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Abstract 

Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, 
valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used 
to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardio-
vascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity 
without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have 
been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibi-
tors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs 
that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to 
the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role 
and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential 
cardioprotective effects by serving as cofactors of COX-2.
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Introduction
Cardiovascular disease is the leading cause of death 
worldwide. Aging is a major risk factor for cardiovascular 
diseases (Lopez-Otin et al. 2013). By 2050, the worldwide 
population aged 60  years and older is expected to total 
2 billion, increasing from 900 million in 2015, according 
to the World Health Organization (WHO). Today, 125 
million people are aged 80  years or older, and by 2050, 
there will be almost as many people (120 million) in this 
age group living in China alone and 434 million people 

in this age group worldwide (Sendama 2020; Tyrrell and 
Goldstein 2020). Thus, the prevention and treatment of 
cardiovascular disease is a great challenge.

Cyclooxygenase-2 (COX-2) is the key rate-limiting 
enzyme required for the conversion of arachidonic acid 
(AA) to prostanoids (PGE2, PGD2, PGF2a, PGI2, and 
TAX2) Morre et  al. (2020). The suppression of COX-2 
is mediated by nonsteroidal anti-inflammatory drugs 
(NSAIDs), which are one of the most diverse classes of 
drugs clinically available to attenuate pain and inflam-
mation. However, NSAIDs induce serious adverse 
events, including gastrointestinal (GI) and cardiovascu-
lar complications. Compared with nonselective NSAIDs, 
COX-2-selective drugs are known as coxibs, includ-
ing rofecoxib, celecoxib, and lumiracoxib. Coxibs not 
only attenuate pain and inflammation but also reduce 
the incidence of serious GI adverse effects. However, 
coxibs also cause cardiovascular hazards, including 
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atherosclerosis (coronary heart disease), hypertension, 
myocardial infarction, stroke, heart failure, arrhythmo-
genesis and sudden cardiac death (Bahmani et  al. 2017; 
Mitchell et  al. 2020). Celecoxib was removed from the 
market in 2004 by the Food and Drug Administration 
(FDA). The labels of COX-2 drugs must carry a “black 
box” warning to highlight the risks of serious cardiovas-
cular events in many countries, including in the United 
States (US) and according to the Australian and European 
authorities related to the Therapeutic Goods Administra-
tion (TGA) (Arora et al. 2020; Zhu et al. 2020). Previous 
findings suggest that COX-2 may be a beneficial protein 
in the cardiovascular system. Interestingly, quercetin-
like plant compounds can protect against cardiovascular 
diseases. Recently, quercetin-like plant compounds have 
been shown to act as natural cofactors of COX-2 by bind-
ing tightly to the peroxidase active site of COX-2 (Chen 
et  al. 2020). These compounds could strongly stimulate 
the catalytic activity of COX-2 in  vitro and in  vivo at 
lower doses (Bai and Zhu 2008, 2010; Wang et al. 2010). 
We hypothesize that quercetin-like plant compounds 
decrease the risk of cardiovascular diseases by serving 
as cofactors of COX-2. In this article, we will review the 
most compelling evidence regarding the role of COX-2 
in cardiovascular disease, and quercetin-like plant com-
pounds exert potential cardioprotective effects by serving 
as cofactors of COX-2. These findings may be useful in 
understanding the molecular mechanism underlying the 
interaction between quercetin compounds and COX-2 in 
the cardiovascular system.

The protective role and mechanism of COX‑2 
in cardiovascular disease
COX‑2 and atherosclerosis
Atherosclerosis is a major factor of coronary heart dis-
ease and is characterized by the formation of fat-laden 
plaques in large and medium vessels. Clinical data 
have shown that COX-2-selective inhibitors increase 
the atheroscerotic burden in patients (Bea et  al. 2003; 
Belton et  al. 2003; Burleigh et  al. 2002; Burleigh et  al. 
2005). Global deletion of COX-2 in apoE-/- mice has 
been shown to accelerate atherogenesis (Yu et al. 2012). 
COX-2-/- mice have been shown to exhibit increased 
accumulation of proinflammatory factors and reduced 
abilities to prevent LDL oxidation and cholesterol efflux 
(Narasimha et al. 2007), suggesting that COX-2 protects 
against the development of atherosclerosis. In addi-
tion, pharmacological activation of COX-2 inhibitors 
also promotes the development of atherosclerosis. The 
COX-2 inhibitor MF-tricyclic increased the early ather-
osclerosis lesion area in apoE-/- mice (Rott et  al. 2003). 
The inhibition of COX-2-derived PGE2 by celecoxib 
enhanced P. gingivalis LPS-induced atherosclerosis by 

increasing the macrophage production of TNFα (Gitlin 
and Loftin 2009). In another study, the COX-2-selective 
inhibitors celecoxib and rofecoxib also increased inter-
mediate plaque formation in apoE-/- mice (Metzner et al. 
2007). In addition, the effect of COX-2 on atherosclero-
sis depended on the cell type. The selective depletion of 
COX-2 in vascular smooth muscle cells (VSMCs) and 
endothelial cells (ECs) could accelerate atherosclerosis 
progression in low-density lipoprotein receptor (LDLR)-
/-mice (Tang et al. 2014). The depletion of COX-2 in mac-
rophages reduced atherosclerosis progression (Hui et al. 
2010), suggesting that the role of COX-2 in atherosclero-
sis is most likely related to the cell type and atherosclero-
sis stage. Interestingly, COX-2 was most abundant in the 
thymus, brain, lung, kidney, stomach and gastrointestinal 
tract but not in blood vessels, as shown in COX-2fLuc/+ 
reporter mice (Kirkby 2013). COX-2 deletion accelerated 
atherosclerosis progression by increasing T lymphocytes 
in plaques (Kirkby 2014). However, COX-2 deletion did 
not alter vascular prostaglandin production in apoE-/- 
and healthy mice, suggesting that COX-2 protects against 
atherosclerosis independently of local vascular prosta-
cyclin (Kirkby 2014; Kirkby et al. 2012). Taken together, 
these findings suggest that COX-2 can protect against 
atherosclerosis in vivo, but the mechanism should be fur-
ther investigated.

COX‑2 and hypertension
Hypertension is a risk factor for cardiovascular disease. 
Evidence indicates that COX-2 plays an important role in 
the regulation of blood pressure (Schjerning et al. 2020). 
The deletion of COX-2 in C57BL6/J mice increased the 
blood pressure in response to both low and high salt 
intakes, suggesting that COX-2 activity plays a key role 
in blood pressure homeostasis in response to salt loading 
(Ricciotti et al. 2018; Staehr et al. 2013; Zhang et al. 2018). 
The systolic blood pressure was elevated in response to 
the selective inhibition (celecoxib), knockout, or muta-
tion of COX-2 in mice with a mixed C57BL/6 × 129/Sv 
genetic background fed a regular chow diet (Cheng et al. 
2006). In addition, a specific COX-2 pharmacological 
inhibitor could increase blood pressure (Zhu et al. 2020; 
Yao et  al. 2019). Celecoxib also significantly elevated 
blood pressure in both normal and hypertensive rats 
(Huang et al. 2019). Another COX-2 inhibitor, rofecoxib, 
caused an increase in blood pressure dependent on PGI2 
synthesis in normotensive Wistar-Kyoto rats (WKYs) and 
young spontaneously hypertensive rats (SHRs) fed a nor-
mal-salt or high-salt diet (Hocherl et al. 2002). Rofecoxib 
also completely prevented the hypotensive effects of the 
ACEi inhibitor lisinopril in SHRs (Ricciotti et  al. 2018; 
Dubey et  al. 2005). Most importantly, clinical studies 
suggest that hypertension was more common in patients 
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taking COX-2 inhibitors such as celecoxib and etoricoxib, 
and COX inhibition may attenuate the effects of some 
antihypertensive therapeutics (Mitchell et al. 2020; Chan 
et al. 2009). Therefore, COX-2 has the ability to decrease 
blood pressure.

COX‑2 and myocardial ischemia–reperfusion injury
Ischemic heart disease, including acute myocardial 
infarction, is a major cause of death and disability world-
wide. Early reperfusion is helpful for myocardial salvage 
but easily induces reperfusion injury, which then reduces 
the benefits of myocardial reperfusion. Epidemiologi-
cal studies have clearly established that COX-2 allevi-
ates myocardial ischemia–reperfusion (I/R) injury (Zhu 
et al. 2020; Bolli et al. 2002). Endothelial COX-2–derived 
PGI2 suppresses platelet aggregation. Coxibs promote 
thrombosis by depressing PGI2 synthesis without alter-
ing TxA2 synthesis. COX-2 promotes the recovery of left 
ventricular pressure after cardiac ischemia (Zhu et  al. 
2020). COX-2 also increases the protective effects of 
the late phase of ischemic preconditioning (PC) against 
both myocardial stunning and myocardial infarction by 
mediating the synthesis of PGE2 and/or PGI2. Inhibi-
tion of COX-2 activity augments myocardial cell death 
by obliterating the innate defensive response of the heart 
against I/R injury. COX-2 plays an indispensable role in 
protecting the heart against I/R injury (Bolli et al. 2002). 
COX-2 protects isolated myocytes from oxidative stress, 
and COX-2 inhibitors exacerbate doxorubicin-mediated 
myocardial injury (Adderley and Fitzgerald 1999; Dowd 
et  al. 2001). Targeted disruption of the COX-2 gene in 
COX-2-knockout mice or selective deletion of COX-2 
in cardiomyocytes has been shown to contribute to 
myocardial fibrosis and myocardial I/R injury (Dinchuk 
et al. 1995; Camitta et al. 2001; Papanicolaou et al. 2010). 
Transgene-mediated overexpression of human COX-2 
protected against IR injury in mice (Inserte et al. 2009). 
In fact, apoptotic cell death promoted I/R injury. The 
inhibition of COX-2 enhanced I/R injury by promoting 
cell death (Dowd et  al. 2001; Camitta et  al. 2001). The 
protective role of COX-2 in myocardial I/R injury has 
also been identified with other molecules or drugs. Adi-
ponectin induced COX-2 expression via a SphK-1–S1P 
receptor mechanism in the heart (Ikeda et al. 2008). Adi-
ponectin protected against myocardial I/R injury by acti-
vating COX-2 and releasing PGE2 in cardiac cells (Li et al. 
2003; Shibata et al. 2005; Minami et al. 2008). Adiponec-
tin also promoted endothelial cell function and revascu-
larization in ischemic muscle via a COX-2-dependent 
mechanism (Ohashi et  al. 2009), suggesting that in the 
context of cardioprotection, adiponectin is closely asso-
ciated with COX-2 activation. In addition, estrogen pro-
tected the heart from I/R injury via COX-2 activation and 

PGI2 synthesis (Booth et al. 2008; Xiao et al. 2001). High-
density lipoprotein (HDL) has been reported to protect 
the heart against I/R injury by reducing cardiac TNFα 
levels and enhancing cardiac PGE2 and PGI2 release 
(Calabresi et al. 2003; Rossoni et al. 2004). HDL induced 
COX-2 expression and PGI2 release via a p38 MAPK/
CRE-dependent pathway in endothelial cells (Norata 
et al. 2004), suggesting that HDL protected against myo-
cardial injury through a COX-2-dependent mechanism. 
The beneficial effects of iNOS gene therapy on myocar-
dial I/R injury are also associated with the upregulation 
of COX-2 activity (Li et al. 2003; Li et al. 2007). Peroxi-
some proliferator-activated receptor γ (PPARγ) agonists 
and recombinant human erythropoietin (rhEPO) were 
also effective in protecting against I/R injury in the heart 
by inducing COX-2 expression (Wang et  al. 2012; Liu 
et  al. 2006). Glucocorticoids protected against myocar-
dial injury by activating COX-2 expression and lipocalin-
type prostaglandin D synthase (L-PGDS)-derived PGD2 
biosynthesis in cardiomyocytes (Tokudome et  al. 2009). 
These findings suggest that COX-2 exerts beneficial 
effects on myocardial I/R injury. The beneficial effects 
of COX-2 on myocardial I/R injury are mainly mediated 
by PGI2, PGE2 and PGD2 through mechanisms including 
adenylyl cyclase antagonism, ATP-sensitive potassium 
channel activation, Ca2+ influx inhibition, and neutrophil 
infiltration attenuation (Bolli et al. 2002; Shinmura et al. 
2002; Shinmura et al. 2000). PGE2 and PGI2 reduce myo-
cardial I/R injury through the EP3, EP4 and IP receptors 
(Booth et al. 2008; Xiao et al. 2001; Xiao et al. 2004; Mar-
tin et al. 2005; Hohlfeld et al. 2000; Hishikari et al. 2009; 
Hirata et  al. 2012). PGD2 and its dehydrated metabolite 
(15-deoxy-Δ12,14-PGJ(2)) protect the heart against I/R 
injury by activating Nrf2 predominantly via the FP recep-
tor (Katsumata et al. 2014). Taken together, these findings 
suggest that cardiac COX-2 activity might be a promising 
tool for cardioprotection against myocardial I/R injury 
by producing PGE2, PGI2 and PGD2, which act through 
their own or other PG receptor signaling pathways.

The possible mechanism of COX‑2 inhibitor‑mediated 
cardiotoxicity
COX-2 includes cyclooxygenase (COX) and peroxi-
dase (POX) active sites (Chan et al. 2019; Chandel et al. 
2018). AA binds to the COX active site and is converted 
to PGG2. PGG2 has a high binding affinity for the POX 
site; thus, it tightly binds to this site and is converted to 
PGH2. Finally, cell synthases and isomerases convert 
PGH2 to prostaglandins. Interestingly, COX-2 inhibi-
tors block COX activity without affecting POX activity 
(Radi and Khan 2019). The phenylalanine-385 mutant 
of COX-2 lacks COX activity but retains POX activ-
ity, suggesting that tyrosine 385 of COX-2 is a critical 
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residue for the initiation of COX catalysis (Yu and Funk 
2007). COX-2 Y385F mice have disrupted COX activity, 
while POX activity is fully intact. COX-2 knockout mice 
have disruptions in both COX and POX activity. Inter-
estingly, both diastolic and systolic blood pressure were 
elevated in COX-2 Y385F mice, COX-2 knockout mice 
and COX-2 inhibitor celecoxib-treated mice. These three 
groups of mice exhibited increased platelet consump-
tion and thrombogenesis. The mice exhibited decreased 
urinary PGI2 metabolites, but TxA2 metabolites did not 
show overt alterations (Yu and Funk 2007; Seta et  al. 
2009). These results suggest that COX-2 inhibitors cause 
cardiotoxicity by blocking COX activity but not the POX 
site of COX-2.

The possible cardioprotective effects 
of quercetin‑like plant flavonoids as cofactors 
of COX‑2
Quercetin‑like plant flavonoids are natural cofactors 
of COX‑2
Recently, quercetin-like plant compounds with OH 
groups in their B-rings have been shown to be strong 
activators of the catalytic activity of COX-2 as cofac-
tors in vitro and in vivo (Bai and Zhu 2008, 2010; Wang 
et al. 2010, 2018, 2019). Quercetin-like plant compounds 
(including quercetin, myricetin, fisetin, morin, 5,4′-dihy-
droxyflavone, and 7,4′-dihydroxyflavone) at very low 
concentrations (< 1  μM) can stimulate the formation of 
prostaglandins in a concentration-dependent manner 
(Table  1). Quercetin-like plant compounds have a high 
potency for activating COX-2, with an apparent EC50 
value of approximately 50 nM (Bai and Zhu 2008, 2010). 
Specifically, quercetin compounds have the ability to 
bind to the COX-2 POX active site and promote COX-2 
reactivation by facilitating electron transfer from com-
pounds to heme by directly interacting with heme dur-
ing a catalytic cycle (Wang et al. 2010). Most importantly, 
the administration of quercetin compounds strongly 
increased the plasma and tissue levels of several PG 
products in normal Sprague–Dawley rats, suggesting that 
quercetin-like plant compounds are naturally occurring 
activators of COX-2 as cofactors in  vivo (Bai and Zhu 
2008, 2010; Wang et  al. 2010, 2018, 2019). In addition, 
galangin, chrysin and flavone, which have no hydroxyl 
groups in their B-rings, suppressed COX-2 and its medi-
ated formation of PGs by blocking the POX site of COX-2 
(Bai and Zhu 2008; Wang et al. 2018, 2019; Hyoung -Woo 
Bai, BT. Z. 2009; Bai et al. 2021). Curcumin also increases 
COX-2 expression in a time- and concentration-depend-
ent manner (Tan et al. 2011). However, the mechanism by 
which curcumin acts as a cofactor of COX-2 is unclear.

Notably, quercetin compounds at higher concentra-
tions (> 10 μM) inhibited COX-2 activity, whereas at low 

concentrations (10 nM), they stimulated COX-2 activity 
(Bai and Zhu 2008, 2010; Paoletti et  al. 2009). Surpris-
ingly, high concentrations of quercetin compounds sup-
pressed COX-2 expression in vitro, but these compounds 
did not affect COX-2 expression in vivo and could even 
stimulate COX-2 activity (Arias et  al. 2014; Pascual-
Teresa et al. 2004; Nieman et al. 2007; Choi et al. 2006). 
Taken together, these findings suggest that quercetin-
like natural plant compounds stimulate COX-2 catalytic 
activity by acting as cofactors of COX-2, and this effect 
depends on the OH structural features of their B-rings.

Quercetin compounds exert cardioprotective effects 
by serving as cofactors of COX‑2
Quercetin-like plant compounds have been shown to 
be beneficial to the cardiovascular system due to their 
antiatherogenic, anti-inflammatory, anticoagulative and 
antihypertensive effects (Deng et  al. 2020; Pechanova 
et al. 2020; Sato and Mukai 2020). The AIN-93M diet is a 
flavonoid-deficient diet. The atherosclerotic plaque areas 
of apoE-/- mice fed the AIN-93M diet were increased 
by approximately 3–fourfold compared with those of 
C57BL/6J mice. Quercetin compounds almost com-
pletely abrogated AIN-93M-induced lesion formation in 
ApoE-/- mice (Loke et al. 2010). In fact, when the animals 
were fed a flavonoid-deficient diet, the catalytic activ-
ity of the COX-2 enzyme was very low, and the animals 
even died because the POX site lacked cofactors such as 
quercetin-like plant compounds. As mentioned above, 
COX-2 could reduce the atherosclerosis process. Thus, 
the plaque areas were increased in apoE-/-mice fed a fla-
vonoid-deficient diet, despite the fat levels of these diets 
being very low (4%) (Loke et  al. 2010), suggesting that 
quercetin-like plant flavonoids protect against the devel-
opment of atherosclerosis as cofactors of COX-2.

Many studies suggest that quercetin compounds 
decrease blood pressure in hypertensive patients and 
animal models (Larson et  al. 2012a). The NO and PGI2 
pathways decrease blood pressure by relaxing blood ves-
sels and inhibiting platelet activation. Quercetin com-
pounds decreased the mean blood pressure by 5 mmHg 
in hypertensive men through a mechanism that was 
independent of changes in NO bioavailability (Larson 
et  al. 2012b). Quercetin compounds also reduced the 
blood pressure, cardiac hypertrophy and vascular remod-
eling in NO-deficient rats (Duarte et  al. 2002), suggest-
ing that quercetin compounds mediate blood pressure 
through other mechanisms. Interestingly, quercetin com-
pounds induced vasorelaxation through the COX-2/PGI2 
pathway, which was not dependent on the NO pathway 
(Roghani et al. 2004). Consistent with these observations, 
we hypothesize that quercetin-like plant compounds act 
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as cofactors of COX-2 to stimulate PGI2 release and then 
relax blood vessels to decrease blood pressure.

Quercetin compounds also play a protective role in 
alleviating myocardial injury (Lu 2020; Zhang et al. 2020). 

Quercetin compound postconditioning produced signifi-
cant protective effects against myocardial I/R injury in 
rats by activating the PI3K/Akt signaling pathway. How-
ever, quercetin was used 5  min before reperfusion, and 

Table 1  Chemical structures of quercetin-like natural plant compounds as cofactors of COX-2

Type Name Structure References

Lead compounds Flavonoids (Moore 2020; Bahmani et al. 2017; Mitchell, et al. 2020; Arora et al. 
2020; Duarte et al. 2002)

Activator Quercetin (Moore 2020; Bahmani et al. 2017; Mitchell, et al. 2020; Arora et al. 
2020)

Myricetin (Moore 2020; Bahmani et al. 2017; Mitchell, et al. 2020; Arora et al. 
2020)

Fisetin (Moore 2020; Bahmani et al. 2017; Mitchell, et al. 2020; Arora et al. 
2020)

Morin (Moore 2020; Bahmani et al. 2017; Mitchell, et al. 2020; Arora et al. 
2020)

5,4′-Dihydroxyflavone (Moore 2020; Duarte et al. 2002)

7,4′-Dihydroxyflavone (Moore 2020; Duarte et al. 2002)

Inhibitor Galangin (Chandel et al. 2018; Radi and Khan 2019; Seta et al. 2009)
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the heart was reperfused for 2 h (Wang et al. 2013). The 
PI3K/Akt signaling pathway was not activated quickly 
in  vitro or in  vivo (Liu et  al. 2014). Interestingly, COX-
2-mediated PGE2 formation reached a plateau 1  h after 
quercetin administration (Bai and Zhu 2010). COX-2 
protects against myocardial injury by producing PGE2, 
PGI2 and PGD2, indicating that quercetin compounds 
induce cardioprotection via the COX-2/PG pathway 
in  vivo. Therefore, we hypothesize that quercetin-like 
plant compounds may protect against myocardial I/R 
injury as cofactors of COX-2.

Conclusion
Accumulating evidence has indicated that COX-2 is 
a beneficial protein in cardiovascular disease. Clini-
cal studies suggest that long-term exposure to COX-2 
inhibitors known as coxibs may promote the initia-
tion of cardiovascular disease (Jeong et  al. 2020; Kang 
et  al. 2020; Liao, et  al. 2020). However, clinical and 
rodent-based studies using coxibs have shown differ-
ential toxicity levels in the cardiovascular system, and 
future work is required. Of interest, quercetin-like 
plant compounds that are beneficial to the cardiovas-
cular system serve as activators and cofactors of COX-2 
because of the OH structural features of their B-rings 
(Fig.  1). Based on these observations, we suggest a 
new hypothesis that quercetin-like plant compounds 
decrease the risk of cardiovascular diseases by serv-
ing as cofactors of COX-2. We also suggest that coxibs 

significantly increase the risk of cardiovascular diseases 
in animal models fed flavonoid-deficient diets. If these 
hypotheses are correct, it may explain the mechanism 
by which coxibs are associated with a high risk of car-
diovascular events in response to diets lacking certain 
flavonoid compounds. In addition, quercetin-like natu-
ral plant compounds usually affect multiple targets to 
prevent cardiovascular events. Thus, the activity of 
quercetin-like plant compounds as cofactors of COX-2 
is just one mechanism by which they decrease the risk 
of cardiovascular diseases, and more research is needed 
to confirm this hypothesis. Galangin is present at high 
levels in the Alpinia officinarum rhizome. It is of inter-
est that the A. officinarum rhizome is an herb used for 
conditions such as the common cold, wound swell-
ing and pain, stomachache and diarrhea. Given that 
all currently used NSAIDs target the COX active sites 
of COX-2, galangin-like compounds that lack B-ring 
OH groups may serve as good lead compounds for the 
rational design of novel COX-2 inhibitors for clinical 
use as anti-inflammatory drugs by targeting the POX 
active sites of COX-2. Nabumetone, flurbiprofen axe-
til, piketoprofen-amide, and nepafenac are prodrugs 
that inhibit COX-2 enzymes (Sehajpal et al. 2018). The 
effective metabolites of these prodrugs are 6-methoxy-
2-naphthyl acetic acid, flurbiprofen, ketoprofen, and 
amfenac (Table  2). The combination of galangin with 
these metabolites may lead to the development of novel 
COX-2 inhibitors, as ester bonds are very easily broken 

Fig. 1  COX and POX reactions are catalyzed by coxibs and quercetin-like natural plant compounds, respectively. COX-2 catalyzes arachidonic acid 
conversion to PGG2 by the COX activity site. The POX activity site of COX-2 reduces PGG2 to PGH2. Downstream prostaglandin products are formed 
from PGH2 via different synthases. The COX activity site of COX-2 but not the POXsite is inhibited by COX-2–selective inhibitors called coxibs. The 
labels of coxibs must carry a “black box” warning due to adverse cardiovascular events. Quercetin-like natural plant compounds decrease the risk of 
cardiovascular disease and serve as activators and cofactors of COX-2 to reduce the cardiotoxicity of coxibs by binding to the POX site
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in vivo. We hope that more scientists will focus on the 
potential roles and associations of COX-2 and querce-
tin-like natural plant compounds in cardiovascular dis-
eases to identify new drugs for this disease.
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