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Abstract 

Background:  The unique mechanism of diabetic atherosclerosis has been a central research focus. Previous litera-
ture has reported that the inflammatory response mediated by dendritic cells (DCs) plays a vital role in the progres-
sion of atherosclerosis. The objective of the study was to explore the role of DCs in diabetes mellitus complicated by 
atherosclerosis.

Methods:  ApoE−/− mice and bone marrow-derived DCs were used for in vivo and in vitro experiments, respec-
tively. Masson’s staining and Oil-red-O staining were performed for atherosclerotic lesion assessment. The content of 
macrophages and DCs in plaque was visualized by immunohistochemistry. The expression of CD83 and CD86 were 
detected by flow cytometry. The fluctuations in the RNA levels of cytokines, chemokines, chemokine receptors and 
adhesions were analyzed by quantitative RT-PCR. The concentrations of IFN-γ and TNF-α were calculated using ELISA 
kits and the proteins were detected using western blot. Coimmunoprecipitation was used to detect protein–protein 
interactions.
Results:  Compared with the ApoE−/− group, the volume of atherosclerotic plaques in the aortic root of diabetic 
ApoE−/− mice was significantly increased, numbers of macrophages and DCs were increased, and the collagen con-
tent in plaques decreased. The expression of CD83 and CD86 were significantly upregulated in splenic CD11c+ DCs 
derived from mice with hyperglycemia. Increased secretion of cytokines, chemokines, chemokine receptors, intercel-
lular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) also were observed. The stimula-
tion of advanced glycation end products plus oxidized low-density lipoprotein, in cultured BMDCs, further activated 
toll-like receptor 4, protein kinase C and receptor of AGEs, and induced immune maturation of DCs through the 
RAGE-TLR4-PKCβ1 signaling pathway that was bound together by intrinsic structures on the cell membrane. Adminis-
tering LY333531 significantly increased the body weight of diabetic ApoE−/− mice, inhibited the immune maturation 
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Introduction
The risk of coronary heart disease in individuals with 
diabetes  mellitus (DM) is two to six times greater than 
for individuals without DM (Sasso et al. 2004). Previous 
studies have reported that increased secretion of tumor 
necrosis factor α (TNFα), interleukin (IL)-6, C-reactive 
protein (CRP), and other substances at low concentra-
tions lead to chronic low-grade inflammatory responses 
accompanied by the development and progression of 
diabetes mellitus (Castelblanco et al. 2018). This inflam-
matory mechanism is currently considered to be a lead-
ing mechanism for the development and progression of 
atherosclerosis (Zhang et  al. 2019). The hyperglycemic 
state of diabetes accelerates atherosclerosis in conjunc-
tion with hyperlipidemia, but the mechanism is still not 
well understood (Wu and Huan 2007). When there is the 
appearance of atherosclerotic plaque together with dia-
betes mellitus, atherosclerosis presents several distinctive 
characteristics, such as microvascular lesions and diffuse 
lesion plaques, which illustrates that the development of 
atherosclerosis in DM patients has its own specific mech-
anism (Coutant et al. 2004).

It is believed that DCs, specialized antigen-presenting, 
and immune inflammatory-response-initiating cells, 
plays a role as a "bidirectional immune regulator" in the 
occurrence and development of atherosclerosis (Daissor-
mont et al. 2011; Kanter et al. 2012). The degree of ath-
erosclerosis that is produced may depend on the balance 
of immune regulation (Daissormont et  al. 2011; Kanter 
et al. 2012). DCs secrete a range of cytokines, chemokine 
and chemokine receptors (CCL4, CCR7, CXCR4) after 
immune maturation to respond to the stimulation of anti-
gens or immune inflammation (Ssemakalu et  al. 2015). 
Cytokines that induce inflammation, such as IL1, IL-6, 
IL-12, and TNF-α are referred to as pro-inflammatory 
cytokines (Dinarello 2000). Cytokines such as IL-4 and 
IL-10 that inhibit the inflammatory processes are called 
anti-inflammatory cytokines. Previous studies have 
shown that a high-glucose (Cao et  al. 2015) and high-
insulin (Lu et  al. 2015) environment can promote the 
differentiation and immune maturation of DCs. Inject-
ing diphtheria toxin into DTR+/+LDLR−/−mice to induce 
apoptosis of DCs can reduce plaque formation by 55%, 

and enhance plaque stability (Paulson et al. 2010). These 
results indicate that reducing DC-mediated inflamma-
tion is beneficial in reducing atherosclerosis. Since there 
is currently no direct way to reduce the number of DCs 
in clinical practice, regulation of DC maturation, and 
reduction of the release of inflammatory factors is wor-
thy of attention. Previous studies found that the PKC 
signaling pathway is not only involved in the formation 
of atherosclerotic plaques (Durpes et  al. 2015), but also 
plays an essential role in the differentiation and immune 
maturation of DCs (Stein et al. 2017). However, there is 
limited data to suggest the role PKCs in atherosclerosis 
under hyperglycemic condition, and, therefore, the DC 
maturation elicited in diabetic atherosclerosis.

In this study, we demonstrated that activation of the 
RAGE-TLR4-PKCβ1 signaling pathway in a high-glucose 
and high-fat environment was involved in the immune 
maturation of DCs and the occurrence and development 
of chronic low-grade inflammation in diabetes, which 
was closely related to diabetic atherosclerosis.

Material and methods
Animals and splenic CD11c+ DCs separation
All experimental animal procedures were approved by 
the Animal Care and Use Committee of Fudan Univer-
sity. ApoE−/− mice (Beijing Vital River Laboratory Ani-
mal Technology Co., Ltd. male, aged eight weeks and 
weighing approximately 20 g) were housed in the Animal 
Administration Center of Fudan University, Shanghai, 
China. Mice were maintained in cages with a maximum 
of four mice per cage. The mice were randomly divided 
into a diabetic group and a control group. Mice in the dia-
betic group received an intraperitoneal injection of strep-
tozotocin (STZ, 80  mg/kg, Sigma, St Louis, MO, USA) 
daily for one week. Then the mice were maintained under 
the same conditions for an additional week before their 
blood glucose levels were monitored by collecting blood 
from the tail vein. Mice with fasting blood glucose levels 
over 13 mM were deemed diabetic and fed a normal diet 
for eight weeks. Additionally, ApoE−/− mice, aged eight 
weeks and weighing approximately 20  g, were treated 
with STZ in the same way as described above, then ran-
domly divided into a diabetic group and an LY333531 

of spleen DCs, and reduced atherosclerotic plaques in diabetic ApoE−/− mice. Furthermore, the number of DCs and 
macrophages in atherosclerotic plaques was significantly reduced in the LY333531 group, and the collagen content 
was increased.

Conclusions:  Diabetes mellitus aggravates chronic inflammation, and promotes atherosclerotic plaques in conjunc-
tion with hyperlipidemia, which at least in part through inducing the immune maturation of DCs, and its possible 
mechanism of action is through the RAGE-TLR4-pPKCβ1 signaling pathway.

Keywords:  Atherosclerosis, Diabetes, Inflammation, Dendritic cells, Protein Kinase C
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group. Each mouse was gavaged once a day with 200μL 
10% dimethyl sulfoxide for eight weeks. Half of the mice 
received 1  mg/kg  LY333531 with 10% dimethyl sulfox-
ide, and half did not. The body weights were measured at 
the end of eight weeks. At the end of the experiment, the 
animals were euthanized using CO2 inhalation, the mice 
eyeballs were extracted and whole blood was taken. The 
blood lipid profile, such as total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), high-density 
lipoprotein cholesterol (HDL-C), and triglycerides (TG), 
were measured by the Nanjing Jiancheng Bioengineer-
ing Institute. The spleens were removed, crushed, and the 
CD11c+ DCs were isolated using anti-CD11c+ microbe-
ads (Miltenyi Biotec, Bergisch Gladbach, Germany). The 
experiment designer was aware of the group allocation 
while data collectors and data analysts were not during 
the outcome assessment and data analysis.

Organ collection and processing
The aorta and heart were carefully perfused with physi-
ological saline to remove the blood. The heart apex was 
removed, and the aortic arch was separated from aorta 
distal to the left subclavian artery. The isolated tissues 
were embedded in optimal cutting temperature com-
pound (OCT compound) and frozen, then stored at 
-80℃.

Atherosclerotic lesion assessment
The frozen aortic roots were sectioned at a thickness of 
eight µm using a CM3050S cryostat (Leica Biosystems). 
Oil-red-O staining was to visualize plaque extension 
in the aortic root. Frozen sections were fixed, washed, 
and incubated for 18 min in an Oil-red-O solution, then 
counterstained with 0.25% brilliant green (Sinopharm 
Chemical Reagent, China) for 6 min. Oil-red-O staining 
was used to determine the lipid content of the plaques. 
Masson’s staining was performed using a Masson kit 
(Sinopharm Chemical Reagent, China) to stain colla-
gen present in the atherosclerotic lesions. Images were 
obtained with an optical microscope (Olympus, Japan). 
Images were analyzed, and quantification was performed 
using NIH Image J software (Schneider et al. 2012).

Immunohistochemistry
To visualize macrophages in the plaque area, paraform-
aldehyde-fixed aortic root sections were stained with 
CD68-FITC antibody (1:50, MA5-16676, Invitrogen) 
using 4’,6-diamidino-2-phenylindole (DAPI) (2ug/ml, 
D9542, Sigma, USA) as a nuclear counterstain. The pres-
ence of DCs in the plaques also was visualized. Paraform-
aldehyde-fixed sections of aortic root were stained with 
CD11c antibody (1:100, ab33483, Abcam, USA) and a 
hamster secondary antibody (PE, 1:100, 12-4112-83, 

Invitrogen) using DAPI (2ug/ml, D9542, Sigma, USA) 
as a nuclear counterstain. The co-staining of CD68 and 
CD14 with CD11c was conducted with CD11c anti-
body (1:100, Huabio, cat.no. RT1108, lot.no. HL1212, 
China) and a mouse secondary antibody (1:500, Invitro-
gen, cat.no. A32723), CD68 antibody (1:100, Servicebio, 
cat.no. GB11067, lot.no. AC2103065A), CD14 antibody 
(1:100, Abcam, cat.no. ab221678, lot.no. GR3264380-5), 
and a rabbit secondary antibody (1:500, Invitrogen, cat.
no. A32740). The co-staining of PKC beta isoforms and 
RAGE with CD11c was conducted with CD11c antibody 
(1:100, Huabio, cat.no. RT1108, lot.no. HL1212, China) 
and a mouse secondary antibody (1:500, Invitrogen, cat.
no. A32727), PKCβ antibody (1:100, Abclonal, cat.no. 
A13628, lot.no. 5500002416, China), RAGE antibody 
(1:50, Abcam, cat.no. ab216329, lot.no. GR3274230-10, 
USA), and a rabbit secondary antibody (1:500, Invitrogen, 
cat.no. A32731). Positive-stained areas were selected by 
an investigator blinded to the treatment, observed using 
a fluorescence microscope (Olympus, Japan), and quanti-
fied using NIH Image J software (Schneider et al. 2012).

Cell culture
Bone marrow-derived DCs (BMDCs) were obtained from 
C57 BL/6 mice (Beijing Vital River Laboratory Animal 
Technology Co., Ltd.). After the mice were euthanized 
using CO2 inhalation, the femurs of both pelvic limbs 
were removed, and the bone marrow cavity was flushed 
to obtain bone marrow cells. Bone marrow progenitor 
cells were cultured in Roswell Park Memorial Institute 
(RPMI) 1640 medium containing 10 ng/ml granulocyte–
macrophage colony-stimulating factor (GM-CSF) (R & D 
Systems, Minneapolis, MN, USA) and 1 ng/ml IL-4 (R & 
D Systems, Minneapolis, MN, USA). The non-adherent 
cells were gently washed out after 24 h, and the remain-
ing loosely adherent clusters were cultured. The culture 
medium was changed every other day. On day six, the 
cells were stimulated using 50ug/ml oxidized low-den-
sity lipoprotein (oxLDL) (Serotec, UK) for 48 h, with or 
without 200 ug/ml AGEs-BSA (BioVision, Palo Alto, CA, 
USA) interference to simulate the high-lipid and high-
glucose environment of ApoE−/− mice, respectively.

Flow cytometry
Splenic DCs and BMDCs (1 × 106) were harvested and 
washed, followed by incubation with CD83-PE-conju-
gated and CD86-FITC-conjugated (BD Pharmingen, 
San Diego, CA, USA) monoclonal antibodies for 30 min 
at 4℃. Then the cells were washed and analyzed using a 
flow cytometer (BD Bioscience). Cells stained with the 
appropriate isotype-matched immunoglobulin were used 
as negative controls.
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Quantitative RT‑PCR
Total RNA was extracted from splenic CD11c + DCs or 
BMDCs using Trizol reagent (Invitrogen, Carlsbad, CA, 
USA). We used a SYBR RT-PCR kit (Takara, Dalian, 
China) for quantitative RT-PCR analyses. The primers 
for the cytokine genes (IL10, TNFα, IL12a, IL12b, IL1b, 
IL4, and IL6), chemokine and chemokine receptor genes 
(CCL4, CCR7, and CXCR4), adhesion genes (ICAM 
and VCAM), and GAPDH are listed in Additional file 1: 
Table S1. The relative expression levels of the genes were 
normalized to those of GAPDH using the 2−ΔΔCt cycle 
threshold.

Quantification of cytokine production by ELISA
The cells and supernatant of BMDCs were harvested 
and stored at -80℃ until they were assayed. The concen-
tration of CRP and cytokine (interferon-γ (IFNγ) and 
TNFα) were analyzed using ELISA kits according to the 
manufacturer’s instructions (R&D Systems, Minneapolis, 
MN, USA).

Coimmunoprecipitation
Extracts from mouse BMDCs were prepared in lysis 
buffer (50  mmol/L Tris, pH 7.5, 150  mmol/L NaCl, 1% 
v/v Sigma Protease and Phosphatase Inhibitor Cocktail) 
and diluted to a final volume of 500μL (500 μg). Protein 
A:protein G beads (1:50; Sigma) were added, then poly-
clonal TLR4 antibody (2 μg; cat.no. 19811–1-AP, Protein-
Tech company) and polyclonal phospho-PKCβ1 antibody 
(2 μg, cat.no. PA5-105,463, Invitrogen) also were added, 
respectively. After 4-h of continuous gentle agitation at 
4℃, the beads were collected by pulse spin, washed three 
times in lysis buffer, and resuspended in PBS.

Western blot
BMDCs were harvested for the extraction of total pro-
teins with RIPA buffer. The protein concentrations 
were determined using a BCA protein assay (Beyo-
time, Shanghai, China). Antibodies of toll-like recep-
tor 4 (TLR4) (1:1000, cat.no. 14358), RAGE (1:1000, 
cat.no. 55222), interleukin receptor-associated kinase 
4 (IRAK4) (1:1000, cat.no. 4363), phosphor-IRAK4 
(1:1000, cat.no. 11927), phospho-NF-κB (1:1000, cat.
no. 3033), NF-κB (1:1000, cat.no. 8242), phospho-IκB 
(1:1000, cat.no. 9246), IκB (1:1000, cat.no. 9242) were 
all purchased from Cell Signal Technology, USA. Anti-
bodies purchased from Santa Cruz included phospho-
PKCα (1:300, cat.no. SC-377565), phospho-PKCβ2 
(1:300, cat.no. SC-365463). Antibody of phospho-
PKCβ1 was purchased from Invitrogen (1:500, cat.
no. PA5-105463). Antibodies purchased from Abcam 
included phospho-PKCγ (1:1000, cat.no. ab5796), 

PKCα (1:1000, cat.no. ab32376), PKCβ1 (1:1000, cat.
no. ab195039), PKCβ2 (1:1000, cat.no. ab32026), PKCγ 
(1:1000, cat.no. ab71558). The optical densities were 
analyzed using ImagePro 5.0 (Media Cybernetics, Inc., 
Silver Spring, MD, USA) and normalized to the protein 
level of β-actin or GAPDH.

Statistical analysis
The results were presented as means ± S.E.M. and 
analyzed using one-way ANOVA followed by Tukey’s 
post-hoc test for multiple comparisons using the SPSS 
software package, version 16.0. P < 0.05 was considered 
to be statistically significant.

Results
Diabetic ApoE−/− mice increased aortic atherosclerosis 
with chronic low‑grade inflammation and dendritic cell 
activation
The fasting blood glucose levels in the diabetic ApoE−/− 
group were significantly increased, while the blood 
lipid levels were not significantly different (Additional 
file  1: Fig. S1). The thickness of the atheromatous 
plaque fibrous cap is reported to be proportional to 
the collagen content in it (Naghavi et al. 2003a, 2003b), 
and thicker fiber caps suggest more stable plaques. On 
the other hand, excessive aggregation of inflamma-
tory cells such as macrophages and DCs indicates that 
plaques are more likely to rupture. The size of the ath-
erosclerotic plaques in the aortic roots of the diabetic 
ApoE−/− mice was significantly increased compared 
with the control group. The plaque collagen content 
was decreased, while the numbers of macrophages and 
DCs were increased (Fig. 1a–d). These results indicated 
that diabetes aggravated atherosclerosis independently 
of blood lipid levels and promoted inflammation within 
the plaque, which might decrease plaque stability. The 
expression of the co-stimulatory molecules, CD83 and 
CD86, in splenic DCs was significantly increased, and 
the expression of IL12b, IL4, IL6, and chemokine recep-
tors such as CCR7 and CXCR4 also were significantly 
up-regulated in the diabetic mice (Fig.  1e–g). These 
results reveal that the atherosclerotic microenviron-
ment associated with diabetes significantly promoted 
the immune maturation of DCs. The concentrations 
of TNFα, IFNγ, and CRP were significantly increased 
in peripheral blood, and the expression of ICAM and 
VCAM in the aorta also were up-regulated in the dia-
betic mice (Fig.  1h–j). These observations point to 
the existence of a chronic low-grade inflammatory 
response in the diabetic mice, which influenced the 
aortic adhesion molecule expression.
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Fig. 1  Diabetic ApoE−/− mice increased aortic atherosclerosis with chronic low-grade inflammation and dendritic cell activation. Compared 
with the control group, the size of the atherosclerotic plaques (a) in the aortic roots of the diabetic ApoE−/− mice was increased, and the plaque 
collagen content (b) was decreased, while the numbers of macrophages c and DCs d were increased. The expression of CD83 and CD86 e in DCs 
isolated from spleens was increased, as well as the expression of IL12b, IL4, IL6 (f), and chemokine receptors such as CCR7 and CXCR4 g also were 
up-regulated in the diabetic mice. The expression of ICAM and VCAM (h) in the aorta were up-regulated in the diabetic ApoE−/− mice, and the 
concentrations of TNFα, IFNγ, and CRP (i, j) were also significantly increased in peripheral blood. Values, mean ± SED; n = 8; *p < 0.05 vs. DM group, 
scale bar, 250 μm; DM Diabetes mellitus, AS Atherosclerosis, DAPI 4,6-diamino-2-phenyl indole, IL Interleukin, ICAM Intercellular adhesion molecule, 
VCAM Vascular cell adhesion molecule, TNFα Tumor necrosis factor alpha, IFNγ IFN gamma. CRP C-reactive protein
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AGEs plus oxLDL further induced the immune maturation 
of dendritic cells and activated the typical PKC signaling 
pathway
After induction of differentiation, the number of CD11c+ 
cells detected by flow cytometry accounted for 78.4% 
of the total cells (Additional file 1: Fig. S2). Before using 
oxLDL, this study ruled out the presence of endotoxin 
contamination by limulus amebocyte lysate assay. In con-
junction with stimulation by oxLDL, AGEs significantly 
induced expression of the maturation marker, CD83, and 
the co-stimulating molecule, CD86, in BMDCs. ELISA 
results also demonstrated significantly up-regulated 
expression of IFNγ and TNFα (Fig. 2a, b), suggesting that 
AGEs plus oxLDL promoted the release of inflammatory 
cytokines in BMDCs.

In addition, we found that oxLDL plus AGEs induced 
the phosphorylation of IκB and NF-κB (Fig.  2c) to a 
greater degree than oxLDL alone, and stimulated the 
nuclear transcription process. TLR4 is an important sig-
nal pathway for activating NF-κB, and it also is closely 
associated with DCs. AGEs plus oxLDL did not up-reg-
ulate the expression of TLR4. However, the phospho-
rylation of IRAK4, an important kinase downstream of 
TLR4 that is recruited by TLR4/MyD88, was significantly 
up-regulated (Fig. 2d), which would further phosphoryl-
ate IRAK1 and activate NF-κB. Previous studies found 
that various members of the PKC family are known to 
activate NF-κB (Oeckinghaus et  al. 2011). This study 
focused on the typical PKCs instead of novel or atypi-
cal PKCs. In addition, as shown in this study, AGEs plus 
oxLDL can up-regulate the expression of RAGE, and 
activate PKCα and PKCβ1/β2 signaling pathways (Fig. 2e, 
f ). Furthermore, the co-staining of PKC beta and RAGE 
with CD11c confirmed their co-localization in the aortic 
plaque (Additional file 1: Fig. S3a, b).

PKC, RAGE, and TLR4 were involved in the immune 
maturation process of DCs with AGEs plus oxLDL 
intervention
In this study, RAGE neutralizing antibody, TLR4 inhibi-
tors, and three PKC inhibitors (CGP53353, Sigma-
Aldrich, USA, 410 nM for PKCβII vs 3.8 μM for PKCβI 
vs 25uM for pKCα) that targeted corresponding PKC 
subtypes, were added to BMDCs with oxLDL plus AGEs. 
After pretreatment with RAGE neutralizing antibody, 
the expression of CD83 and CD86 were significantly 
decreased, and accompanied by a significant down-reg-
ulation of secretion of the inflammatory cytokines and 
IκB/NF-κB phosphorylation (Fig.  3a–c). These results 
suggested that the combination of AGEs and RAGE acti-
vated the immune maturation of BMDCs through the 
NF-κB signaling pathway.

In the TLR4 inhibitor group, CD83 and CD86 were 
significantly down-regulated, and the ability of BMDCs 
to release inflammatory cytokines also was decreased. 
Combined with the decreased expression of p-NF-κB and 
p-IκB (Fig.  3d–f), these observations indicated that the 
TLR4 signaling pathway was involved with oxLDL plus 
AGEs to induce the BMDCs immune maturation process.

PKCβ1 inhibitors significantly down-regulated the 
expression of CD83 and CD86, as well as the inflamma-
tory cytokines, TNFα and IFNγ, which are secreted by 
BMDCs. However, PKCα inhibitors and PKCβ2 inhibi-
tors did not have similar effects (Fig. 4a, b). PMA, a PKC 
agonist, up-regulated the expression of CD83 and CD86 
in BMDCs and promoted the secretion of the inflamma-
tory cytokines, TNFα and IFNγ, while PKCβ1 inhibitors 
inhibited these effects (Fig.  4c, d). Additionally, PKCβ1 
inhibitors inhibited the PMA- and oxLDL plus AGEs-
induced activation of the NF-κB signaling pathway 
(Fig. 4e, f ). This study repeated related experiments with 
PKCβ1 siRNA and found that the knockdown of PKCβ1 
also inhibited the activation of NF-κB signaling pathway 
and the immune maturation of BMDCs (Additional file 1: 
Fig. S4), which is similar to the effect of PKC beta isoform 
1 inhibitor. These results demonstrated that the PKCβ1 
activity might have an essential role in the immune matu-
ration of BMDCs.

The relationship among RAGE, TLR4, and phospho‑PKCβ1
The phosphorylation of PKCβ1, which reflects the 
activity of PKCβ1, is induced by oxLDL plus AGEs, 
and it was significantly down-regulated by the RAGE 
neutralization antibody (Fig.  5a). However, after the 
inhibition of PKCβ1, there was no significant differ-
ence in the change in RAGE (Fig.  5d). This obser-
vation suggested that RAGE activation played an 
important role in the phosphorylation of PKCβ1, and 
PKCβ1 acted downstream of RAGE. The phosphoryla-
tion of PKCβ1 was significantly decreased in the TLR4 
inhibitor group (Fig.  5c), while RAGE expression was 
not affected (Fig.  5c), which suggested that TLR4 is 
intermediate in the RAGE and PKCβ1 signal pathway. 
TLR4 expression in the PKCβ1 inhibitor intervention 
group showed no significant differences (Fig.  5e), sug-
gesting that PKCβ1 might act downstream of TLR4. 
The involvement of TLR4 was required for the acti-
vation of PKCβ1 by RAGE. After the application of 
the PKCβ1 inhibitor or RAGE neutralizing antibody, 
phosphorylation of IRAK4 was significantly inhibited 
(Fig. 5b, e), which means that the TLR4/NF-κB signal-
ing pathway was blocked and that PKCβ1 phosphoryla-
tion played a key role in the phosphorylation of IRAK4 
induced by oxLDL plus AGEs. These results indicated 
that AGEs combined with RAGE and then activated 
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Fig. 2  AGEs plus oxLDL further induced the maturation of DCs and activated certain signaling pathways. The oxLDL plus AGEs treatment increased 
the expression of CD83 and CD86 (a), in BMDCs, and also up-regulated expression of IFNγ and TNFα (b), which was demonstrated by ELISA. In 
conjunction with stimulation by oxLDL, AGEs induced a greater degree of the phosphorylation of IκB, NF-κB (c), IRAK4 (d), PKCα/β1/β2 (f), and the 
expression of RAGE (e). Values, mean ± SED; n = 3, *p < 0.05 vs. oxLDL group; oxLDL oxidized low density lipoprotein, AGEs advanced glycation 
end-products, TNFα Tumor necrosis factor alpha, IFNγ IFN gamma, NF-κB nuclear factor-κB, RAGE Receptor for advanced glycation end products, 
pPKC phosphorylated protein kinase C, TLR4 Toll-like receptor 4, IRAK4 Interleukin receptor associated kinase 4
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Fig. 3  RAGE antibodies and TLR4 inhibitors inhibit the immune maturation of DCs. After pretreatment with RAGE neutralizing antibody, the 
expression of CD83 and CD86 were decreased, and accompanied by a significant down-regulation of secretion of the inflammatory cytokines 
and IκB/NF-κB phosphorylation (a–c). In the TLR4 inhibitor group, CD83 and CD86 were down-regulated, and the ability of BMDCs to release 
inflammatory cytokines also was decreased (d, e). Combined with the decreased expression of p-NF-κB and p-IκB (f). Values, mean ± SED; n = 3, 
*p < 0.05 vs. oxLDL + AGEs group; oxLDL oxidized low density lipoprotein, AGEs advanced glycation end-products; RAGE Receptor for advanced 
glycation end products, NF-κB nuclear factor-κB, IFNγ IFN gamma; TLR4 Toll-like receptor 4, TNFα Tumor necrosis factor alpha

Fig. 4  PKCβ1 inhibitors significantly inhibited the immune maturation of DCs. PKCβ1 inhibitors significantly down-regulated the expression of 
CD83 and CD86 in BMDCs, as well as the inflammatory cytokines, TNFα and IFNγ, tested by ELISA. However, PKCα inhibitors and PKCβ2 inhibitors 
did not have similar effects (a, b, *p < 0.05 vs. oxLDL + AGEs group). PMA, a PKC agonist, up-regulated the expression of CD83 and CD86 in BMDCs 
and promoted the secretion of the inflammatory cytokines, TNFα and IFNγ, while PKCβ1 inhibitors inhibited these effects (c, d, *p < 0.05 vs. control 
group; #p < 0.05 vs. PMA group). PKCβ1 inhibitors inhibited the PMA− and oxLDL plus AGEs-induced activation of the NF-κB signaling pathway (e, f, 
*p < 0.05 vs. oxLDL + AGEs group). Values, mean ± SED; n = 3, oxLDL oxidized low density lipoprotein, AGEs advanced glycation end-products, PKC 
protein kinase C, IFNγ IFN gamma, TNFα Tumor necrosis factor alpha, PMA phorbol ester, NF-κB nuclear factor-κB

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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the TLR4-PKCβ1 signaling pathway. Coimmunopre-
cipitation showed that TLR4 was bound to RAGE and 
phospho-PKCβ1 (Fig.  5f ), while phospho-PKCβ1 was 
bound to RAGE (Fig. 5g), indicating that RAGE, TLR4, 
and phospho-PKCβ1 were bound together structurally 
on the cell membrane.

In summary, the results of these cell experiments sug-
gested that the RAGE-TLR4-PKCβ1 signal pathway 
might play an important role in the immune maturation 
of BMDCs induced by oxLDL plus AGEs. Also, RAGE, 
TLR4, and phospho-PKCβ1 were bound together struc-
turally, on the cell membrane.

Fig. 5  The relationship among RAGE, TLR4, and phospho-PKCβ1. The phosphorylation of PKCβ1, induced by oxLDL plus AGEs, was down-regulated 
by the RAGE neutralization antibody, as well as the phosphorylation of IRAK4, but there was no significant difference in the change in TLR4 (a, b). 
The phosphorylation of PKCβ1 was decreased in the TLR4 inhibitor group, while RAGE expression was not affected (c). TLR4 and RAGE expression 
in the PKCβ1 inhibitor intervention group showed no significant differences, but the phosphorylation of IRAK4 was significantly inhibited (d, e). 
Coimmunoprecipitation showed that TLR4 was bound to RAGE and phospho-PKCβ1 (f), while phospho-PKCβ1 was bound to RAGE (g). Values, 
mean ± SED; n = 3, *p < 0.05 vs. oxLDL + AGEs group, oxLDL oxidized low density lipoprotein, AGEs advanced glycation end-products, RAGE Receptor 
for advanced glycation end products, PKC protein kinase C, TLR4 Toll-like receptor 4, IRAK4 Interleukin receptor associated kinase 4
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LY333531 inhibited the activation of dendritic cells 
in diabetic ApoE−/− mice and reversed the progression 
of atherosclerosis
LY333531 is a specific protein kinase C beta inhibitor, 
which can competitively and reversibly inhibit PKCβ1. 
The level of peripheral blood glucose was not signifi-
cantly decreased in the LY333531 group, but the body 
weight of the mice was increased significantly (Additional 
file 1: Fig. S5a, b). LY333531 did not affect the blood lipid 
levels in the diabetic ApoE−/− mice (Additional file 1: Fig. 
S5c–f), suggesting that LY333531 might have improved 
the condition of diabetic mice through ways other than 
glycemic control or decreasing blood lipid levels.

The expression of CD83 and CD86 in DCs isolated 
from spleens was inhibited significantly in the LY333531 
group (Fig.  6a). The qPCR results also indicated that 
the expressions of TNFα, IL12b, IL6, CCL4, CCR7, and 
CXCR4 were significantly inhibited in DCs, while the 
expression of IL10 was increased (Fig. 6b, c). These results 
indicated that systemic PKCβ inhibition significantly 
suppressed the immune maturation of splenic DCs. In 
the LY333531 group, not only were the aortic adhesion 
molecules, ICAM1 and VCAM1, inhibited (Fig. 6d), but 
inflammatory markers such as TNFα, IFNγ, and CRP also 
were inhibited significantly in peripheral blood (Fig.  6e, 
f ). These results indicated that the systemic administra-
tion of PKCβ inhibitor reduced the chronic low-grade 
systemic inflammation of diabetes mellitus.

Systemic administration of LY333531 significantly 
delayed the formation of aortic root plaques in mice with 
diabetic atherosclerosis when compared with the control 
group (Fig. 6g).

Masson staining revealed that the collagen fiber com-
position in the plaques increased (Fig.  6h). Staining 
of cells in the plaque indicated that the distribution of 
inflammatory cells was decreased after LY333531 admin-
istration. Since CD11c can be expressed on activated 
macrophages and monocytes, this study used CD68 
and CD14 as markers for macrophages and monocytes, 
respectively, for co-staining with CD11c. The results 
showed that after excluding the influence of macrophages 
and monocytes, CD11c-labeled DCs had a significant 

reduction in plaques (Fig. 6i, j), suggesting that the over-
all stability of the plaque was enhanced.

Discussion
Low-grade inflammation (Castelblanco et al. 2018; Zhang 
et  al. 2019), which is critical in atherosclerosis develop-
ment, has been reported to be an important feature in 
diabetes. DCs are antigen-presenting cells that play an 
important role in the inflammatory response. A previous 
study reported that a lack of DCs in mice could signifi-
cantly reverse the progression of atherosclerotic plaques 
(Durpes et al. 2015). In further exploration of the subsets 
of DCs (Sun et  al. 2020), it was found that CD11b+DC 
(Stoneman et al. 2007; Busch et al. 2014; Gao et al. 2016; 
Rombouts et  al. 2016) and CCL17+DC (Rader and 
Daugherty, 2008; Weber et  al. 2011) subsets have the 
effect of promoting atherosclerosis, and further explo-
ration under more experimental conditions will pro-
vide multi-dimensional evidence. Whether CD103+DCs 
(Choi et al. 2011; Li et al. 2017; Clement et al. 2018) and 
plasmacytoid DCs (Daissormont et  al. 2011; Macritchie 
et  al. 2012) play pro-atherosclerotic or anti-atheroscle-
rotic roles is controversial, which may depend on animal 
strains, different pathological models and other condi-
tions. PKC is activated in diabetes (Liu et  al. 2018) and 
is involved in a range of diabetic complications such as 
diabetic nephropathy and retinopathy (Chistiakov et  al. 
2019). Therefore, this study investigated whether the 
PKC signaling pathway was involved in the immune mat-
uration of DCs in diabetic hyperlipidemia mice and the 
development of diabetic atherosclerosis.

The current study found that in diabetic ApoE−/− mice, 
exposure to high glucose induced a DC-mediated chronic 
low-grade inflammatory response, which was related to 
the size and stability of the atherosclerotic plaques. Fur-
thermore, AGEs induced the immune maturity of DCs 
in conjunction with stimulation by oxLDL. The possible 
mechanism involved the RAGE-TLR4-pPKCβ1 signal-
ing pathway (Fig. 7). In addition, with PKCβ as the inter-
vention target, LY333531 inhibited the DCs immune 
maturation that was induced by diabetic atherosclerosis, 
reduced the systemic chronic low-grade inflammatory 

Fig. 6  LY333531 inhibited the immune maturation of DCs and alleviated atherosclerosis in diabetic ApoE−/− mice. The expression of the 
co-stimulatory molecules, CD83 and CD86, in splenic DCs was inhibited in the LY333531 group (a). The qPCR results also indicated that the 
expressions of TNFα, IL12b, IL6, CCL4, CCR7, and CXCR4 were inhibited in DCs, while the expression of IL10 was increased (b, c). In the LY333531 
group, not only were the aortic adhesion molecules, ICAM1 and VCAM1, inhibited (d), but inflammatory markers such as TNFα, IFNγ, and CRP also 
were inhibited in peripheral blood (e, f). Systemic administration of LY333531 delayed the formation of aortic root plaques in mice with diabetic 
atherosclerosis when compared with the control group (g). Masson staining revealed that the collagen fiber composition in the plaques increased 
(h). Staining of cells in the plaque indicated that the distribution of inflammatory cells was decreased after LY333531 administration. Co-staining 
of CD68 and CD14 with CD11c showed that after excluding the influence of macrophages and monocytes, CD11c-labeled DCs had a significant 
reduction in plaques (i, j). Values, mean ± SED; n = 8; *p < 0.05 vs. ApoE + DM group; DM Diabetes mellitus, IL Interleukin, ICAM Intercellular adhesion 
molecule, VCAM Vascular cell adhesion molecule, TNFα Tumor necrosis factor alpha, IFNγ IFN gamma, AS Atherosclerosis, DAPI 4,6-diamino-2-phenyl 
indole

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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response of diabetes mellitus, and stabilized and reduced 
the atherosclerotic plaques.

Paulson et al. found that DCs are activated and trans-
formed in blood vessel intima into foam cells by phago-
cytosis of oxLDL, which promoted the development of 
atherosclerosis (Durpes et  al. 2015). Meanwhile, in  vivo 
studies (Blank et al. 2012) have found that both fluctuat-
ing and stable hyperglycemia can promote and enhance 
the differentiation and immune maturation of DCs. Fur-
thermore, another in  vitro experiment (Ge et  al. 2005) 
confirmed that AGEs could induce the maturation of 
DCs and enhance immunity of DCs through increas-
ing the expressions of scavenger receptor A and RAGE, 
which were mediated by Jnk pathway. Similarly, our study 
demonstrated that the expression of CD83 and CD86, 
which represent DC maturation, was up-regulated in the 
spleens of diabetic ApoE−/− mice. Also, the expression of 
inflammatory cytokines (IL12b, IL4, and IL6), chemokine 
and chemokine receptors (CCL4, CCR7, and CXCR4) 
were significantly increased, indicating that diabetes plus 
hyperlipidemia could further induce immune maturation 

of DCs, and probably induced chronic low-grade inflam-
mation that was mediated by DCs.

In the process of advanced atherosclerosis, DCs invade 
the atherosclerotic plaque from the adventitia along with 
vascular nourishment-related neovascularization, which 
leads to plaque instability and ulceration (Yilmaz et  al. 
2004). A previous study found that injection of diphthe-
ria toxin into DTR+/+LDL−/− mice induced apoptosis 
of DCs and reduced plaque formation by 55%, which 
enhanced plaque stability (Durpes et al. 2015). Therefore, 
it is hypothesized that the immune maturity of the DCs 
is related to the instability of the plaque. In the present 
study, the number of DCs and their immune maturation 
were significantly increased in diabetic ApoE−/− mice, 
while the stability of the plaques decreased. When 
LY333531 was used to inhibit the DCs’ immune matu-
ration, the number of macrophages in the plaque sig-
nificantly decreased, and the overall plaque stability 
was enhanced. These results extended the correlation 
between PKC and simple atherosclerosis to the occur-
rence and development of diabetic atherosclerosis.

Fig. 7  RAGE-TLR4-pPKCβ1 signal pathway diagram. After AGEs was combined with RAGE, the expression of RAGE was up-regulated and PKCβ1 
was activated together with TLR4, phosphorylated PKCβ1 was transferred from the cytoplasm to the membrane, and formed RAGE-TLR4-pPKCβ1 
complex, then activated the TLR4 signaling pathway through the phosphorylation of IRAK4, which promoted the phosphorylation of NF-κB, and 
further promoted the immune maturation of dendritic cells and the expression of inflammatory factors
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The TLR-NF-κB signaling pathway is the primary 
inflammatory signaling pathway, and TLR activation 
also is required in the process of immune maturation 
of DCs (Alloatti et  al. 2015). TLR4 is a TLR-associated 
protein that recognizes a range of endogenous ligands 
and activates the NF-κB signaling pathway, which pro-
motes increased inflammatory cytokine gene expression 
in the atherosclerotic inflammatory process (Hayashi 
et al. 2012), while DC maturation via the NF-κB signal-
ing pathway is well- known (Jung et  al. 2020). In addi-
tion, TLR4 knockdown significantly down-regulates early 
atherosclerosis in diabetic ApoE−/− mice (Lu et al. 2013), 
which may be related to monocyte activation (Bielinski 
et al. 2011) that is mediated by the TLR4 signaling path-
way. In the present study, we found that the use of TLR4 
inhibitors significantly down-regulated immune matu-
ration of DCs and secretion of inflammatory cytokines 
induced by oxLDL plus AGEs. In addition, phosphoryla-
tion of IκB and NF-κB was significantly inhibited, which 
suggested that TLR4 was involved in the immune matu-
ration of DCs.

Previous studies (Lin et  al. 2011) indicated that selec-
tive inhibition of PKCα or PKCβ could inhibit the differ-
entiation of CD14+ monocytes into macrophages or DCs 
in vitro and further inhibit their antigen-presenting func-
tion. Cejas et al. found that PKCβ was continuously acti-
vated during the differentiation of CD34+ bone marrow 
stem cells into DCs (Cejas et al. 2005). This effect could be 
enhanced by the PKC agonist, phorbol, and inhibited by 
PKC inhibitors (Davis et al. 1998; Cejas et al. 2005), sug-
gesting that the PKC signaling pathway played an impor-
tant role in the differentiation and immune maturation 
of DCs. However, the specific PKC subtype that is the 
main subtype affecting the differentiation and maturation 
of DCs is still controversial. Previous research reported 
that PKCα/δ/ε activation played a role in the activation of 
inflammatory cells through the TLR4 signaling pathway. 
The classical PKC signaling pathway in our study also 
was involved in the immune maturation process of DCs. 
Inhibition of PKCβ1 significantly down-regulated the 
expression of CD83, CD86, TNFα, and IFNγ induced by 
AGEs plus oxLDL or PMA. PKCα inhibitors and PKCβ2 
inhibitors did not have the same effect, suggesting that 
the specific PKCβ1 subtype phosphorylation played an 
important role in the DCs immune maturation. Linghua 
et al. confirmed that the activation of PKCβ accelerated 
the process of diabetic atherosclerosis (Kong et al. 2013), 
and this study further confirmed the role of PKCβ1 and 
DC immune maturation in diabetic atherosclerosis.

AGEs have been shown to play a causative role in dia-
betic vascular disease, including atherosclerosis (Zhang 
et  al. 2003). RAGE is a specific receptor for AGEs, 
which is expressed in low amounts in normal tissues 

but exhibits high levels of expression in AGEs-enriched 
regions of diabetic blood vessels (Yamagishi et al. 2003). 
RAGE plays a critical role in diabetic atherosclerosis 
through perpetuation of chronic vascular inflammation 
and through impairment of cholesterol metabolism (Buc-
ciarelli et al. 2002; Wendt et al. 2006; Senatus et al. 2020). 
Blockade of RAGE stabilizes atherosclerotic lesion area 
in diabetic atherosclerosis mice (Bucciarelli et  al. 2002), 
and deletion of Ager (the gene encoding RAGE) accel-
erates regression of diabetic atherosclerosis, at least in 
part through IRF7, which is verified in BMDMs (Senatus 
et al. 2020). RAGE recognizes AGEs and activates NF-κB 
(Ohtsu et al. 2017), but the intracellular domain of RAGE 
has only 43 amino acids, and there is no TIR-like homol-
ogous molecule for signal recognition. In this study, we 
confirmed that RAGE-TLR4-pPKCβ1 was a tripartite 
structure on the cell membrane. Ying Ju et  al. demon-
strated an NF-κB activation signaling pathway that was 
triggered by TLR4 and RAGE-regulated p38MAPK/JNK-
activated PPARγ down-regulation in human osteoar-
thritis (OA) chondrocytes (Chen et al. 2013). This result 
explained the activation of the signal pathway of NF-κB 
in human OA chondrocytes by RAGE (Chen et al. 2013). 
Based on these results, this study proposed the hypoth-
esis that when AGEs were bound to RAGE, this up-regu-
lated the expression of RAGE and interacted with TLR4, 
which promoted PKCβ1 phosphorylation and formed a 
complex with RAGE-TLR4. After receptor ligation, TLR4 
recruited MyD88 molecules. MyD88 further recruited 
IRAK4 and IRAK1 through its N-terminal death domain 
(DD). IRAK4 exerted kinase activity through autophos-
phorylation to phosphorylate IRAK1, which resulted 
in the activation of the latter and hyper-autophospho-
rylation. IRAK1 then dissociated from the complex and 
interacted with TRAF6 to finally activate the NF-κB sign-
aling pathway. (Fig.  7) Thus, the expression of immune 
maturation and inflammatory factors in DCs were pro-
moted, which might partially explain the mechanism by 
which hyperglycemia promotes the immune maturation 
of DCs. However, this possible mechanism needs further 
exploration.

There are several limitations associated with this study. 
First, specific inhibitors of PKCβ1 were not utilized in 
the in  vivo experiments, which reduced the robustness 
of the experimental animal evidence. Second, repeated 
incubation failures occurred that resulted in our inability 
to include DTR+LDLR−/− or DTR−LDLR−/− transgenic 
mice in the current study. The unavailability of these 
transgenic mice led to a lack of direct in  vivo evidence 
to support the relationship between DCs and atheroscle-
rotic plaques. Third, our experimental design was based 
on type 1 diabetes, and it is necessary to conduct further 
research on type 2 diabetes. Fourth, the mechanism by 
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which RAGE-TLR4-PKCβ1 bind together requires fur-
ther exploration. Finally, this study only explored the typ-
ical PKC signaling pathways, but not other types of PKC 
signaling pathways.

Conclusions
The present study demonstrated that diabetes mellitus 
aggravated chronic inflammation, and promoted ath-
erosclerotic plaques in conjunction with hyperlipidemia, 
which at least in part through inducing the immune 
maturity of DCs. Compared with oxLDL, AGEs plus 
oxLDL further induced the immune maturation of DCs, 
and possibly through the RAGE-TLR4-pPKCβ1 signaling 
pathway. These results provided new insights for clinical 
prevention and treatment of diabetic atherosclerosis.
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