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Macrophages and cancer stem cells: 
a malevolent alliance
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Abstract 

Myeloid cells infiltrating tumors are gaining ever growing attention in the last years because their pro-tumor and 
immunosuppressive functions are relevant for disease progression and therapeutic responses. The functional ambi-
guity of tumor-associated macrophages (TAMs), mostly promoting tumor evolution, is a challenging hurdle. This is 
even more evident in the case of cancer stem cells (CSCs); as active participants in the specialized environment of 
the cancer stem cell niche, TAMs initiate a reciprocal conversation with CSCs. TAMs contribute to protect CSCs from 
the hostile environment (exogenous insults, toxic compounds, attacks from the immune cells), and produce several 
biologically active mediators that modulate crucial developmental pathways that sustain cancer cell stemness. In this 
review, we have focused our attention on the interaction between TAMs and CSCs; we describe how TAMs impact on 
CSC biology and, in turn, how CSCs exploit the tissue trophic activity of macrophages to survive and progress. Since 
CSCs are responsible for therapy resistance and tumor recurrence, they are important therapeutic targets. In view of 
the recent success in oncology obtained by stimulating the immune system, we discuss some macrophage-targeted 
therapeutic strategies that may also affect the CSCs and interrupt their malevolent alliance.
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Background
Macrophages are cells of the innate immunity belonging 
to the mononuclear phagocyte system. Tissue-resident 
macrophages originate from embryonic progenitors in 
the yolk sac and fetal liver, and seed peripheral organs 
to become specialized macrophages, such as liver Kupp-
fer cells, brain microglia, lung alveolar macrophages and 
bone osteoclasts. They function to maintain homeosta-
sis and to limit the entrance of pathogens (Gordon and 
Pluddemann 2019; Wynn et  al. 2013; Yona et  al. 2013). 
Blood circulating monocytes, originating from hemat-
opoietic bone marrow precursors, can be recruited at 
peripheral tissues upon inflammatory conditions or tis-
sue damage, and differentiate into mature macrophages 
(Gordon and Pluddemann 2019; Wynn et al. 2013; Yona 

et  al. 2013). Both resident and recruited macrophages 
are characterized by a high grade of phenotypic and 
functional plasticity that is dictated by distinct genetic 
programs, triggered by specific local stimuli, such as the 
granulocyte–macrophage growth factor (GM-CSF), mac-
rophage growth factor (M-CSF), Th1 and Th2 cytokines 
(Gordon and Pluddemann 2019; Wynn et al. 2013; Yona 
et  al. 2013; Mantovani et  al. 2017; Biswas 2015). Their 
broad spectrum of activation states can be simplified by 
defining the two extreme functional phenotypes, popu-
larly named M1 and M2 macrophages (Mills et al. 2000; 
Mantovani et  al. 2002; Murray et  al. 2014). M1 or clas-
sically activated macrophages are typically stimulated 
by IFN γ, or by the engagement with bacterial compo-
nents (e.g., lipopolysaccharides, LPS); they produce pro-
inflammatory cytokines, such as IL-1β, TNFα, IL-12. 
M1 macrophages actively counteract bacterial infec-
tions and stimulate the activation of adaptive immune 
cells. On the other extreme, M2 or alternatively acti-
vated macrophages have distinct and sometimes opposite 
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functions, being responsible for the suppression of Th1 
immune responses, the promotion of tissue healing and 
the resolution of inflammation. M2 macrophages are 
activated by anti-inflammatory cytokines, such as IL-4 
and IL-13, and are also affected by the immunosuppres-
sive mediators IL-10 and Transforming Growth Factor 
β (TGFβ). In physiological conditions, M1 and M2 mac-
rophages are two essential players that regulate the bal-
ance between active immune responses and homeostasis 
(Gordon and Pluddemann 2019; Murray et al. 2014; Pol-
lard 2009; Mantovani et al. 2013).

In the tumor context they also differ, as M1 mac-
rophages inhibit tumor progression by directly kill-
ing cancer cells and promoting anti-tumor immune 
responses, while M2 macrophages stimulate angiogenesis 
and tumor growth (Mantovani et al. 2017; Allavena et al. 
2021; Belgiovine et al. 2020).

Tumor-associated macrophages (TAMs) are key play-
ers in the tumor microenvironment and frequently repre-
sent the most abundant immune population (Mantovani 
et  al. 2017). They are profoundly conditioned by the 
presence of tumor cells and acquire, most commonly, an 
M2-like phenotype. It is now overall accepted that TAMs 
promote tumor progression, as they actively enhance 
cancer cell proliferation and strongly suppress anti-tumor 
immune responses (Mantovani et al. 2017; Allavena and 
Mantovani 2012; Palma and Lewis 2013; Belgiovine et al. 
2016; Quaranta and Schmid 2019). In particular, TAMs 
produce a large array of soluble mediators to support 
tumor cell proliferation, such as Epidermal Growth Fac-
tor (EGF), Platelet-derived Growth Factors (PDGF) and 
Vascular Endothelial Growth Factor (VEGF). TAMs also 
produce several cytokines that have immunosuppressive 
activity on other immune cells: IL-10 and TGFβ (Man-
tovani et al. 2013, 2017; Akiko Kogure and Ochiya 2019; 
Biswas et al. 2013). Furthermore, TAMs actively produce 
several proteolytic enzymes, such as matrix metallopro-
teases, serine proteases and cathepsins, thereby enhanc-
ing the remodeling of the tumor stroma and favoring the 
metastatic process of cancer cells (Liguori et  al. 2011; 
Zhang et al. 2017; Sangaletti et al. 2014; Chen et al. 2011; 
Steenbrugge et al. 2018; Wang et al. 2011,2018; Aras and 
Zaidi 2017). While it is well established that TAMs dis-
play these supporting functions on the proliferating can-
cer cells, relatively few studies have addressed the impact 
of TAMs on the specific population of tumor-initiating 
cells or Cancer Stem Cells (CSCs) (Chen et  al. 2021; 
Raggi et  al. 2016; Aramini et  al. 2021; Fan et  al. 2014; 
Jinushi et al. 2011; Osman et al. 2020).

CSCs cells are cellular elements in the tumor tis-
sue with stem-like properties which have been dem-
onstrated to play a key role in disease progression and 
tumor recurrence. They represent a distinctive cell subset 

within the tumoral mass and are characterized by unlim-
ited self-renewal properties, tumor initiation ability and 
chemo-resistance (Kreso and Dick 2014; Nguyen et  al. 
2012). The existence of CSCs has been reported in sev-
eral tumor types, including breast cancer (Al-Hajj et  al. 
2003), lung cancer (Eramo et  al. 2006), acute myeloid 
leukemia (Lapidot et al. 1994), pancreatic cancer (Li et al. 
2007; Hermann et  al. 2007), hepatocellular carcinoma 
(Miranda-Lorenzo et  al. 2014), head and neck cancer 
(Prince et  al. 2007), colon cancer (O’Brien et  al. 2007; 
Ricci-Vitiani et al. 2007), melanoma (Schatton et al. 2008; 
Quintana et  al. 2008), prostate cancer (Patrawala et  al. 
2006), and glioblastoma (Singh et al. 2004). CSCs can be 
defined in  vitro in functional assays (i.e., tumor-sphere 
assay), as cells with intrinsic drug resistance and self-
renewal potential but are most commonly defined by the 
expression of stemness-related markers. CSCs-associated 
markers include: aldehyde dehydrogenase 1 (ALDH1), 
involved in intracellular retinoic acid production; ATP-
binding cassette sub-family G member 2 (ABCG2); other 
surface markers such as CD133, CD44, CD24, CD34, 
CD90, CD117 and CD166 (Fan et al. 2014; Jinushi et al. 
2011; Kreso and Dick 2014; Hermann et al. 2007; Gines-
tier et  al. 2007; Medema 2013; Hanahan and Coussens 
2012; Hsu and Fuchs 2012; Korkaya et  al. 2011; Liguori 
et  al. 2021; Lu et  al. 2014; Plaks et  al. 2015; Zhou et  al. 
2015).

Here we review the available scientific literature about 
the interaction of TAMs with CSCs; we present how 
TAMs support cancer cell stemness and, in turn, how 
CSCs exploit the presence and pro-tumor functions of 
macrophages to survive and progress; finally we discuss 
how recent therapeutic approaches directed to mac-
rophage may impact on CSCs and interrupt their delete-
rious dialogue.

Main text
The specialized environment of the stem cell niche
In normal tissues stem cells reside in a specialized envi-
ronment, the stem cell niche, where they are protected 
from exogenous insults and receive from nearby cells the 
necessary factors for their survival and maintenance of 
their stemness status (Lu et al. 2014; Plaks et al. 2015).

The stem cell niche is populated by different cell types, 
such as stromal mesenchymal cells (fibroblasts, activated 
myofibroblasts), immune cells (especially macrophages) 
blood and lymphatic vessels; the niche is embedded in 
a scaffold of extracellular matrix (ECM) molecules com-
posed by collagenous fibers, proteoglycans and several 
glycoproteins, e.g. laminin, fibronectin, tenascin-C, 
Secreted Protein Acidic and Rich in Cysteine (SPARC), 
periostin (POSTN) and other (Nallanthighal et al. 2019).
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This specialized tissue structure constitutes the ideal 
environment where stem cells can survive and remain 
quiescent; the niche, however, may also provide cues 
for stem cell proliferation, differentiation and migration. 
These processes are initiated and regulated by several 
molecular pathways, including cytokines and growth fac-
tors (e.g. IL-6, TGFβ), signaling receptors (CD44, Notch 
family receptors and their cognate ligands), and specific 
transcription factors (Sonic Hedgehog—SHH, SOX2, 
OCT3/4 and NANOG (Plaks et  al. 2015; Pickup et  al. 
2014; Clara et al. 2020).

In tumors, also the CSCs reside in a cancer niche that 
defends them from stress signals, such as apoptosis-
inducing chemotherapeutic agents and from attacks by 
the immune system (Hanahan and Coussens 2012; Hsu 
and Fuchs 2012; Korkaya et  al. 2011; Plaks et  al. 2015). 
As detailed below, key players in the cancer niche are 
TAMs, which indeed secrete a variety of soluble factors 
and physically interact with CSCs to protect them from 
environmental damage (Fan et  al. 2014; Jinushi et  al. 
2011; Liguori et al. 2021; Lu et al. 2014; Zhou et al. 2015; 
Oshimori 2020; Raghavan et al. 2019).

The macrophage‑CSC crosstalk
It is well established that macrophages in peripheral tis-
sues have trophic activity for the nearby cells and con-
tribute to preserve the physiologic homeostasis (Gordon 
and Pluddemann 2019; Wynn et al. 2013). Macrophages 
play a crucial role also in the development and mor-
phogenesis of different organs during the embryonic 
life (Gordon and Pluddemann 2019; Wynn et  al. 2013; 
Mantovani et  al. 2013). This activity is mainly reflected 
in their ability to protect and support organ progeni-
tor stem cells, for instance during the development of 
the ductal epithelial tree of the mammary gland (Gyorki 
et al. 2009; O’Brien et al. 2010). This tissue trophic ability 
occurs also in the tumor tissue where infiltrated TAMs 
initiate a reciprocal crosstalk with cancer cells that even-
tually results in enhanced tumor cell survival and disease 
progression. A well-known example is the paracrine loop 
occurring between breast cancer cells, producing the 
myeloid differentiation factor M-CSF, and macrophages 
which, in turn, release EGF to sustain cancer cell prolif-
eration (Wyckoff et al. 2004).

From the cancer stem cell side
To take advantage of the trophic activity of mac-
rophages, CSCs—like most cells constituting a tumor—
produce chemotactic factors that recruit macrophage 
precursors (circulating monocytes), as well as tissue mac-
rophages resident in the nearby area. Among the various 
chemokines, evidence has been provided that chemokine 
CCL2, CCL3, CCL5, CCL8 and CXCL12 actively 

participate in this process (Chen et al. 2019a, 2021; Zhou 
et al. 2015; Zeng et al. 2018; Chia et al. 2018; Zhang et al. 
2020; Valeta-Magara et  al. 2019). In addition to migra-
tion, other CSC-derived factors profoundly influence the 
functional state of macrophages, by inducing their activa-
tion and polarization toward a pro-tumor phenotype. For 
instance, the cytokines IL-6 and IL-10 activate the tran-
scription factor STAT3, which inhibits in macrophages 
the genes encoding for anti-tumor cytokines (Raghavan 
et al. 2019; Wyckoff et al. 2004; Wu et al. 2010; Kobatake 
et  al. 2020; Gabrusiewicz et  al. 2018). In glioblastoma, 
CSCs produce the immunosuppressive cytokine TGFβ 
which favors the functional polarization of pro-tum-
origenic TAMs. Other immunosuppressive cytokines 
secreted by CSCs include IL-4 and IL-13, typically shift-
ing to an M2-like phenotype (Chen et  al. 2021; Clara 
et  al. 2020; Taniguchi et  al. 2020; Zhang et  al. 2019b) 
(Fig. 1). Immune evasion is one of the major mechanisms 
by which CSCs can resist to the immune attack and sur-
vive. In general, CSCs express low levels of MHC mole-
cules and of co-stimulatory receptors (e.g., CD80), which 
are necessary for optimal recognition by and triggering 
of immune cells. Instead, they express high levels of the 
checkpoint ligand PD-1L (Clara et al. 2020). In a recent 
study it has been reported that CSCs from squamous 
cell carcinoma upregulate the molecule B7-H3, another 
B7-family immune checkpoint also involved in T cell 
inhibition and evasion from immune surveillance (Wang 
et  al. 2021). Another mechanism to hijack the immune 
control is to prevent phagocytosis via the inhibitory loop 
composed by the membrane molecule CD47 interacting 
with the protein Signal-regulatory protein alpha (SIRP1α) 
on phagocytic cells (Theocharides et  al. 2012; Liu et  al. 
2017) (Fig. 2).

From the macrophage side
On the macrophage side, TAMs can support CSCs and 
their niche. Niche formation and maintenance is of para-
mount importance for CSC survival and renewal. TAM-
derived factors implicated in biological processes such as 
Epithelial Mesenchymal Transition (EMT), maintenance 
of stemness features and more in general survival from 
stressful environment, include a number of cytokines, 
such as: IL-6, IL-1β, TNFα, TGFβ; chemokines: CCL2, 
CCL5, CCL8; matrix macromolecules and growth factors 
(Lu et al. 2014; Zhang et al. 2019b, 2020; Valeta-Magara 
et al. 2019; Guo et al. 2019; Huang et al. 2020; Wei et al. 
2019a; Chen et  al. 2019b) (Fig. 1). A recent paper dem-
onstrated that the chemokine CCL2, produced by mac-
rophages, support the expansion of CD44+ALDH1+ 
breast CSCs via activation of β-Catenin and increased 
expression of the transcription factors SOX2, OCT3/4 
and NANOG (Zhang et al. 2021).
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As mentioned above, TAMs are active producers of 
matrix-degrading enzymes and also of ECM macromol-
ecules, thus contributing to the incessant remodeling of 
the tumor stroma (Liguori et al. 2011; Afik et al. 2016).

For instance, TAMs produce heparan sulfate proteo-
glycans and collagenous fibers, and may actually out-
number the fibroblasts, the canonical cells producing 
collagen types; furthermore, TAMs produce several 
matrix-related molecules, such as: fibronectin, the reac-
tive truncated isoform of fibronectin called MSF (Migra-
tion Stimulation Factor), Osteopontin, and the matrix 
cross-linker enzyme F13a1 (coagulation factor XIII a1) 
(Liguori et al. 2011; Afik et al. 2016; Solinas et al. 2010).

Matrix components are crucial for preserving the niche 
architecture as well as for the communication between 
CSCs and the surrounding cells. In breast tumors, CSCs 
upregulate the enzyme hyaluronan synthase 2 (HAS2), 
which is important for the new synthesis of hyaluronic 
acid, a major polysaccharide component of the ECM. 
Okuda et  al. demonstrated that HAS2high tumor cells 
express a layer of pericellular hyaluronan that facili-
tates their attachment to TAMs, via the CD44 receptor. 
Through this interaction, CD44-expressing macrophages 
were stimulated to produce the growth factor PDGF-BB, 

which enhanced CSC self-renewal. This direct binding 
of hyaluronan-expressing CSCs to CD44 on TAMs pro-
vides an example of niche formation between the two cell 
types (Okuda et al. 2012; Kesh et al. 2020). Furthermore, 
using a mixed culture model of macrophages and CSCs, 
other studies demonstrated that macrophages actively 
stimulate HAS2 expression and hyaluronan production, 
thereby increasing CD44 engagement on tumor cells, and 
activate signaling pathways that are important for CSC 
maintenance (e.g. PI3K–4EBP1–SOX2). Thus, a recipro-
cal feed forward loop has been identified which includes 
the enzyme HAS2, the matrix component hyaluronan 
and signaling events from the CD44 receptor on CSCs 
and TAMs (Gomez et  al. 2020; Skandalis et  al. 2019) 
(Fig. 2).

Notably, the physical interaction between macrophages 
and CSCs appears crucial to support stemness features, 
as demonstrated in studies specifically addressing the 
importance of juxtacrine signaling mechanisms (Fig.  2). 
Cell–cell contact activates several pathways that are 
important for CSC, such as: SHH, NOTCH, STAT3 (Han 
et  al. 2015; Hirata et  al. 2014; Zhang et  al. 2019c; Yang 
et al. 2013), PI3K/AKT, WNT/b-catenin, NANOG (Mor-
gan et al. 2018; Wang et al. 2010; Wang et al. 2019; Wei 

Fig. 1  Paracrine mechanisms of interaction between cancer stem cells (CSCs) and tumor-associated macrophages (TAM).   CSCs produce 
chemotactic factors (CCL2, CCL3, CCL5, CCL8, CXCL12) to recruit circulating monocytes in the tumor; moreover, they shape macrophage 
polarization towards an M2-like, pro-tumoral, phenotype by secreting IL-4, IL-6, IL-10, IL-13, TGFβ. On the macrophage side, TAMs support CSCs 
and their niche by secreting IL-6, IL-1β, TGFβ, TNF-α, CCL5, CCL8, MGF-E8, hCAP-18/LL-37, GPNMB. This figure was made with Servier Medical Art 
templates, which are licensed under a Creative Commons Attribution 3.0. Unported License (https://​smart.​servi​er.​com)

https://smart.servier.com
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et  al. 2013; Zhang et  al. 2019a) and NF-kB (Galoczova 
et  al. 2018). The heterogeneity of tumor types under-
scores the diversity in crucial signaling pathways. For 
example, in the context of TAMs supporting stemness in 
colorectal cancer, the most prominent pathway is SHH 
(Jinushi et  al. 2011), in pancreatic cancer is the TGFβ/ 
SMAD2/3/NANOG (Zhang et  al. 2019b), and in hepa-
tocarcinoma is the NOTCH pathway (Yang et  al. 2013; 
Wang et al. 2016). A molecular mechanism of juxtacrine 
signalling between macrophages and stem cells has been 
elucidated in breast cancer. CSCs express the membrane 
GPI-anchored protein CD90 and the Ephrin type-A 
receptor 4 (EphA4); while CD90 functions as a bridge 
for adherence to the integrin CD11b on macrophages, 
the receptor EphA4, engaged by its ligand expressed by 
myeloid cells, activates the signaling pathways Src and 
NF-kB. Using CD90high CSCs, the Authors reported that 
co-injection of tumor cells and macrophages into the 
mammary fat pad indeed promoted higher tumorigenic-
ity in vivo and enhanced metastatic spreading (Lu et al. 
2014).

Another transmembrane protein expressed by TAMs is 
the C-type lectin receptor CLEC4G, also named LSECtin. 

It has been reported that LSECtin interacts with CSCs via 
the Butyrophilin subfamily member A3 (BTN3A3) recep-
tor, a member of the butyrophilin family. Their juxtacrine 
interaction is pivotal to drive tumor stemness (Liu et al. 
2019). The relevance of macrophages within the CSC 
niche has been confirmed in macrophage-depletion 
experiments and by inhibiting their circulating precur-
sors (monocytes). Antagonists of colony-stimulating 
factor 1 receptor (CSF1R) or of the chemokine recep-
tor CCR2 substantially decreased the tumor-initiating 
properties of CSCs in pancreatic mouse tumor models 
(Mitchem et al. 2013). Also the inhibition of STAT3 and 
NF-kB in macrophages abolished the TAM-promoted 
stemness in several cancer types (Chen et al. 2021; Jinushi 
et al. 2011; Mitchem et al. 2013).

Soluble factors secreted by macrophages also play 
an important role in the support of CSC. Among the 
most relevant mediators are the growth factor MFG-
E8 (milk-fat globule epidermal growth factor VIII), the 
immunomodulatory antimicrobial peptide hCAP-18/
LL-37 and the Glycoprotein non-metastatic B (GPNMB) 
(Fig. 1). MFG–E8 is a secreted protein binding to phos-
phatidylserine and engaging the integrins αvβ3 and αvβ5. 

Fig. 2  Juxtacrine mechanisms of interaction between cancer stem cells (CSCs) and tumor-associated macrophages (TAM). CSCs upregulate the 
enzyme hyaluronan synthase 2 (HAS2), which induces the formation of a layer of pericellular hyaluronan (HA) that facilitates their attachment 
to TAMs, via the CD44 receptor. Upon this interaction, TAMs produce the growth factor PDGF-BB, which enhances CSC self-renewal; moreover, it 
activates signaling pathways important for CSC maintenance (e.g.PI3K–4EBP1–SOX2). CSCs express CD90 and the receptor EphA4, which bind to 
CD11b and Ephrin, respectively. These interactions activate the Src/NFkB pathway, and together with the LSECtin and BTN3A3 they support and 
drive cancer stemness. Finally, CSCs downregulate MHC molecules and CD80, while upregulating PD-1L, CD47, B7-H3 to escape from the immune 
system recognition. This figure was made with Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0. 
Unported License (https://​smart.​servi​er.​com)

https://smart.servier.com
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It regulates immune homeostasis through the phagocyto-
sis of apoptotic cells, acting as a bridge molecule for the 
macrophages. MFG-E8-dependent recognition of apop-
totic cells facilitates the tolerogenic activity of dendritic 
cells and induces the expansion of Foxp3 + T regulatory 
cells (Hanayama et  al. 2004). Production of MFG-E8 by 
local macrophages is increased by GM-CSF secreted 
by mesenchymal cells. In the stem cell niche, MFG-E8 
sustains CSC survival and functions to suppress host 
immune responses and to promote tumor angiogenesis 
(Jinushi et al. 2007, 2011; Keke et al. 2017). MFG-E8, in 
association with IL-6, induces STAT3 phosphorylation in 
CSCs and modulates the SHH pathway, critically impact-
ing on the ability of stem cells to survive to chemotherapy 
drugs (Jinushi et al. 2011; Yang et al. 2013).

HCAP-18/LL-37 is an anti-microbial peptide secreted 
by phagocytes and epithelial cells with multiple func-
tions. In addition to direct killing of pathogens, it regu-
lates inflammatory responses and promotes wound 
healing by increasing the proliferation and migration of 
keratinocytes, as well as by stimulating neo-angiogenesis 
(Yang et  al. 2020; Sabzevari et  al. 2020). In pancreatic 
cancer, hCAP-18/LL-37 was strongly expressed by mac-
rophages in response to tumor-derived Activin A, and 
increased CSC self-renewal, invasion, tumorigenicity, 
the expression of CD133 and of pluripotency-associated 
genes: KLF4, SOX2, OCT3/4 and NANOG. Mechanisti-
cally, hCAP-18/LL-37 was shown to bind and activate the 
formyl peptide receptor 2 (FPR2) and the P2X purino-
ceptor 7 receptor (P2X7R) (Sainz et al. 2015).

Role of the protein GPNMB in the macrophages‑CSC 
dialogue
Among the factors expressed by TAMs and inducing 
cancer cell stemness, the protein GPNMB occupies a 
special place. GPNMB is a highly glycosylated type I 
transmembrane protein that can be cleaved by proteases 
such as ADAM10. It is expressed in many cell types, such 
as osteoblasts, melanocytes, hepatocytes and leuko-
cytes. This protein, also named Osteoactivin, has a vast 
array of biological activities, being involved in processes 
of cell adhesion and differentiation, tissue remodeling 
and repair after injury; some studies also reported that 
GPNMB limits inflammation and inhibits T cell-medi-
ated immune responses (Abdelmagid et  al. 2008; Safadi 
et  al. 2001; Shikano et  al. 2001; Haralanova-Ilieva et  al. 
2005; Ripoll et  al. 2007; Kobayashi et  al. 2019; Chung 
et al. 2020; Saade et al. 2021; Weterman et al. 1995; Singh 
et al. 2010).

GPNMB is also produced by several tumors. Sub-
stantial evidence indicates that GPNMB is implicated 
in disease progression in glioblastoma, melanoma and 
breast cancer (Kuan et  al. 2006; Rose et  al. 2007,2010). 

When expressed by tumor cells it is able to promote 
tumorigenesis, angiogenesis, cell invasion and metastasis 
(Zhou et  al. 2015; Maric et  al. 2013; Taya and Hammes 
2018). Among immune cells producing GPNMB are 
macrophages and dendritic cells (Solinas et  al. 2010; 
Chung et  al. 2020; Yu et  al. 2016). Our group reported 
that GPNMB is actively transcribed when macrophages 
are co-cultured with cancer cells (Solinas et  al. 2010); 
furthermore, it is preferentially expressed by M2 mac-
rophages (Liguori et al. 2021; Yu et al. 2016) and TAMs 
in mouse experimental tumors are positive for GPNMB 
(Liguori et al. 2021).

The first demonstration of a link between macrophage-
derived GPNMB and stem cells was reported  in normal 
mesenchymal stem cells (MSCs) (Yu et al. 2016; Sondag 
et  al. 2016). They demonstrated that GPNMB produced 
by macrophages stimulates the viability, proliferation 
and migration of MSCs. These effects were induced via 
engagement of the CD44 receptor and the activated ERK 
and AKT signaling pathways.

In mouse tumor models, we have recently reported that 
macrophage-derived soluble GPNMB triggers the expan-
sion of cancer stem cells growing in vitro as self-renewing 
spheroids. These sphere-forming cells expressed markers 
of mesenchymal stem cells (e.g. CD199 and CD117 and 
Sca-1), as well as genes coding for stem cell transcrip-
tion factors (e.g. Nanog, Oct3/4, DNMT and Brachyury) 
(Liguori et al. 2021). Similar results were demonstrated in  
GPNMB-transduced tumor cells that  showed a remark-
ably high tumorigenicity and metastatic ability in  vivo 
(Liguori et  al. 2021). When endogenously produced by 
tumor cells from breast cancer and cholangiocarcinoma, 
GPNMB expression was associated with the ability to 
form spheroids in  vitro containing elements with CSC 
properties (Raggi et al. 2017; Chen et al. 2018).

Maric et  al. reported that the tumor-promoting 
effects of GPNMB were associated with elevated PI3K/
AKT/mTOR signaling and increased β-catenin tran-
scriptional activity (Maric et  al. 2019). In our study we 
obtained evidence that the protein GPNMB also stimu-
lates in cancer cells several other crucial pathways, such 
as MAPKs, AMPK and Src, in addition to STAT5 (Lig-
uori et  al. 2021). In primary methylcolantrene-induced 
fibrosarcoma, soluble GPNMB released by macrophages 
binds to the CD44 receptor on tumor cells and triggers 
the proliferation of CSCs. We further demonstrated that 
CD44 engagement by GPNMB activates in tumor cells 
the expression of several factors, including chemokines, 
e.g.: CXCL1, CXCL2, CCL2, CCL5, CCL7, cytokines: 
IL-6, IL-11, IL-33, and the IL-33 receptor: IL-1RL1, also 
named ST2 (Liguori et al. 2021).

The cytokine IL-33 is of particular interest in the con-
text of cancer stemness, as a number of studies have been 
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recently published. IL-33 is a relatively new member of 
the IL-1 cytokine family and it is expressed by epithe-
lial cells, fibroblasts and immune cells (Dinarello 2005; 
Schmitz et  al. 2005). IL-33 has many biological func-
tions that are involved both in the regulation of adaptive 
immune responses (Schmitz et  al. 2005; Schiering et  al. 
2014; Bonilla et al. 2012) and in tissue repair (Miller et al. 
2008; Jones et al. 2010; Li et al. 2014). Its role in tumors is 
under debate; in fact, on the one hand IL-33 can promote 
T cell antitumor activity (Villarreal et al. 2014; Gao et al. 
2015), on the other, its expression has been associated 
with metastasis in several cancer models (Jovanovic et al. 
2014; Gillibert-Duplantier et  al. 2012; Liu et  al. 2014) 
and, accordingly, it is under study as a therapeutic target 
(Sun et al. 2021). Fang et al. observed that the overexpres-
sion or administration of IL-33 enhanced the growth of 
colon cancer cells, the formation of cell spheres, and the 
expression of stem cell genes (NANOG, NOTCH3 and 
OCT3/4) via phosphorylation of JNK (Fang et al. 2017). 
Furthermore, this cytokine is able to recruit macrophages 
at the tumor site and to trigger their production of PGE2. 
Activation of the JNK pathway was observed also in gli-
oma, where IL-33 and its receptor IL-1RL1 were found 
overexpressed and were associated with increased cell 
migration, invasion, epithelial-mesenchymal transition, 
stemness features and poor patient survival (Lin et  al. 
2020).

Interestingly, two different polymorphisms in the IL-33 
gene have been reported to increase the expression of 
IL-33 and to be associated with higher risk to develop 
hepatocellular carcinoma (Wei et  al. 2019b; Pan et  al. 
2020). Like other factors involved in stemness, IL-33 is 
also capable of inducing resistance to chemotherapy. 
Lin et al. described that IL-33 prevents cancer cell death 
induced by temozolomide, a drug used in the clinic to 
treat glioma tumors (Lin et  al. 2020). Furthermore, this 
cytokine is able to induce polyploidy; this event leads to 
the transformation of tumor cells into polyploid giant 
cells, which have an abnormal cell cycle, without cell 
division, accompanied by deregulation of SNAIL and 
inactivation of p53. This mechanism could be responsi-
ble for the failure of anticancer treatment (Kudo-Saito 
et al. 2020). Taniguchi et al. reported a mechanism link-
ing IL-33 and cancer stemness that includes the activ-
ity of macrophages (Taniguchi et  al. 2020). They found 
that IL-33 induces the accumulation and differentiation 
of macrophages expressing the IL-33 receptor IL-1RL1. 
Macrophages responding to IL-33 produce TGF-β that, 
in turn, promotes CSC invasion and drug-resistance 
(Taniguchi et al. 2020).

Therefore, we can envisage a feed-forward loop where 
cancer cells stimulate in macrophages the production of 
GPNMB that binding to the CD44 receptor on tumor 

cells triggers the release of IL-33. This cytokine is able 
to expand the population of CSCs, and also to stimulate 
macrophages to produce TGFβ, further reinforcing the 
number of CSCs and their stemness features (Fig. 3).

Therapeutic strategies to target CSC and macrophages
CSCs are the ideal target of cancer therapy, because 
they are responsible for tumor initiation, distant spread-
ing and disease recurrence. A major problem is that 
CSCs are inherently resistant to conventional therapies 
(chemotherapy and radiotherapy). Indeed, chemotherapy 
decreases tumor burden by killing the differentiated and 
proliferating cells, but often results in the enrichment of 
resistant CSCs in residual tumors. Among the pharmaco-
logical regimens to eliminate CSCs, combined treatment 
of chemotherapy, angiogenesis inhibitors, tyrosine kinase 
inhibitors and immunotherapy are currently being inves-
tigated (Chen et  al. 2021; Clara et  al. 2020; Corbet and 
Prieur 2020).

Approaches that target cancer cell metabolism are also 
studied. Metformin is an old drug widely used for type II 
diabetes; it is well-known that metformin has the capacity 
to remodulate metabolic pathways that are altered in can-
cer, and to inhibit specific chromatin-modifying metabo-
lites. Research studies indicated an impact of metformin 
also on CSCs and suggested that epigenetic changes may 
increase the sensitivity of tumor cells to chemotherapy 
(Jones et al. 2021). In ovarian cancer patients, metformin 
inclusion in the treatment strategy significantly reduced 
the proportion of ALDH + CD133 + CSCs and improved 
the overall survival (Brown et  al. 2020). Furthermore it 
has been indicated that metformin may also have effects 
on the immune populations of the tumor microenvi-
ronment, by reducing the density of macrophages and 
reprogramming their functional activities with increased 
phagocytosis (Wang et al. 2020).

A number of studies have tested inhibitors directed 
to specific oncogenic pathways that are associated with 
stemness and self-renewal, as mentioned above: Wnt/β-
catenin, SHH, NOTCH and Hippo (Chen et  al. 2021; 
Clara et al. 2020; Corbet and Prieur 2020). For instance, 
Wnt antagonists combined with paclitaxel effectively 
reduced the content of CSC and tumor growth in pre-
clinical experiments with patient-derived xenografts (Fis-
cher et al. 2017).

Glasdegib, an inhibitor of Hedgehog, has been 
approved by FDA and showed clinical activity in acute 
myeloid leukemia (Lainez-Gonzalez et al. 2021).

However, a note of caution must be highlighted: these 
developmental pathways and signaling circuits are also 
used by normal developing cells as well as immune cells, 
thus their targeting represents a challenge for their clini-
cal use.
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As anti-tumor immune responses have such an impor-
tant impact on disease progression, some studies inves-
tigated the efficacy of strategies to boost the patient 
immune response using dendritic cell-based cancer 
vaccines loaded with peptides derived from CSC. How-
ever, the low expression of MHC I molecules renders 
CSC undetectable to T lymphocytes. To bypass the CSC 
intrinsic capability to evade the immune control, inhibi-
tors to the histone deacetylase 6 have been employed 
to increase MHC molecules on CSC, in the attempt to 
maximize their recognition by T cells (Clara et al. 2020; 
Angelis et al. 2019).

Therapies directed to the immune microenvironment 
have gained momentum in the last decade and offer 
another possible option to target CSCs; due to the pecu-
liar role that macrophages play in preserving the stem 
niche, these cells appear to be a preferential target. In the 
last two decades, several approaches to block or modulate 
the pro-tumor and immunosuppressive effects of TAMs 
have been tested in preclinical studies, and some of them 
are under clinical investigation (Belgiovine et  al. 2020; 
Anfray et  al. 2019; Xiang et  al. 2021). Strategies aimed 
to stop the recruitment of circulating monocytes at the 
tumor or at the niche site, have employed inhibitors of 
chemokines and antagonists of the CSF1 receptor (Cas-
setta and Pollard 2018; Allavena et al. 2021). Although a 

significant decrease of macrophage influx in tumor tis-
sues was observed, the anti-tumor efficacy was limited, 
probably because of the redundancy of the chemokine 
world (with many different ligands and shared receptors) 
and the continuous release of new myeloid progenitors 
from the bone marrow.

Cytokines, that are involved in the cross-talk between 
macrophages and CSC, and are of pivotal importance for 
the maintenance of their stemness status, can be phar-
macologically targeted. For example, IL-6 signaling can 
be blocked by anti-IL-6 or IL-6R antibodies or by small-
molecule inhibitors of the STAT3 pathway. Antagonists 
to the TGFβ pathway are also of considerable interest, in 
view of the pleiotropic effects of TGFβ on CSCs (Clara 
et al. 2020; Kim et al. 2021).

A different approach is to reprogram the functional 
activity of macrophages in the direction of anti-tumor 
effectors. It has long been known that when appropriately 
stimulated e.g.: with Toll-like receptor (TLR) ligands, 
immunostimulatory cytokines and agonist antibodies 
to activating receptors, macrophages can efficiently kill 
tumor cells (Mantovani et al. 2017; Allavena et al. 2021; 
Belgiovine et  al. 2020; Fitzgerald and Kagan 2020; Ishi-
kawa and Barber 2008; Maeda et  al. 2019;  Anfray et  al. 
2021;  Parker et al. 2004). Furthermore, their phagocytic 
activity of dead cancer cells is an important source of 

Fig. 3  The soluble protein GPNMB produced by macrophages induces cancer stemness via CD44 and IL-33. Cancer cells stimulate in macrophages 
the production of GPNMB by M-CSF and tumor derived factors. GPNMB can be cleaved from the membrane by metalloproteinases, such as 
ADAM10. Soluble GPNMB binds to the CD44 receptor and triggers the release of IL-33. This cytokine, through the binding to its receptor IL-1RL1, 
is able to expand the population of CSCs, and to stimulate macrophages to produce TGFβ, promoting CSC invasion and resistance to drugs. This 
figure was made with Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0. Unported License (https://​
smart.​servi​er.​com)

https://smart.servier.com
https://smart.servier.com
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tumor antigens that can trigger T cell-mediated immune 
responses. Macrophage phagocytosis can be inhibited 
by the molecule CD47 expressed on cancer cell surface 
and binding to the protein SIRPα on TAMs. Anti-CD47 
blocking antibodies can restore the activity of mac-
rophages and proved to have significant efficacy in pre-
clinical models (Theocharides et al. 2012; Liu et al. 2017; 
Weiskopf and Weissman 2015). Anti-CD47 antibod-
ies are currently being studied in clinical trials in tumor 
patients with promising results, and it is conceivable they 
may enhance also the phagocytic killing of CSCs (Liu 
et al. 2017).

Macrophages express signaling receptors and molecu-
lar pathways that can activate the production of immu-
nostimulatory cytokines and the direct killing of tumor 
cells. For example, activation of the CD40 receptor with 
agonist anti-CD40 mAbs, mimicking the natural ligand 
CD40L expressed by T cells, switches immunosuppres-
sive TAMs into M1-like macrophages, re-establishing 
immune surveillance (Allavena et al. 2021; Huffman et al. 
2020; Vonderheide 2020). Numerous clinical studies with 
anti-CD40 agonist mAbs are under way in patients with 
advanced tumors, in combination with chemotherapy or 
checkpoint immunotherapy.

Reprogramming of TAMs has been attempted also 
through the engagement of TLRs, for example TLR3, 
TLR7 and TLR8, specialized sensors of ectopic nucleic 
acids located in endosomal compartments. Engagement 
of TLRs by a number of available synthetic compounds 
triggers the transcription factor NF-kB and the produc-
tion of several immunostimulatory cytokines, including 
type I IFN, the master regulator of anti-tumor and anti-
viral immunity (Fitzgerald and Kagan 2020; McWhirter 
and Jefferies 2020). Another sensor of nucleic acids is 
STING (Stimulator of interferon genes), also leading to 
the production of IFNs (Ishikawa and Barber 2008). In 
several preclinical cancer models, stimulation of TLRs 
and of STING in immune cells successfully elicited anti-
tumor immunity (Vanpouille-Box et  al. 2019). On the 
basis of these results a number of TLR and STING ago-
nists moved ahead for testing in cancer patients, most 
frequently in combination with other chemotherapeutic 
and immunotherapeutic regimens.

Although it is not clear whether reactivation of the 
cytotoxic and immunostimulatory properties of TAMs 
can be directed also against CSCs, it is reasonable to 
believe that acting on multiple fronts (i.e., hitting both 
the CSCs and the microenvironment) could be a winning 
solution. Furthermore, activation of type I IFN should 
increase the expression of MHC molecules, and therefore 
makes CSCs recognizable by the adaptive immunity. We 
can also envisage that, although CSCs are able to resist 
drug-mediated damage, pharmacological treatments 

could, in any case, have an impact by causing the upreg-
ulation of molecules belonging to a “stress signature”; 
these stress molecules may serve as activating ligands for 
cytotoxic immune cells, such as Natural Killers (Tallerico 
et al. 2016; Donini et al. 2021).

In conclusion, TAMs play an important structural and 
protective role in the niche where stem cells allocate; the 
potential of therapeutic strategies directed to TAMs is 
increasingly considered and a large amount of pre-clinical 
studies are now available. Combined approaches target-
ing both CSCs and the protective immune environment, 
macrophages in particular, are currently being investi-
gated. The hope is that by removing the soil beneath their 
feet CSCs become more vulnerable and their complete 
eradication can be achieved.
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