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LETTER TO THE EDITOR

IKK‑mediated CYLD phosphorylation 
and cellular redox activity
Adnan Erol*   

Abstract 

Oxidative stress is important in the development of obesity-related nephropathy (ORN). A causal relationship 
between IKK and ORN via CYLD-mediated inhibition of NRF2 has been described. However, contradictory explana-
tions about the functioning of the mechanisms that will be effective in the pathogenesis require clarification.
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In a recent study published in the Journal, Chen et  al. 
claimed that IKKs, NF-κB activating kinases, may reduce 
the cellular antioxidant capacity in obesity-related 
nephropathy (ORN) through inactivating one of the 
major deubiquitinases, CYLD (Chen et al. 2021). Accord-
ing to the authors of the study, ox-LDL-stimulated oxida-
tive stress may activate IKK that, in turn, phosphorylates 
and inactivates the deubiquitinating activity of CYLD. 
Consequently, the increased ubiquitination and degrada-
tion of NRF2 may promote oxidative stress injury in ORN 
cells. Importantly, they found that NRF2 is molecularly 
encapsulated by “a series of high-molecular-weight spe-
cies” and directly binds CYLD. Furthermore, the treat-
ment of ORN cells with MG132, a proteasome inhibitor, 
resulted in the activation of NRF2-related transcription. 
Altogether, they concluded that IKK-mediated inactiva-
tion of CYLD may potentiate the oxidative stress injury 
through the increased NRF2 degradation.

Proteasomal degradation of NRF2 will reduce the 
antioxidant ability of the cell. However, concluding that 
CYLD will protect NRF2 degradation by reducing its 
polyubiquitination would be controversial. On the con-
trary, a previous study reported that CYLD may increase 
oxidative stress by inhibiting the anti-oxidative activity 
of NRF2, as they cited in their study (Wang et al. 2015). 

CYLD, having deubiquitinase (DUB) activity, is a tumor 
suppressor that plays a key role in proliferation and cell 
death. CYLD negatively regulates the NF-κB signaling 
pathway by removing selectively Lysine (K)-63–linked 
and linear polyubiquitin chains but exhibits very little 
activity towards degradative K48-linked ubiquitin chains 
(Komander et al. 2009; Sato et al. 2015).

Previous studies with the tumor suppressor CYLD have 
described it as having an anti-inflammatory function, 
primarily because of its inhibitory effect on the NF-κB 
pathway. The Inhibition of CYLD increases resistance to 
apoptosis by activating NF-κB, suggesting a mechanism 
through which loss of CYLD contributes to oncogen-
esis (Brummelkamp et  al. 2003). Furthermore, CYLD is 
believed to promote apoptosis and programmed necro-
sis (necroptosis) by facilitating RIPK1 deubiquitina-
tion (Moquin et  al. 2013). RIPK1 is a complex protein 
that possesses both a scaffolding pro-survival as well as 
a catalytic pro-death function. When RIPK1 is modi-
fied by K63- and M1-linked ubiquitins, it acts as a scaf-
fold, independent of its kinase activity, to recruit some 
adaptor proteins, leading to the NF-κB-dependent tran-
scription of pro-survival proteins (Li et al. 2020). Further-
more, the IKK complex that phosphorylates CYLD is also 
necessary for the induction of NF-κB-dependent tran-
scription. Until very recently, canonical IKK members, 
IKKα and IKKβ, and non-canonical IKKε were believed 
to phosphorylate and inactivate the DUB activity of 
CYLD (Reiley et  al. 2005; Hutti et  al. 2009). However, a 
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very recent study made the issue more complicated. The 
research revealed that IKK phosphorylation, paradoxi-
cally, stimulates rather than inhibits CYLD, promoting 
its DUB activity (Elliot et al. 2021). Thus, IKK-mediated 
CYLD phosphorylation deconjugates ubiquitin chains 
on RIPK1, increasing its kinase activity for the death 
signaling pathway. Phosphorylated CYLD also reduces 
resistance to apoptosis by the loss of scaffolding func-
tion of RIPK1 necessary to activate NF-κB-mediated 
transcription.

NRF2, the main regulator of the cytoprotective gene 
program, is a transcription factor that encodes not only 
antioxidant genes but also numerous detoxification 
enzymes that conjugate oxidation products. Canoni-
cally, KEAP1, an adaptor component of ubiquitin E3 
ligase, constitutively ubiquitinates NRF2 with K48-
linked polyubiquitin chains. Consequently, KEAP1 
promotes the proteasomal degradation of NRF2, thus 
keeping cellular NRF2 at a low level (Taguchi et  al. 
2012). On the other hand, in a noncanonical pathway, 
stimulated p62 can also bind to KEAP1. p62 is a stress-
inducible protein, which serves as an adaptor protein 
between selective autophagy and ubiquitin signaling. In 

the non-canonical KEAP1-NRF2 pathway, mTORC1-
mediated phosphorylation of p62 at serine-349 leads to 
the competitive binding with KEAP1. Following KEAP1 
association with p62 and KEAP1-NRF2 dissociation, 
stabilized NRF2 translocates to the nucleus to induce 
its target genes. NRF2 positively regulates p62 gene 
expression; therefore, p62 is able to set up a positive 
feedback loop to activate NRF2, which in turn stimu-
lates increased transcription of the p62 gene (Taguchi 
et al. 2012; Ichimura et al. 2013).

In the light of these data, it would be more rational 
to develop a new model between IKK-mediated CYLD 
phosphorylation and NRF2 activity. Under basal (unstim-
ulated) conditions, KEAP1 constitutively ubiquitinates 
NRF2, leading to the rapid proteasomal degradation of 
NRF2 in the canonical KEAP1-NRF2 pathway (Fig. 1A). 
Following stimulation, CYLD undergoes phosphoryla-
tion at serine-418 and serine-568 residues catalyzed by 
either canonical IKKs (IKKα and IKKβ) or by the nonca-
nonical IKKε, which may increase DUB activity of CYLD. 
The stimulated CYLD blocks the activation of mTORC1, 
increasing autophagy (Colombo et  al. 2021). Conse-
quently, the loss of phosphorylation of p62 by mTORC1 
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Fig. 1  IKK-CYLD-NRF2 interaction. (A): In the resting cell, a low NRF2 level is present due to the canonical KEAP1-NRF2 interaction and degradation. 
(B): Various stimuli that activate the IKK signaling pathway also cause mTORC1 activation and autophagy inhibition. mTORC1 reduces NRF2 
degradation by phosphorylating p62 scaffold protein, enhancing the p62-KEAP-1 interaction. However, during the terminal phase of signaling, 
IKK-mediated phosphorylation-dependent deconjugating activity of CYLD inhibits mTORC1, while stimulating the autophagic pathway. Thus, the 
resultant mTORC1 inhibition and a decrease in p62 level due to the autophagic degradation results in the loss of the p62-KEAP1 relationship. The 
liberated KEAP1 degrades NRF2 and inhibits its transcription activity
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inhibits the interaction of p62 with KEAP1. Released 
KEAP1 can associate with NRF2, promoting NRF2 
degradation, which also reduces the p62 level. In addi-
tion, CYLD stimulation will contribute to p62 reduction 
through its autophagic degradation. Altogether, reduced 
p62 levels can lead to the inhibition of NRF2- and NF-
kB-mediated transcription, creating a positive cycle (Kat-
suragi et al. 2016) (Fig. 1B).

To summarize the results of IKK-stimulated CYLD 
activity: (1) decreases the affinity of p62 for KEAP1; thus, 
increases proteasomal degradation of NRF2 through the 
potentiated NRF2-KEAP1 association. This, in turn, will 
reduce the cellular redox potential, promoting oxidative 
stress and a reduction in p62 level as well; (2) increases 
autophagy, leading to the further p62 reduction; (3) 
stimulates RIPK1-mediated cell death (apoptosis and/or 
necroptosis); (4) inhibits apoptosis resistance, potentiat-
ing the RIPK1-mediated cell death.

ROS production was thought to be of key importance 
in ORN. NRF2 was generally thought to be a crucial cel-
lular defense against oxidative stress (Chen et  al. 2021). 
The findings of Chen et  al., regarding NRF2 inhibi-
tion by IKK in ORN, which leads to increased oxidative 
stress, are important. However, their interpretation of the 
CLYD-NRF2 interaction does not seem to be compat-
ible with the available data. This letter aims to reconcile 
conflicting results regarding the mechanism of NRF2 
inhibition. Thus, it may make more sense for Chen et al. 
to use the model defined here, rather than their confus-
ing implications, to explain the influence of CYLD on 
NRF2. This model can also be considered as a working 
mechanism for other chronic degenerative diseases in 
which IKK activation and oxidative stress are common 
denominators.
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