rikenelacea decreased and Bifi-
dobacteriacea, Ruminococcacea increased (Mori et  al. 
2019).

In addition to oncobiotic transformation, genital 
pathogens (e.g. Chlamydia trachomatis or Nesseria 
gonorrhea) increase the risk for ovarian cancer (Ness 
et al. 2003; Shanmughapriya et al. 2012; Xu et al. 2020; 
Idahl et  al. 2011; Trabert et  al. 2019; Xie et  al. 2017; 
Rasmussen et  al. 2017; Carvalho and Carvalho 2008). 
A case report (Vyas 2007) showed the synchronous 
occurrence of Brucellosis and ovarian cancer, under-
lining the association between infection of the female 
genital tract and ovarian cancer. Of note, although 
Mycobacteria were detected in ovarian cancer speci-
mens and were linked to pathogenesis, recent studies 
provided strong evidence that Mycobacteria stemmed 
from external contaminations to samples (Poore et al. 
2020; Robinson et  al. 2017; Chan et  al. 1996). Lac-
tobacilli are key species to protect against vaginal 
infections and Lactobacillus spp. poor communities 
increase the risk of ovarian cancer (Nené et al. 2019). 
Furthermore, viral infections (HPVs, CMV, EBV, or 
HIV) were shown to interfere with carcinogenesis in 
ovarian cancer (reviewed in (Łaniewski et  al. 2020; 
Pathak et al. 2020; Levinson et al. 2018)). Besides bac-
teria and viruses, fungal and parasitic signatures were 
shown to be associated with ovarian cancer (Banerjee 
et al. 2017).

An ample set of data suggests that the microbiome 
drives inflammation and regulates immune responses 
to support carcinogenesis in ovarian cancer. This is 
highlighted by the observation that pelvic inflam-
matory disease is a risk factor for ovarian cancer 
(Łaniewski et  al. 2020; Rasmussen et  al. 2017, 2013; 
Mert et  al. 2018). Infections of the genital tract are 
excellent drivers of local inflammation. Inflammation 
can drive oncogenesis through multiple pathways, 
involving increased oxidative stress, the resulting DNA 
damage, and the accumulation of mutations. Pattern 
recognition receptors TLR2, 4, and 5 respond to bacte-
rial flagellin (Rutkowski et al. 2015) or LPS (Wang et al. 
2020, 2014; Kashani et al. 2020; Kelly et al. 2006; Glez-
erman et al. 1998; Huleihel et al. 1997; Park et al. 2017; 
Muccioli and Benencia 2014) and have pivotal roles in 
driving inflammation in ovarian cancer. Allegra and 
colleagues alluded to an interaction between miRNAs 
and the microbiome (Allegra et al. 2020). Treatment of 
ovarian cancer cells with Lactobacillus lactis, a vagi-
nal synbiont, modulates the expression of miR-21 and 
miR-200b, and, subsequently, TLR4 responsiveness 
of CAOV-4 cells (Rahbar Saadat 2019). The activa-
tion of TLR2, 4, and 5 culminate in the activation of 
inflammation-associated cytokine signaling pathways 

in ovarian cancer and the adjacent tissues, leading to 
the activation of NF-kappa B signaling (Zhou 2019a). 
Other pattern recognition receptors may be involved 
in ovarian cancer development (Cheng et al. 2020), but 
the evidence for their involvement is weak. Tumor-
associated macrophages have a pivotal role in driv-
ing ovarian cancer development (Xu et  al. 2019). The 
colonization of the peritoneum can drive metastasis 
formation and likely define the site of metastasis for-
mation in the peritoneum. Furthermore, metastasis 
to the bowels may involve an interplay between the 
microbiome of the peritoneal and gastrointestinal 
(fecal) compartments.

The role of bacterial metabolites in ovarian cancer
The gut microbiome has a diverse and enormous meta-
bolic capacity due to the large number of bacterial species 
and the large variability in their proportions (Magnusdot-
tir and Thiele 2017). Bacterial metabolites or components 
of bacteria can act locally or enter the systemic circula-
tion of the host and exert hormone-like effects at distant 
sites. Such hormone-like effects were described in the 
pathology of breast cancer, pancreatic adenocarcinoma, 
colorectal cancer, gastric cancer, hepatocellular carci-
noma (Miko et al. 2016; Miko et al. 2019; Kiss et al. 2020; 
Kuo et  al. 2016; Chen et  al. 2016; Shellman et  al. 2017; 
Yoshimoto 2013; Ravnik et  al. 2020; Rossi et  al. 2020; 
Sittipo et  al. 2019). In this chapter we will review those 
bacterial metabolites that can potentially have role in the 
pathogenesis of ovarian cancer. We will review the bac-
terial metabolism, serum/tissue levels and receptors of 
these metabolites in ovarian cancer and review the possi-
ble involvement of these metabolites in the pathogenesis 
of ovarian cancer.

It is of note that certain metabolites may have bacte-
rial, human, or sometimes nutritional origin, these cases 
were identified in the respective chapters discussing 
the metabolite in question. When metabolomic studies 
are discussed it should be noted that the source of the 
metabolites cannot be determined (i.e. bacterial, host or 
nutritional).

Lipopolysaccharides (LPS)
Lipopolysaccharides, lypoglycans, and endotoxins are 
components of the bacterial outer membrane in Gram-
negative bacteria (Bertani and Ruiz 2018). LPS molecules 
have a lipid core, which facilitates membrane attachment, 
to which polysaccharide chains are joined. LPS essen-
tially protects bacterial cells against external toxins, anti-
biotics, and bile acids. LPS is highly immunogenic and is 
a pathogen-associated molecular pattern (PAMP). LPS 
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stimulates TLR4 and TLR2 receptors (Bertani and Ruiz 
2018; Lu et al. 2008).

In oncobiosis accompanying ovarian cancer, the pro-
portions of Gram-negative bacteria and, therefore, LPS 
quantity increase in the cancer tissue (Wang et al. 2020). 
LPS plays a pivotal role in driving inflammation in ovar-
ian cancer (Wang et al. 2020, 2014; Kashani et  al. 2020; 
Kelly et  al. 2006; Glezerman et  al. 1998; Huleihel et  al. 
1997; Park et  al. 2017; Muccioli and Benencia 2014). 
LPS can activate cancer cells and tumor-associated mac-
rophages (TAM). The reactivity of cancerous tissue to 
LPS is higher compared to normal tissues (Glezerman 
et al. 1998; Huleihel et al. 1997). LPS stimulation of ovar-
ian cancer cells induces phosphatidyl-inositol-3 kinase 
activation, EMT, and migration marked by the overex-
pression of N-cadherin, Slug, Vimentin, Snail, α-SMA, 
TCF, MMP2, and MMP9 (Park et  al. 2017). The func-
tionality of LPS-induced inflammation is highlighted by 
the fact that the blockade of TLR4 reduces ovarian can-
cer proliferation (Kashani et  al. 2020) and TLR4 activa-
tion promotes proliferation and induces drug resistance 
(Kelly et al. 2006). The physical presence of certain vagi-
nal microbes, as Lactobacillus lactis, can modulate the 
responsiveness of TLR4 though modulating the expres-
sion of miR-21 and miR-200b and, hence, decrease 
responsiveness of CAOV-4 ovarian cancer cells to LPS 
(Rahbar Saadat et al. 2019).

LPS stimulation of TAMs pushes the macrophages 
towards the M1 profile (Trenti et  al. 2018; Wanderley 
et  al. 2018), which is cytotoxic and cytostatic for ovar-
ian cancer cells (Han et  al. 1999). The applicability of 
LPS stimulation to induce and immunogenic destruc-
tion of ovarian cancer cells was questioned by recent 
results showing that, in an experimental model of ovar-
ian cancer, LPS administration did not prolong survival, 
and, based on the timing of administration, may have 
even shortened survival (Vindevogel et  al. 2016). Taken 
together, LPS appears to be a procarcinogenic bacterial 
metabolite.

Lysophospholipids
Lysophospholipids are by-products of metabolic reac-
tions involved in bacterial membrane homeostasis 
(Zhang and Rock 2008; Zheng et al. 2017), as well as, are 
synthesized in the cells of the host. Gram-negative bac-
teria have high lysophospholipid content (Zhang and 
Rock 2008; Zheng et al. 2017) and, as stated earlier, the 
proportions of Gram-negative bacteria increase in ovar-
ian cancer patients (Wang et  al. 2020). Their chemical 
structure differs from general phospholipids. The cone-
shaped structure of lysophospholipids confers detergent-
like properties to these molecules (Zheng et  al. 2017). 
Lysophospholipids are generated under stress conditions, 

either by phospholipase A2, which removes a fatty acid 
moiety from position 2 of glycerol, as by-products of 
phospholipid biosynthesis, or by the release of exog-
enous lipases (Zheng et al. 2017). Lysophosphatids bind 
to lysophosphatidic acid receptors (LPAR1-6) (Lin et  al. 
2010). Lysophosphatids are present in the serum, plasma, 
and ascites (Ye et al. 2008).

Lysophosphatids impact the behavior of ovarian cancer 
cells by influencing multiple cancer hallmarks. Lysophos-
phatidic acid (LPA) and lysophosphatidylserine induce 
Akt, MAPK, and calcium signaling and LPA induces cell 
proliferation, migration, and invasion of ovarian cancer 
cells (Xu et al. 1995; Estrella et al. 2007; Jeong et al. 2012, 
2013; Pustilnik 1999; Sengupta et  al. 2003; Hurst and 
Hooks 2009). LPA can upregulate the expression of ele-
ments of angiogenesis in ovarian cancer (Lee et al. 2006). 
Lysophosphatids are upregulated in the plasma of ovarian 
cancer patients (Fanet al.  2012; Zhang et al. 2013). TLR5 
activation enhances the formation of distal metastases 
in ovarian cancer by reprograming the immune system 
(Rutkowski et al. 2015). Lysphosphatids are carcinogenic 
metabolites similar to LPS.

Tryptophan metabolites
The metabolism of tryptophan, an amino acid, is very 
complex and intricate. Approximately 4–6% of trypto-
phan undergoes bacterial metabolism and yields indole-
derivatives (Wikoff et  al. 2009; Yokoyama and Carlson 
1979; Browne et  al. 2012; Aidy et  al. 2012; Mardinoglu 
et al. 2015; Gao 2018). Bacterial tryptophan metabolism 
has multiple arms, as reviewed in (Wikoff et  al. 2009; 
Yokoyama and Carlson 1979; Browne et  al. 2012; Aidy 
et al. 2012; Mardinoglu et al. 2015; Gao et al. 2018). The 
main receptors for tryptophan-derivatives are aryl hydro-
carbon receptor (AHR) and pregnane X receptor (PXR) 
(Zelante et  al. 2013; Venkatesh et  al. 2014; Lamaset al.  
2016).

AHR has pivotal roles in immune regulation (Gao et al. 
2018; Kim et al. 2018) and low dietary tryptophan leads 
to immunosuppression (Sonner et  al. 2019). Mucosal 
immunity can be regulated by AHR activation. There-
fore, indole-derivatives can impact on the composition 
of microbiome compartments. As an example, indol-
derivatives support the growth of Lactobacillus reuteri 
that, in turn, inhibit the expansion of pathogenic bacteria 
(Zelante et al. 2013; Shi et al. 2007; Qiu et al. 2012; Zhang 
et  al. 2017) and protect against ovarian cancer (Nené 
et  al. 2019). In addition, certain Lactobacilli can utilize 
tryptophan as an energy source. Therefore, a tryptophan-
rich diet can improve Lactobacillus viability and induce 
proliferation (Zelante et al. 2013).

Tryptophan levels and indolepropionic acid (a bacterial 
tryptophan metabolite) decrease in the serum of ovarian 
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cancer patients (Plewa et al. 2017; Hilvo et al. 2016; Zhou 
et al. 2010; Zhang et al. 2012; Ke et al. 2015), a trend that 
is aggravated by increased stage of the disease (Ke et al. 
2015). In good agreement with that, urinary indolepro-
pionic acid concentrations correlate with the presence of 
epithelial ovarian cancer compared to healthy controls 
(Zhang et  al. 2013). Apparently, indole-derivatives are 
antineoplastic and their production decreases in ovarian 
cancer.

Other bacterial metabolites with potential involvement 
in ovarian cancer
Other bacterial metabolites were shown to affect other 
cancers, nevertheless, based on the currently available 
data, their involvement in ovarian cancer was ambigu-
ous. For metabolism and species information we refer 
the readers to reviews (Miko et al.  2019; Kiss et al. 2020; 
Wortham et  al. 2007; Michael  et  al. 2018; Ridlon et  al. 
2006; Ridlon and Bajaj 2015; Gerard 2013; Ramirez-Perez 
et al. 2017).

Short chain fatty acids (SCFAs), encompassing 
acetate, propionate, butyrate, and lactate were cyto-
static in numerous cancers. The reference concentra-
tion of SCFAs in the human serum is in the range of 
10–100  µM (Clausen et  al. 1991; Jakobsdottir et  al. 
2013; Ktsoyan et  al. 2016) and may reach locally to 
1 mM (Pryde et al. 2002). SCFAs act on free fatty acid 
receptors (FFARs) and AHR (Jin et  al. 2017). Most 
SCFAs can act as energy sources in cells (Sittipo et al. 
2019) or may inhibit histone deacetylases and through 
that, can modulate epigenetics (Shimazu 2013; Men-
zies et al. 2016; Fellows and Varga-Weisz 2020). SCFAs 
impact on the pH of the colon, modulate the immune 
system and, as a consequence, influence the composi-
tion of the colon microbiome (Fachi et al. 2020). SCFA 
production probably plays role in quorum sensing, as 
suggested by in  vitro experiments (Li et  al. 2020; Ge 
et  al. 2019). When ovarian cancer cells were treated 
with SCFAs in superphysiological, low millimolar con-
centrations (1–5  mM) in in  vitro experiments, SCFAs 
exerted cytostatic pro-apoptotic (Terao et  al. 2001; 
Krupitza et al. 1995), anti-EMT (Mrkvicova 2019) fea-
tures and inhibited invasiveness (Krupitza et  al. 1996) 
and induced senescence (Terao 2001; Yabushita and 
Sartorelli 1993; Langdon et  al. 1988). These results 
suggest that SCFAs can potentially be antineoplastic. 
Contradicting these beneficial effects, metabolomic 
studies showed that hydroxybutyric acid (Hilvo et  al. 
2016), lactate and pyruvate (Kyriakides et al. 2016; Boss 
et  al. 2000; Fong et  al. 2011) increased in tumors and 
cyst fluid of patients. The bacterial pathways generat-
ing SCFAs (pentose phosphate pathway, starch and 
sucrose metabolism, fructose and mannose, pyruvate 

metabolism, galactose metabolism, and glycan degrada-
tion) (Wang et al.  2020) are upregulated in the tumors 
of ovarian cancer patients, as well as, in the tumor cells 
themselves (Turkoglu et al. 2016).

Polyamines (e.g. spermine, spermidine) are organic 
molecules with more than two amine groups. Polyam-
ines support bacterial growth and biofilm formation and 
through these, in pathogenic species, polyamines are vir-
ulence factors (Michael et al. 2018) and quorum sensing 
signals (Rattanaphan et al. 2020; Inaba et al. 2020). Some 
circulating polyamines may be of bacterial, human, and/
or dietary origin (Ramos-Molina et al. 2019). Polyamines 
and putrescine are usually linked with tumorigenesis in 
cancers other than ovarian cancer. A serum metabolome 
study demonstrated that polyamine metabolism was dys-
regulated in ovarian cancer (Zhou 2010). Spermine and 
spermidine levels in erythrocytes, plasma, and urine of 
ovarian cancer patients increase compared to healthy, 
age-matched controls, suggesting a systemic increase in 
these metabolites in ovarian cancer (Hayase et  al. 1985; 
Lawton et  al. 1989; Chanda and Ganguly 1995). Simi-
larly, urinary N1,N12-diacetylspermine levels are higher 
in patients with malignant ovarian tumors compared to 
patients with benign tumors (Niemi et  al.  2017). Fur-
thermore, the probability/frequency of increased blood 
polyamine levels is in line with the progression of ovarian 
cancer.

Secondary bile acids (lithocholic acid (LCA), deoxy-
cholic acid (DCA), and ursodeoxycholic acid (UDCA)) 
are bacterial transformation products of hepatic pri-
mary bile acids taking place in the intestines. Bile acids 
undergo enterohepatic circulation (hepatic synthesis 
and secretion to duodenum, intestinal transformation, 
reabsorption and return to the liver) that is hampered 
in ovarian cancer. The enterohepatic circulation of bile 
acids is modified in ovarian cancer; bile acid reabsorp-
tion is hampered (Larsen et al.  2019) and less bile acids 
appear in the ascites (Hedenborg et al. 1988). A fraction 
of the reabsorbed bile acids enter the systemic circula-
tion (Marshall et  al. 2016) (total bile acid concentration 
in the serum is > 5  µM in a healthy individual) and that 
bile acid pool can exert hormone-like, systemic effects 
(Miko  et  al. 2019, 2018; Ravnik et  al. 2020; Watanabe 
et  al.  2006; MahmoudianDehkordi 2019; Sarin et  al. 
2019; Tang et  al. 2019). The serum concentration of 
bile acids is submicromolar for deoxycholic acid and 
100–300 nM for ursodeoxycholic acid, while LCA is pre-
sent in much lower concentrations in serum, ~ 30  nM 
(Miko et al. 2018). Bile acids can impact on the compo-
sition of the microbiome (Tsuei et al. 2014; Merritt and 
Donaldson 2009; Garcia-Quintanilla et  al. 2006; Prieto 
et  al. 2006, 2004; Kandell and Bernstein 1991; Schaf-
fler and Breitruck 2018; Sorg and Sonenshein 2010) and 
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bile acids can facilitate bacterial translocation into tis-
sues (Slocum et al. 1992). Bile acid signaling in humans 
is very complex, with multiple receptors. Receptors for 
bile acids include farnesyl-X-receptor (FXR), liver-X 
receptor (LXR), Takeda G Protein-Coupled Receptor 5 
(TGR5), constitutive androstane receptor (CAR), vitamin 
D receptor (VDR), pregnane X receptor (PXR), sphin-
gosine-1-phosphate receptor 2 (S1PR2), and muscarinic 
M2,3 receptors. Apart from TGR5, S1PR2, M2, and M3, 
all receptors are nuclear receptors.

Most in  vitro cellular studies assessed bile acids at 
superphysiological concentrations (0.05–400  mM) 
(Horowitz et  al.  2007; Schuldes et  al. 2001; Jin et  al. 
2018). At these superphysiological concentrations, bile 
acids are cytotoxic, antineoplastic in cell models (Horow-
itz et al.  2007; Schuldes et al. 2001), mostly due to chang-
ing the biophysical properties of the cell membrane and 
damage to DNA (Schuldes et al. 2001), although, whether 
these changes would occur at physiological concentra-
tions require further studies. The concentrations of most 
bile acids as 3b-hydroxy-5-cholenoic acid, glycoursode-
oxycholic acid, and deoxycholic acid (Ke 2015), tauroche-
nodeoxycholic acid (Fan et al.  2016) decrease in ovarian 
cancer patients. Bile acid receptors have variable effects 
on ovarian cancer cells. The activation of a bile acid 
receptor LXR reduces the proliferation of ovarian car-
cinoma cells (Scoles et  al. 2010; Rough et  al. 2010) and 
improves the efficacy of anti-VEGF therapy (Curtarello 
et al. 2019). In contrast to that, the inhibition of the PXR 
pathway induces ovarian cancer cell proliferation (Mas-
uyama et al. 2016). Furthermore, PXR or CAR activation 
contributes to chemoresistance and proliferation (Wang 
et  al. 2014; Gupta et  al. 2008; Chen et  al.  2012). Taken 
together, these results suggest that bile acids may have 
cytostatic properties on ovarian cancer cells, and this 
effect is lost or reduced in ovarian cancer patients. How-
ever, the role of the bile acid receptors calls for further 
detailed investigations.

Modulating the oncobiome in ovarian cancer
Antibiotics
Topical or systemic antibiotic treatment has a strong 
impact on the composition of the microbiome. Antibi-
otic treatment impacts the frequency and recurrence of 
breast cancer (Friedman et al.  2006; Kirkup et al. 2019, 
2020; Wirtz et al.  2013). In the case of pancreatic adeno-
carcinoma where bacterial colonization of the pancreas is 
a major driver of carcinogenesis (Kiss et al. 2020) similar 
to ovarian cancer, antibiotic treatment was beneficial in 
animal models (Thomas et al. 2018). Pathogen coloniza-
tion influences ovarian carcinogenesis, indicating that 
antibiotic use in ovarian cancer may inhibit cancer cell 
movement and metastasis formation. However, we are 

not aware of any dedicated in  vivo  study to assess this 
possibility, nevertheless, the literature suggests that anti-
biotic treatment may impact on the gut microbiome and, 
hence modulate the polarization of the immune system, 
and through that inflammation promoting ovarian can-
cer (Cheng et al. 2020).

Available studies used antibiotics and antimycotics as 
single agents or in drug combinations to directly act on 
cancer cells in in vitro models to improve chemotherapy. 
Lamb and colleagues (Lamb et  al. 2015) showed that a 
set of antibiotics (erythromycins, tetracyclines, glycyl-
cyclines, and chloramphenicol) can block cell prolifera-
tion and reduce the proportions of ovarian cancer stem 
cells. Minocycline, as a single agent, can also reduce 
the proliferation of ovarian cancer cells by interfering 
with energy-sensing pathways and proliferative signal-
ing (Ataie-Kachoie et  al. 2013a, b, 2015; Pourgholami 
et al. 2013). Ciprofloxacin can also act as a single agent to 
reduce cancer cell proliferation (Kloskowski et al. 2010). 
In addition, ciprofloxacin prophylaxis in taxol-based 
chemotherapy regimens prevents febrile neutropenia and 
sepsis during chemotherapy (Carlson et al. 1994). Finally, 
salinomycin can impair cancer cell proliferation by inhib-
iting proliferation, inducing apoptosis, blocking EMT, 
and reducing stem-ness (Zhang et al. 2012; Parajuli et al. 
2013a, b; Chung et al. 2016; Kaplan and Teksen 2016; Li 
et  al.2017; Lee et  al. 2017). Several of these antibiotics 
can bind to mitochondrial complex I and interfere with 
cellular energetics (Lamb et al. 2015) to interfere with the 
behavior of cancer cells.

Antibiotics can be used as a component of drug combi-
nations also. Tigecycline (Tan et al. 2017), clarithromycin 
(Zhou et al. 2019b), amphotericin B (Kojima et al. 1994), 
valinomycin (Daoud and Forde 1991), and salinomycin 
(Michalak et  al. 2020) can be used in combination with 
cisplatin. Moreover, antibiotics can be used to counter-
act cisplatin resistance, a major issue in ovarian cancer 
chemotherapy, as evidenced in murine models (Cham-
bers et al. 2020). Minocycline can potentiate topoisomer-
ase inhibition (Huang et al. 2018).

Interestingly, a study by Wang et al. (Wang et al. 2020) 
showed that the resident bacteria in ovarian cancer tis-
sue produced antibiotics. In particular, the biosynthesis 
of butirosin, neomycin, vancomycin, streptomycin, and 
ansamycins were different in cancerous tissues compared 
with healthy control tissues. The biological impact of this 
finding has not been assessed to date.

Although many studies suggest the potential applicabil-
ity of antibiotics in cancer therapy, Xu and colleagues (Xu 
et al. 2019) showed that combination treatment of Balb/c 
mice grafted with SKOV4 ovarian cancer cells with ampi-
cillin, vancomycin, neomycin, and metronidazole pro-
moted the growth and invasiveness of grafts. Thus, the 
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applicability of antibiotics should be carefully assessed 
and considered in a clinical setting. In addition, the appli-
cability of oral or vaginal probiotics should be considered 
(Brewster et  al. 2016; Chase et  al. 2015; Champer et  al. 
2018), although experimental data is missing.

Nutrients and diet
Nutrition modulates the composition of the microbiome 
along with other lifestyle elements. Obesity is a risk fac-
tor for ovarian cancer (Leitzmann et  al. 2009) and the 
ketogenic diet was shown to reduce central obesity and 
reduce insulin levels in ovarian cancer patients (Cohen 
et  al. 2018). Animal fat (Shu et  al. 1989) and retinol 
(Zhang et  al. 2004) consumption increases the risk for 
ovarian cancer (Shu et al. 1989; Zhang et al. 2004), while 
vegetable (Shu et al. 1989), fiber (Zhang et al. 2004), caro-
tene (Zhang et  al. 2004), vitamin C (Zhang et  al. 2004), 
and vitamin E (Zhang et al. 2004) consumption is protec-
tive in a dose-dependent fashion. Nutrients (e.g. poly-
amines (Ramos-Molina et al. 2019; Tofalo et al. 2019) or 
tryptophan (Gao et al. 2018; Lin et al. 2017)) can directly 
impact inflammation, a driver of carcinogenesis in ovar-
ian cancer (Madeo et  al. 2020). Polyunsaturated fatty 
acids reduce the expression of key chemokines (e.g. IL-6) 
in ovarian cancer-associated. Lactobacilli seem to be 
unique in the human vaginal flora (Miller et al. 2016) and 
are protective against ovarian cancer (Nené et al. 2019). 
In good agreement with this, animal-derived nutrients 
increase the risk of cervical cancer by reducing Lactoba-
cilli in the vaginal flora (Seo et al.  2016) and tryptophan 
supplementation that support the growth of certain Lac-
tobacilli by serving as an energy source can improve Lac-
tobacillus viability and induce proliferation (Zelante et al. 
2013).

Interference with chemotherapy
The microbiome can interfere with cancer chemotherapy 
and management strategies. In fact, the interactions form 
a circuit, where (1) the microbiome or oncobiome inter-
feres with the metabolism of chemotherapeutic drugs, 
modulates the immune system, and interferes with the 
side effects of drugs, and, conversely, (2) therapy modu-
lates the composition and behavior of the microbiome. 
We will review the interference between the microbi-
ome and the individual elements of the chemotherapy 
regimen used in ovarian cancer. Bacterial metabolites 
themselves can modulate the effectiveness of chemother-
apeutic agents that is summarized in Table 2.

To date, there is no data on the microbial metabolism 
of medically used taxols. Paclitaxel can bind to and acti-
vate TLR4 receptors to reprogram the immune system 
(Byrd et al. 1999). This may be the reason why the colo-
nization of the tumor with Salmonella typhimurium or 
Porphyromonas gingivalis (Miyake et al. 2019; Woo et al. 
2017) can interfere with paclitaxel efficiency in cancers 
other than ovarian cancer. In the same manner, bacte-
rial LPS may confer resistance to Taxol in macrophages 
(Sweet and Hume 1996), hence, colonization of ovarian 
cancer tissue by LPS-rich, Gram-negative bacteria can 
impact on local Taxol effectiveness. Taxanes can interfere 
with the invasiveness and infectivity of Klebsiella pneu-
moniae (Oelschlaeger and Tall 1997) and Campylobacter 
jejuni (Biswas et al. 2000).

Platinum drugs can crosslink (Dedduwa-Mudalige and 
Chow 2015) and do oxidative damage to nucleic acids in 
bacterial, or in human cells (Beaufay et al. 2020). Cispl-
atin and carboplatin, therefore, exert bacteriostatic prop-
erties on Acinetobacter, Mycobacteria, and Pseudomonas 
aeruginosa (Yuan et al. 2018; Gajdács and Spengler 2019; 
McCarron et al. 2012; Zhang et al. 2011) and other path-
ogens (Hummell and Kirienko 2020). Cisplatin kidney 

Table 2  Interactions between bacterial metabolites and drugs relevant in ovarian cancer chemotherapy

TopoIIi -Topoisomerase II inhibitor

Drug Metabolite Effect Ref.

Cisplatin Spermine, spermidine induce cisplatin resistance Marverti  et al. 2005; Marverti  et al. 2004; Marverti  
et al. 2001; Marverti  et al. 1997; Hector et al.  
2004; Desiderio  et al. 1997

Butyrate and valproic acid Mrkvicova et al. 2019; Wasserman  et al. 1989; 
Sajadpoor et al. 2018

Paclitaxel LPS TLR4 activation induces pacli-
taxel chemoresistance 

Kelly  et al. 2006; Edwardson  et al. 2017; Huang  
et al. 2014; Szajnik et al. 2009

Doxorubicin/Adriamycin Taurochenodeoxycholate sensitizes resistant cells Schuldes et al. 2001

Butyrate and valproic acid Wasserman  et al. 1989

Spermine induces Doxorubicin resistance Schuldes  et al. 2001

Niraparib Butyrate and valproic acid sensitizes resistant cells Booth et al. 2018

Topoisomerase II inhibitors (TopoIIi) Spermine, spermidine sensitizes cells to TopoIIi Desiderio  et al. 1997

Mitomycin Taurochenodeoxycholate sensitizes Schuldes et al. 2001
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toxicity can be prevented via limiting uremic toxins pro-
duction by probiotics, such as Lactobacillus salivarius 
BP121 (Lee et al. 2020), a mixture of Lactobacillus plan-
tarum plantarum, Lactobacillus paracasei paracasei, and 
Streptococcus salivarius, or Streptococcus thermophilus 
(Lee et  al. 2020). Cisplatin administration compromises 
epithelial barriers, leading to bacterial translocation 
(Perales-Puchalt et  al.2018). Cisplatin resistance can be 
alleviated by co-treatment with antibiotics (Tan et  al. 
2017; Zhou et  al. 2019b; Kojima et  al. 1994; Daoud and 
Forde 1991; Michalak et al. 2020; Chambers et al. 2020).

Bacteria can metabolize TopoII inhibitors through 
β-glucuronidase enzymes (Roberts et  al. 2013; Wallace 
et  al. 2015; Bhatt et  al. 2020), a key factor influencing 
TopoII inhibitor availability (Bhatt et al. 2020) and toxic-
ity (Roberts et al. 2013). In fact, β-glucuronidase enzymes 
can deconjugate and reactive estrogens and, hence, 
increase estrogen recirculation (Flores et al. 2012; Baker 
et  al. 2017; Ervin et  al. 2019) suggesting a link between 
bacterial estrogen recycling and TopoII inhibitor avail-
ability. TopoII inhibitors have bacteriostatic properties 
(Patel et al. 1998) and, not surprisingly, TopoII inhibitors 
modulate the gut microbiome. Irinotecan treatment in 
rats increased the abundance of clostridial clusters I and 
XI and Enterobacteriaceae, while total bacteria, Clostrid-
ium cluster VI, and the Bacteroides-group decreased. 
These effects were prevented by oral glutamine adminis-
tration (Lin et al. 2012). TopoII inhibitors interfere with 
TLR4 (Wardill et al. 2016) and SCFA (Irinotecan  2006; 
Encarnação et al. 2018; Lin 2014) signaling. The microbi-
ome plays a key role in mediating the severity of TopoII 
inhibitor-induced mucositis (Ribeiro et  al.2016; Pedroso 
et  al. 2015; Wang et  al.2019), which can be ameliorated 
by Escherichia coli Nissle 1917 (a probiotic) (Wang et al. 
2019) or butyrate (Encarnação et al. 2018) and its prebi-
otics (Lin et al. 2014). The involvement of butyrate dem-
onstrates the contribution of SFCA signaling.

Anthracyclines (e.g. Doxorubicin) are biosynthesized 
by Streptomyces strains and are used as intercalating 
agents in cytostatic therapy. Anthracyclines can act as 
antibiotics too (Cox et  al. 2014), for example, anthracy-
clines can inhibit the growth of Acinetobacter species 
(McCarron et  al. 2012). Multiple bacterial species can 
metabolize and inactivate anthracyclines (Parajuli et  al. 
2018; Dhakal et  al. 2018; Zabala et  al. 2013). Further-
more, anthracycline treatment can facilitate the loss of 
the intestinal barrier, bacterial translocation and bacterial 
entry to secondary lymphoid organs (Alexander 2017).

The silencing of PARP1 increases the diversity of the 
gut microbiome (Vida et al. 2018; Larmonier et al. 2016), 
indicating that PARP inhibitors may also increase micro-
biome diversity. PARP enzymes play a role in TLR4 and 

5 (Liaudet et al.2002; Zerfaoui et al. 2010), AHR (Diani-
Moore et  al. 2010; Macpherson et  al. 2013), and SCFAs 
signaling through AHR (Jin et al. 2017).

Bevacizumab is a monoclonal antibody targeting VEGF 
to inhibit vascularization. Bevacizumab is the only tool 
in targeted therapy to be applied in ovarian cancer. Nev-
ertheless, there are novel, experimental immunological 
approaches in the treatment of ovarian cancer adoptive 
cell transfer (ACT) (Rosenberg et al. 2008; Kershaw et al.  
2006), Chimeric antigen receptor (CAR​) T-cell therapy 
(CAR-T) (Schepisi 2021), dendritic cell vaccines (Zhang 
et  al. 2020), immune-checkpoint blockade that aim to 
enhance T cell responses (Schepisi 2021). The effective-
ness of therapies involving the activation of the immune 
system depend on the composition and immunogenic 
properties of the microbiome (Routy et al.  2018a; Veti-
zou et  al. 2015; Sivan et  al. 2015; Matson et  al. 2018; 
Innao et al. 2020; Brandi and Frega 2019; Sun et al. 2020). 
It should be noted that ovarian cancer-specific microbi-
ome data is missing.

Conclusions
Current data support the oncobiosis of multiple micro-
biome compartments in ovarian cancer. Vaginal infec-
tions and the colonization of the upper genital tract 
seem to play important roles in the development of 
ovarian cancer (Fig. 2) primarily by supporting tumor-
promoting inflammation. We provided evidence that 
signaling through bacterial metabolites play a role 
in the pathogenesis of ovarian cancer, a set of proin-
flammatory metabolites (LPS, lysophosphatides) are 

Fig. 2  Bacterial colonization of the upper genital tract as a risk 
factor for ovarian cancer. In black, the microbial risk factors of 
ovarian cancer. The image is a free-use image from https://​image.​
freep​ik.​com/​free-​vector/​woman-​ovari​an-​cancer-​conce​pt-​drawi​ng_​
1308-​15806.​jpg

https://image.freepik.com/free-vector/woman-ovarian-cancer-concept-drawing_1308-15806.jpg
https://image.freepik.com/free-vector/woman-ovarian-cancer-concept-drawing_1308-15806.jpg
https://image.freepik.com/free-vector/woman-ovarian-cancer-concept-drawing_1308-15806.jpg
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upregulated, while tryptophan metabolites were down-
regulated that have antineoplastic features. It should 
be noted that further studies are needed to define the 
involvement of metabolite signaling in ovarian cancer.

The association of oncobiosis with ovarian cancer 
implies the possible use antibiotics or probiotics to 
mitigate the side effects of chemotherapy (Wang et  al. 
2019) or eradicate the colonizing bacterial species. 
Along the same lines, supplementing chemotherapy in 
hyperthermic intraperitoneal chemotherapy should be 
considered. To our surprise, such studies are largely 
missing, despite the fact that the literature discusses 
numerous hypotheses (Brewster et  al. 2016). Probiot-
ics are frequently used to treat banal vaginal infections. 
Therefore, conducting studies of these agents in rela-
tion to ovarian cancer would be straight forward, simi-
lar to assessing the use of antibiotics in ovarian cancer.

Another field, where bacterial dysbiosis and metabo-
lite signaling can be exploited, is therapy and diag-
nostics. There are numerous studies in the literature 
indicating that microbiome profiles in the intratu-
moral area (Wang et al. 2020; Poore et al. 2020), genital 
tract (Wang et  al. 2020; Zhou et  al. 2019a), the serum 
(Kim et  al. 2020), or the peritoneum (Miao 2020) can 
be exploited as biomarkers to diagnose ovarian can-
cer. Metabolomics studies also revealed exploitable 
biomarkers (Turkoglu et  al. 2016). Beyond early diag-
nostics, these biomarkers can be used for screening, 
prognosis, patient stratification (e.g. for drug effec-
tiveness), and prognosis. The practical applicability of 
bacterial metabolite signaling in view of our current 
understanding of bacterial metabolite signaling warrant 
future studies.

Search strategy and selection criteria
References to this review were identified through the 
prior knowledge of the authors that was complemented 
by systematic search of Pubmed by using the combi-
nations “microbiome—ovarian cancer”, “ovarian can-
cer—metabolomics”. Species information, bacterial 
metabolism was described based on the prior knowledge 
of the authors and were updated through Pubmed search. 
Pubmed search was performed with the name of bacte-
rial metabolites + ovarian cancer, name of the metabolite 
receptor + ovarian cancer. Articles published in English 
were included with no restriction on publication date.
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