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Abstract 

Background:  Chronic liver injury induces pathological repair, resulting in fibrosis, during which hepatic stellate cells 
(HSCs) are activated and transform into myofibroblasts. CD248 is mainly expressed on myofibroblasts and was consid‑
ered as a promising target to treat fibrosis. The primary aim of this study was to generate a CD248 specific antibody-
drug conjugate (ADC) and evaluate its therapeutic efficacy for liver fibrosis and its safety in vivo.

Methods:  CD248 expression was examined in patients with liver cirrhosis and in mice with CCl4-induced liver fibrosis. 
The ADC IgG78-DM1, which targets CD248, was prepared and its bioactivity on activated primary HSCs was studied. 
The anti-fibrotic effects of IgG78-DM1 on liver fibrosis were evaluated in CCl4-induced mice. The reproductive safety 
and biosafety of IgG78-DM1 were also evaluated in vivo.

Results:  CD248 expression was upregulated in patients with liver cirrhosis and in CCl4-induced mice, and was mainly 
expressed on alpha smooth muscle actin (α-SMA)+ myofibroblasts. IgG78-DM1 was successfully generated, which 
could effectively bind with and kill CD248+ activated HSCs in vitro and inhibit liver fibrosis in vivo. In addition, IgG78-
DM1 was demonstrated to have qualified biosafety and reproductive safety in vivo.

Conclusions:  Our study demonstrated that CD248 could be an ideal target for myofibroblasts in liver fibrosis, and 
CD248-targeting IgG78-DM1 had excellent anti-fibrotic effects in mice with liver fibrosis. Our study provided a novel 
strategy to treat liver fibrosis and expanded the application of ADCs beyond tumors.
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Introduction
Fibrosis is the pathological repair response of a tissue to 
chronic injury, which is characterized by excessive accu-
mulation and deposition of extracellular matrix (ECM) 
proteins, leading to organ dysfunction. Fibrosis can be 
triggered by many factors, including viral and parasitic 
infections, autoimmune inflammation, and drugs/toxic 
effects, and different organs can be affected, resulting in 
diseases such as liver fibrosis (Bataller and Brenner 2005; 
Distler et  al. 2019). Liver fibrosis can lead to liver cir-
rhosis, decompensation of liver function, and ultimately, 
death. However, there is no effective treatment strategy 
for liver fibrosis, and existing treatment strategies cannot 
meet clinical needs (Friedman et al. 2013; Schuppan and 
Kim 2013). Thus, there is an urgent need to explore novel 
anti-fibrotic treatment strategies.

The occurrence of liver fibrosis is accompanied by 
chronic inflammation, during which the levels of pro-
inflammatory cytokines are upregulated and released 
to activate hepatic stellate cells (HSCs), among which 
transforming growth factor-β (TGF-β) and platelet-
derived growth factor (PDGF) are the most potent 
pro-fibrotic cytokines (Bonner 2004; Meng et al. 2016; 
Stewart et  al. 2018). Activation of HSCs is considered 

as the pivotal event driving and aggravating liver fibro-
sis. During chronic liver injury, the resident quiescent 
HSCs are activated and transform into highly prolifera-
tive, motile, and contractile myofibroblasts, which are 
the main source of ECM proteins, occupying up to 90% 
of the fibrotic liver (Bataller and Brenner 2005; Higashi 
et al. 2017). Activated HSCs have been considered as a 
target for anti-fibrotic therapy because of their central 
role in liver fibrosis.

The resistance of myofibroblasts to apoptosis is con-
sidered critical for the aberrant accumulation of these 
cells in fibrotic diseases, and different strategies to 
induce apoptosis of myofibroblasts have been exam-
ined in different fibrotic diseases (Hinz and Lagares 
2020). Recently, Aghajanian et  al. reported that in an 
angiotensin II and phenylephrine (AngII/PE)-induced 
cardiac fibrosis model, fibroblast activation protein 
(FAP) was expressed specifically in activated cardiac 
fibroblasts. In addition, they confirmed that the specific 
killing of activated cardiac fibroblasts by FAP-specific 
chimeric antigen receptor (CAR) T cells could reduce 
cardiac fibrosis and restore cardiac function in mice 
(Aghajanian et  al. 2019). That report indicated that 
specific killing of myofibroblasts could be an effective 
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strategy to inhibit tissue fibrosis. However, develop-
ing strategies to kill myofibroblasts specifically in liver 
fibrosis is limited by the lack of effective therapeutic 
targets (Bansal et al. 2016).

CD248, also known as endosialin or tumor endothe-
lial marker 1 (TEM1), is a type I transmembrane gly-
coprotein (Christian et  al. 2001). Previously, CD248 
was found to be expressed specifically in pericytes, 
cancer-associated fibroblasts (CAFs), and some tumor 
cells, such as sarcomas, with very low or limited expres-
sion in normal tissue; therefore, CD248 has been con-
sidered as a specific target for cancer therapy (Bagley 
et  al. 2008; MacFadyen et  al. 2005; O’Shannessy et  al. 
2016; Rouleau et  al. 2008). Later studies showed that 
CD248 expression was also upregulated specifically 
in liver fibrosis, and CD248 was expressed mainly in 
activated HSCs, but not in quiescent HSCs, indicat-
ing that CD248 could be an effective therapeutic target 
for liver fibrosis (Wilhelm et  al. 2016). To realize spe-
cific killing of activated HSCs, we aimed to generate 
an antibody-drug conjugate (ADC) by conjugating a 
CD248-specific antibody, IgG78, with the microtubule 
inhibitor mertansine (DM1) via non-cleavable succin-
imidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxy-
late (SMCC) linker.

In this study, we first examined CD248 expression 
in the liver tissue of patients with hepatic cirrhosis and 
in carbon tetrachloride (CCl4)-induced liver fibrosis in 
C57BL/6 mice, and confirmed that CD248 was mainly 
expressed in alpha smooth actin (α-SMA)+ myofibro-
blasts. We then demonstrated that CD248 expression was 
increased in TGF-β activated primary HSCs and freshly 
isolated HSCs from CCl4-induced mice. The ADC IgG78-
DM1 was then generated through conjugating IgG78 
with DM1 via the non-cleavable SMCC linker. After 
confirming its binding affinity and specific cytotoxicity 
toward CD248 positive HSCs in  vitro, we verified that 
IgG78-DM1 could alleviate CCl4-induced liver fibrosis 
in vivo. The biosafety and reproductive safety of IgG78-
DM1 were also examined in vivo. The present study dem-
onstrated that CD248 is an ideal target for anti-fibrotic 
therapy and specific killing of CD248+ myofibroblasts 
using IgG78-DM1 could be a novel and effective strategy 
to treat liver fibrosis.

Materials and methods
Human tissue samples and animal models
A human liver tissue microarray (HC-Liv00006) was pur-
chased from Avila Biotech (Xi’an, China). Male C57BL/6 
mice were purchased from experimental animal center, 
Fourth Military Medical University (Xi’an, China). Liver 
fibrosis in the mice was induced by intraperitoneal 

injection of CCl4 (2.5  mL/kg body weight, dissolved in 
olive oil at the ratio of 1:9) twice a week for 6 weeks (n = 5 
mice in each group). Mice were sacrificed 3 days after the 
final injection.

Histological staining
Mouse liver tissue slides were prepared as 5  μm-thick 
paraffin sections and 8 μm-thick frozen sections. Hema-
toxylin and eosin (H&E) staining and Masson stain-
ing were performed by Servicebio Co., Ltd. (Wuhan, 
China) The primary antibodies used for immunohisto-
chemistry (IHC) staining and immunofluorescent (IF) 
staining were as follows: anti-human CD248 (#ab67273, 
Abcam, Cambridge, UK), anti-mouse CD248 (#18160-
1-AP, Proteintech, Rosemont, IL, USA), anti-mouse 
α-SMA (#ab124964, Abcam), Lysotracker™ Red DND 
99 (#L7528, Invitrogen, Waltham, MA, USA), Alexa 
Fluor 488 conjugated α-tubulin (11H10) Rabbit mono-
clonal antibody (mAb) (#5063, Cell Signaling Tech-
nology, Danvers, MA, USA). Apoptotic cells were 
stained using a Fluorescein isothiocyanate (FITC) ter-
minal deoxynucleotidyl transferase nick-end-labeling 
(TUNEL) Cell Apoptosis Detection Kit (#G1501-50, 
Servicebio). At 24  h after a single injection of IgG78-
DM1, liver tissues were isolated and used to examine 
the co-location of IgG78-DM1 and CD248 by dual IF 
staining and cell apoptosis by TUNEL assay. Images 
were captured under a fluorescence microscope or a 
confocal laser scanning microscope. Quantification was 
performed according to the percentage and intensity 
in IHC staining and the percentage of the positive area 
in the IF staining using Image J v1.52a (NIH, Bethesda, 
MD, USA).

Purification of IgG78 and preparation of IgG78‑DM1
A plasmid containing the DNA sequence encoding 
IgG78 was transiently transfected into HEK293F cells 
using the FreeStyle™ MAX Reagent (#16447100, Gibco, 
Grand Island, NY, USA) and cultured for 7 days before 
supernatants were collected. IgG78 was purified from 
the supernatant using a HiTrap Protein A FF column 
(#28-9343-88, GE Healthcare, Chicago, IL, USA) and 
an AKTA fast protein liquid chromatography (FPLC) 
Protein Purifier (#03009481, GE Healthcare). After 
being dialyzed in conjugating buffer (50  mM Triso-
dium phosphate, 50 mM NaCl, 2 mM EDTA dissolved 
in 1  L ddH2O, PH = 7.2), IgG78 was then conjugated 
with SMCC-DM1 dissolved in N, N-dimethylacetamide 
(DMA) at room temperature for 3  h. Then, IgG78-
DM1 was dialyzed for 24 h to replace the solvent with 
phosphate-buffered saline (PBS). The ratio of DM1 
to IgG78 was calculated as follows (CDM1 = Molar 
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concentration of DM1; εab = Molar extinction 
coefficient of IgG78, εab@252 = 82,880  M−1  cm−1, 
εab@280 = 224,000  M−1  cm−1; εDM1 = Molar extinc-
tion coefficient of DM1, εDM1@252 = 26,790  M−1  cm−1, 
εDM1@280 = 5700 M−1 cm−1):

The heavy and light chains of IgG78-DM1 was resolved 
by 10% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) for Coomassie blue staining and 
western blotting.

Culture of cell lines and isolation of primary HSCs
The mouse macrophage cell line RAW264.7 and mouse 
hepatocyte cell line AML12 were purchased from Ameri-
can type culture collection (ATCC; Manassas, VA, USA). 
The mouse HSC cell line JS-1 was purchased from 
Fenghbio Co., Ltd (Changsha, China). Cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) 
medium supplemented with 10% fetal bovine serum 
(FBS) (#A3161002C, Gibco) and 1% penicillin–strepto-
mycin (#P1400, Solarbio). Primary HSCs were isolated 
from C57BL/6 mice according to a previously described 
protocol (Castello-Cros and Cukierman 2009; Mederacke 
et al. 2015). Primary HSCs were maintained in fibroblast-
specific medium (#2301, Sciencell, Carlsbad, CA, USA), 
and were activated by TGF-β1 (#AF-100-21C, Peprotech, 
Rocky Hill, NJ, USA) for 48 h before further analysis.

Flow cytometry
Primary HSCs were incubated with Alexa fluor 647-con-
jugated Vimentin (D21H3) rabbit mAb (#9856, Cell Sign-
aling Technology), anti-mouse CD248 primary antibody 
(#ab217535, Abcam) or 100  nM IgG78-DM1 at 4  °C for 
30  min, followed by incubation with FITC anti-rabbit 
IgG Fc (Abcam, #ab6717) and FITC anti-human IgG Fc 
(Abcam, #96907) at 4 °C for 30 min in the dark before flow 
cytometry analysis. Hepatocytes and macrophages were 

CDM1 =

A252− A280 ∗
εab@252

εab@280

εDM1@252 − εDM1@280 ∗
εab@252

εab@280

DM1

IgG78
ratio =

CDM1

CIgG78
incubated with 100 nM IgG78-DM1 at 4 °C for 30 min, fol-
lowed by incubation with Phycoerythrin (PE) anti-human 
IgG Fc (BioLegend, San Diego, CA, USA #410708).

Cellular ELISA and CCK‑8 assay
Activated HSCs were counted to adjust the cell den-
sity to 1 × 104/mL, and the cells were plated at 200 μL/
well in 96-well plates coated with 2% Gelatin. Then, 
HSCs were washed and incubated with IgG78-DM1 or 
control hIgG-DM1 (DM1 conjugated to non-specific 
human IgG) at 4 °C for an enzyme-linked immunosorb-
ent assay (ELISA) or at 37 °C for a CCK-8 (Cell Count-
ing Kit-8) assay. For ELISA, HSCs were then incubated 
with peroxidase-labeled secondary antibody (#A21050, 
Abbkine, Wuhan, China) for 1  h at 4  °C before col-
orimetric signals were developed by incubation with 
3,3ʹ,5,5ʹ-tetramethylbenzidine (TMB; #P0209, Beyo-
time, Jiangsu, China) and stopped by 2  M H2SO4 for 
15 min (#P0215, Beyotime). The CCK-8 kit (#BS350A, 
Biosharp, Anhui, China) was used to count live HSCs. 
Absorbance was then measured at 450  nm using a 
microplate reader, and the binding affinity and IC50 of 
IgG78-DM1 were calculated with GraphPad Prism 8 
(GraphPad Inc., La Jolla, CA, USA).

Quantitative real‑time reverse transcription polymerase 
chain reaction (qRT‑PCR)
Total RNA was extracted using the Trizol reagent, and 
reverse transcription (RT) was performed using Pri-
meScript™ RT Master Mix (#RR036A, Takara, Shiga, 
Japan). The resultant cDNA was quantified using qPCR, 
performed using a TB Green® Premix Ex Taq™ II kit 

Table 1  Primers used for qRT-PCR analysis

Target Forward primer Reverse primer

Cd248 CTC​AAC​CAA​CTA​TCC​CCA​AGTC​ GCC​TGG​GTT​CTG​ATA​CCT​GG

Acta2 CCG​CCA​TGT​ATG​TGG​CTA​TT CAG​TTG​TAC​GTC​CAG​AGG​CATA​

Col1a1 AGA​CAT​GTT​CAG​CTT​TGT​GGAC​ GCA​GCT​GAC​TTC​AGG​GAT​G

Tgfbr1 CAC​AGA​GTG​GGA​ACA​AAA​
AGGT​

CCA​ATG​GAA​CAT​CGT​CGA​GCA​

Pdgfrα ATG​AGA​GTG​AGA​TCG​AAG​GCA​ CGG​CAA​GGT​ATG​ATG​GCA​GAG​

Fig. 1  CD248 was mainly expressed on myofibroblasts in liver fibrosis. A Sirius red staining and IHC staining of CD248 in the liver tissue of 9 
heathy controls and 40 patients with liver cirrhosis. B Quantitative analysis of the data in A. C Sirius red staining and IHC staining of CD248 in 
the liver tissue of CCl4-induced mice. D Quantitative analysis of the data in C. E, F qRT-PCR and western blotting analysis to show the increased 
expression of α-SMA, Collagen I, and CD248 in the liver tissues of CCl4-induced mice (n = 3 in B–F). G IF staining images showing the colocalization 
of CD248 and α-SMA in the liver tissue of CCl4-induced mice. Representative images are shown. Scale bar, 100 μm; **p < 0.01, ***p < 0.001. IHC 
immunohistochemistry, qRT-PCR quantitative real-time reverse transcription polymerase chain reaction, α-SMA alpha smooth muscle actin, IF 
immunofluorescence

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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(#RR820A, Takara). The primers used for qPCR are listed 
in Table 1.

Western blotting
Cells and tissues were lysed using Radioimmunoprecipi-
tation assay (RIPA) buffer (#P0013B, Beyotime) and the 
protein was quantified using a bicinchoninic acid (BCA) 
protein assay kit (#P0010, Beyotime). Proteins were sub-
jected to 8% SDS-PAGE and then transferred to a PVDF 
membrane for western blotting. The primary antibod-
ies used were: anti-mouse CD248 (#ab48185, Abcam), 
anti-mouse α-SMA (#ab124964, Abcam), anti-mouse 
collagen I (#ab34710, Abcam), anti-mouse glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH; #10494-1-
AP, Proteintech).

Statistical analysis
All data are presented as the mean ± standard deviation 
(SD). Before analysis, quantitative data were tested for 
normality and homogeneity of variance using GraphPad 
Prism 8. Statistical analyses were performed using Stu-
dent’s test or linear correlation. Differences were consid-
ered significant when p < 0.05.

Results
CD248 was mainly expressed on myofibroblasts in liver 
fibrosis
To determine CD248 expression in liver fibrosis, we per-
formed Sirius red and IHC staining for CD248 in the tis-
sue array, which contained 40 cirrhotic liver tissues and 
9 healthy controls. The results showed CD248 expres-
sion was significantly increased in human cirrhotic livers 
(Fig. 1A, B, p < 0.001) and the CD248 staining level cor-
related positively with the severity of liver fibrosis (Addi-
tional file 1: Fig. S1A, B, p < 0.0001). Next, we examined 
CD248 expression in 6-week CCl4-induced mice. IHC 
staining showed that CD248 levels were markedly upreg-
ulated in liver fibrosis (Fig.  1C, D, p < 0.0001). We then 
confirmed the upregulated expression of Acta2 (encod-
ing actin alpha 2, smooth muscle) and Col1a1 (encoding 
collagen type I alpha 1 chain), which are fibrosis-related 
genes, and Cd248 using qRT-PCR; and assessed α-SMA, 
Collagen I, and CD248 protein levels using western 

blotting (Fig.  1E, F). IF staining was also performed to 
localize CD248 expression. As shown in Fig. 1G, CD248 
was mainly expressed on α-SMA+ myofibroblasts in liver 
fibrosis.

CD248 expression was upregulated on activated primary 
HSCs
In CCl4-induced liver fibrosis, HSCs are the main source 
of myofibroblasts. To confirm the expression of CD248 in 
activated HSCs, we isolated primary HSCs from healthy 
mouse livers. Freshly isolated HSCs were subjected to 
flow cytometry analysis to observe the auto-fluorescence 
of Vitamin A, which is a marker of HSCs (Fig. 2A). HSCs 
are normally considered to be in a quiescent state, and 
their CD248 expression was low. However, after being 
activated by the potent pro-fibrotic cytokine TGF-
β, the expression levels of CD248 and fibrosis-related 
genes, such as those encoding α-SMA and Collagen I, 
were upregulated significantly in the mouse HSC cell 
line JS-1 (Additional file  2: Fig. S2A–C). Similar results 
were also observed in freshly isolated HSCs (Fig. 2B, C). 
The increased CD248 expression was confirmed using 
flow cytometry (Fig.  2D). In addition, we isolated pri-
mary HSCs from CCl4-induced fibrotic mice and con-
trol mice to examine the expression of CD248 and other 
fibrosis-related genes. As shown in Fig. 2E–G, compared 
with those in the control mice, the expression levels of 
CD248 and other fibrosis-related genes were significantly 
increased in CCl4-induced fibrotic mice. These results 
confirmed that CD248 expression was upregulated in 
activated primary HSCs both in vitro and in vivo.

Purification of IgG78 and preparation of IgG78‑DM1
To explore whether specific killing of myofibroblasts 
could effectively alleviate liver fibrosis, we first expressed 
and purified the fully human antibody IgG78, which spe-
cifically recognizes CD248. Then, we generated the ADC, 
IgG78-DM1, in which IgG78 was linked to DM1 via the 
stable thioether bond linker SMCC (Fig.  3A). The con-
centration of IgG78-DM1 was measured using a Nan-
odrop spectrophotometer, and the drug antibody ratio 
(DAR) of DM1 to IgG78 was calculated as 3.09, indi-
cating that each IgG78 was conjugated with three DM1 

(See figure on next page.)
Fig. 2  CD248 expression was upregulated on activated primary HSCs. A Flow cytometry to show the auto-fluorescent Vitamin A, which is a marker 
of HSCs. B, C qRT-PCR and western blotting analysis to show the increased expression of α-SMA, Collagen I and CD248 in TGF-β1-activated primary 
HSCs. D Flow cytometry showing the increased expression of CD248 in TGF-β1-activated primary HSCs (n = 3 in A–D). E, F qRT-PCR and western 
blotting analysis showing the increased expression of α-SMA, Collagen I, and CD248 in freshly isolated primary HSCs from CCl4-induced mice. G 
Flow cytometry showing the increased expression of CD248 in freshly isolated primary HSCs from control and CCl4-induced mice (n = 3 in E–G). 
Representative images are shown. *p < 0.05, **p < 0.01, ****p < 0.0001. HSC hepatic stellate cell, qRT-PCR quantitative real-time reverse transcription 
polymerase chain reaction, α-SMA alpha smooth muscle actin, TGF-β transforming growth factor beta
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Fig. 2  (See legend on previous page.)
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Fig. 3  Purification of IgG78 and preparation of IgG78-DM1. A Schematic diagram of IgG78-DM1. B Characterization of IgG78-DM1 using a 
Nanodrop spectrophotometer to show the absorption peak of DM1 and IgG78 at 252 nm and 280 nm, respectively. C SDS-PAGE showing the 
expression of purified IgG78 and IgG78-DM1. D Western blotting to showing the purified IgG78 and generated IgG78-DM1. DM1 Mertansine, 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

(See figure on next page.)
Fig. 4  Characterization of IgG78-DM1 and its bioactivity toward primary HSCs in vitro. A Flow cytometry showing the binding of IgG78-DM1 
with TGF-β1-activated primary HSCs. B ELISA to show the binding affinity of IgG78-DM1 with TGF-β1 activated primary HSCs. C IF staining images 
showing the co-localization of IgG78-DM1 and lysosomes. Scale bar, 50 μm. D CCK-8 assay showing the effective killing of activated primary HSCs 
by IgG78-DM1. E Laser confocal microscopy images showing that IgG78-DM1 could destroy the assembly of α-tubulin in activated primary HSCs. 
Scale bar, 2 μm. F Transmission electron microscopy images showing that IgG78-DM1 could induce obvious apoptosis in activated primary HSCs. 
Three independent experiments were performed and analysed. Representative images are shown. DM1 Mertansine, HSC hepatic stellate cell, TGF-β 
transforming growth factor beta, ELISA enzyme-linked immunosorbent assay, IF immunofluorescence, CCK-8 cell counting kit-8
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Fig. 4  (See legend on previous page.)
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molecules (Fig.  3B). To examine whether the conjuga-
tion process might destroy the structure and stability of 
IgG78, we performed SDS-PAGE, which showed that 
both IgG78 and IgG78-DM1 could be dissociated into 
heavy and light chains without other bands, indicating 
that the structure and stability of IgG78 was not influ-
enced by the conjugation process (Fig. 3C). The stability 
of IgG78 was also confirmed by western blotting after 
DM1 conjugation, which showed that both IgG78 and 
IgG78-DM1 had a clear heavy chain, indicating that the 
DM1 conjugation did not influence the stability of IgG78 
(Fig. 3D).

Bioactivity of IgG78‑DM1 toward primary HSCs in vitro
To study the bioactivity of IgG78-DM1, we examined its 
binding with primary HSCs using flow cytometry. The 
results showed that IgG78-DM1 could bind effectively to 
activated HSCs, which have upregulated CD248 expres-
sion (Fig. 4A). Then, we examined the binding affinity of 
IgG78-DM1 using a cellular ELISA, which showed that 
IgG78-DM1 had relatively high binding affinity with 
activated HSCs, with a Kd value of 0.061  nM (Fig.  4B). 
Dual IF staining was then carried out to confirm whether 
IgG78-DM1 could internalize into activated HSCs, which 
showed that IgG78-DM1 co-localized mainly with lys-
osomes, indicating that it could be internalized into 
CD248+ HSCs (Fig. 4C).

The CCK-8 assay was then used to assess the specific 
killing of activated HSCs by IgG78-DM1, which showed 
that IgG78-DM1 had obvious cytotoxicity toward acti-
vated HSCs, with an IC50 of 0.5294 nM (Fig. 4D). Flow 
cytometry and CCK-8 assay were also used to exam-
ine the binding and cytotoxicity of IgG78-DM1 toward 
mouse hepatocytes or macrophages. The results showed 
that IgG78-DM1 could not bind with hepatocytes or 
macrophages and had no obvious cytotoxicity toward 
them (Additional file  3: Fig. S3A–D). These results fur-
ther demonstrated the specificity of IgG78-DM1. We 
also evaluated the intracellular microtubule network in 
activated HSCs. As shown in Fig.  4E, the cells started 
to shrink and the microtubule structure was gradually 
destroyed after IgG78-DM1 treatment. Transmission 

electron microscopy observation revealed the condensa-
tion and fragmentation of nuclear chromatin in activated 
HSCs after IgG78-DM1 treatment (Fig. 4F). These results 
demonstrated that IgG78-DM1 has a high binding affin-
ity for CD248+ HSCs and could effectively induce their 
apoptosis in vitro.

IgG78‑DM1 could alleviate liver fibrosis in CCl4‑induced 
fibrotic mice through specific killing of myofibroblasts
Given that IgG78-DM1 could effectively kill CD248+ 
HSCs in vitro, we next examined whether it could allevi-
ate liver fibrosis in vivo. For prophylactic treatment, mice 
were injected intravenously with IgG78-DM1 or hIgG-
DM1 during the process of CCl4-induced liver fibrosis 
(Fig.  5A). We performed pre-experiment to determine 
the appopriate dosage of IgG78-DM1 for treatment and 
found 2.5  mg/kg, twice a week could effectively allevi-
ate liver fibrosis. To confirm whether IgG78-DM1 could 
specifically distribute in liver tissue, we labelled IgG78-
DM1 with IRDye 800CW dye and observed its distri-
bution in  vivo. Results showed that IgG78-DM1 could 
specifically enrich in the liver tissue 24 h after injection 
and fluorescent signal maintained after 96 h (Additional 
file  4: Fig. S4). To confirm whether IgG78-DM1 could 
specifically bind with CD248+ myofibroblasts in vivo, we 
treated 6-week CCl4-induced mice with IgG78-DM1 for 
just once and examined the localization of IgG78-DM1 in 
liver tissue by dual IF staining using frozen sections. The 
results showed that IgG78-DM1 were mainly colocalized 
with CD248+ cells in  vivo (Fig.  5B). Sirius red staining 
and the Ishak score showed that the deposition of colla-
gen was markedly inhibited after IgG78-DM1 treatment 
(Fig.  5C–E). Inhibition of liver fibrosis was confirmed 
by the greatly decreased Masson staining-positive area 
and reduced α-SMA expression (Additional file  5: Fig. 
S5A–D). In addition, the content of hydroxyproline in 
liver tissue and the serum level of alanine aminotrans-
ferase (ALT), which indicate the severity of liver fibrosis 
and impaired liver function, respectively, were decreased 
markedly in the IgG78-DM1 treatment group, indicating 
that liver fibrosis was inhibited while liver function was 
improved (Fig. 5F, G).

Fig. 5  IgG78-DM1 could prevent liver fibrosis in CCl4-induced mice. A Schematic of the experimental design for the establishment and treatment 
of CCl4-induced mice. B IF staining showing the localization of IgG78-DM1 in the liver tissue of CCl4-induced mice. C Sirius Red staining showing 
that IgG78-DM1 could alleviate liver fibrosis in CCl4-induced mice (n = 5). D Quantification of the data in C. E Ishak score of the liver tissue. F The 
hepatic hydroxyproline content after treatment. G Serum levels of ALT after treatment (n = 5 in B–G). H qRT-PCR to show the mRNA levels of Cd248 
and fibrosis-related genes (Acta2, Col1a1, Tgfbr1 and Pdgfrα) in the liver tissues. I Western blotting showing the protein levels of α-SMA, collagen, 
and CD248 in liver tissues. J TUNEL staining showing the apoptosis of α-SMA-positive HSCs in liver tissues. K Quantification of the data in J (n = 3 
in H–K). Representative images are shown. Scale bar, 100 μm, **p < 0.01, *** p < 0.001, ****p < 0.0001. DM1 Mertansine, HSC hepatic stellate cell, IF 
immunofluorescence, ALT alanine aminotransferase, qRT-PCR quantitative real-time reverse transcription polymerase chain reaction, α-SMA alpha 
smooth muscle actin, TUNEL terminal deoxynulceotidyl transferase nick-end-labeling

(See figure on next page.)
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The expression levels of CD248 and fibrosis-related fac-
tors in liver tissues were then examined using qRT-PCR 
and western blotting. The results showed that the expres-
sion levels of CD248 and fibrosis-related factors [α-SMA, 
Collagen I, platelet-derived growth factor receptor-alpha 
(PDGFRα), and transforming growth factor beta receptor 
1 (TGF-βR1)] were decreased significantly in the IgG78-
DM1 treatment group compared with those in the con-
trols (Fig.  5H and I). To evaluate whether IgG78-DM1 
indeed induced specific killing of myofibroblasts in vivo, 
6-week CCl4-induced mice were treated with IgG78-
DM1 or hIgG-DM1 just once and liver tissue was isolated 
to examine apoptosis using the TUNEL assay. The results 
showed significantly increased levels of apoptosis of 
α-SMA+ myofibroblasts in the IgG78-DM1 treated group 
compared with that in the controls (Fig. 5J and K).

In addition, to evaluate whether IgG78-DM1 could be 
used as a therapeutic treatment, we treated the mice with 
IgG78-DM1 for the last 2 weeks of the 6-week CCl4 treat-
ment (Fig. 6A). The results showed that, compared with 
the hIgG-DM1-treated group, mice treated with IgG78-
DM1 showed a significant decrease in Masson and Sirius 
red positive areas, the Ishak score, and hydroxyproline 
and serum ALT levels (Fig.  6B–G). Consistently, the 
expression levels of CD248 and fibrosis-related factors 
were reduced in IgG78-DM1-treated mice, as assessed 
using qRT-PCR and western blotting analyses (Fig. 6H, J).

IgG78‑DM1 showed ideal biosafety and reproductive 
safety in vivo
To evaluate the safety of IgG78-DM1 in vivo, a primary 
safety study was performed in normal C57BL/6 mice. 
IgG78-DM1 (10  mg/kg) was injected into mice through 
the tail vein twice a week for 6  weeks; injection of PBS 
and hIgG-DM1 were used as negative controls. Food 
intake and the body weight of the mice were analyzed 
after administration, and no significant difference was 
observed among the three groups (Fig. 7A and B). At the 
end of the experiment, all the mice were sacrificed, and 
the liver of each mouse was weighed to calculate the liver 
index, for which no obvious difference was found among 
the three groups. Serum from each mouse was separated 
to examine indicators of liver and kidney functions, and 
no obvious toxicity was observed (Fig. 7C–E). In addition, 

H&E staining revealed that IgG78-DM1 caused no obvi-
ous tissue toxicity in important organs, such as the brain, 
heart, liver, lung, kidney, and spleen, as shown by the rel-
atively normal structure of these organs (Fig. 7F).

We also examined the safety of IgG78-DM1 dur-
ing embryonic development in normal C57BL/6 mice, 
because CD248 expression has been reported in several 
tissues of mouse embryos. Female C57BL/6 mice were 
mated with male mice and IgG78-DM1 was injected 
intravenously at 10 mg/kg twice a week from the first day 
of pregnancy until delivery. No anatomical or histological 
abnormalities were found in any of the embryos among 
the different groups during gestation, as shown by the 
results of H&E staining of the embryos (Fig. 7G). Further-
more, IgG78-DM1 had no obvious influence on gestation 
time, change of body weight of the pregnant mice, or the 
number and weight of pups at birth (Fig.  7H–K). These 
results confirmed that IgG78-DM1 had ideal biosafety 
and reproductive safety when applied in vivo.

Discussion
Fibrosis, or excessive tissue scarring, is a common feature of 
most chronic tissue injuries, among which liver fibrosis is the 
most common fibrotic disease. However, no antifibrotic ther-
apy has been approved to date. Although several pro-fibrotic 
cytokines such as TGF-β and PDGF, have been found to play 
essential roles in the process of fibrosis, systemic inhibition 
of these cytokines, for example TGF-β, could also impair 
tumor suppression or cause chronic inflammation because 
their critical function in normal homeostasis (Dewidar et al. 
2019; Friedman et al. 2013). Thus, it is vitally important to 
explore novel specific anti-fibrotic strategies.

HSCs play an essential role in the progression of liver 
fibrosis, and activated HSCs are considered an ideal tar-
get for anti-fibrotic therapy (Higashi et al. 2017). HSCs are 
normally considered to be in a quiescent state and do not 
express α-SMA. After being activated, HSCs will trans-
form into myofibroblasts and the expression of α-SMA and 
ECM proteins will significantly increase. Several strategies 
targeting activated HSCs have been designed and evalu-
ated. For example, Zhang et al. (2020) designed pPB pep-
tide-modified, HMGB1 (high mobility group box 1)-siRNA 
(small interfering RNA) loaded nanoparticles to alleviate 
liver fibrosis by inhibiting the activation and proliferation of 

(See figure on next page.)
Fig. 6  IgG78-DM1 could alleviate liver fibrosis in a therapeutic treatment model. A Schematic experimental design for the establishment and 
treatment of CCl4-induced mice. B Representative images of Masson staining, Sirius red staining, and IHC staining for α-SMA. C, D Quantification 
of the Masson and Sirius red positive area in B. E Ishak score of the liver tissues. F Hepatic hydroxyproline content after treatment. G Serum levels 
of ALT after treatment (n = 5 in B–G). H Western blotting showing the protein levels of α-SMA, collagen I and CD248 in the liver tissues. I qRT-PCR 
to show the mRNA levels of Cd248 and fibrosis-related genes (Acta2, Col1a1, Tgfbr1 and Pdgfrα) in the liver tissues (n = 3 in H–I). DM1 Mertansine, 
IHC immunohistochemistry, ALT alanine aminotransferase, α-SMA alpha smooth muscle actin, qRT-PCR quantitative real-time reverse transcription 
polymerase chain reaction
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HSCs. Luo et al. (2019) used chondroitin sulfate nanomi-
celles (CSmicelles) to target HSCs by binding with CD44, 
and retinoic acid (RA) and doxorubicin (DOX) were encap-
sulated to mediate specific cytotoxicity toward HSCs to 
alleviate liver fibrosis. Bangen et  al. (2017) reported that 
injection of an siRNA targeting the Cyclin E1 mRNA into 
mice could effectively block Cyclin E1 expression and the 
proliferation of HSCs, hepatocytes, and leukocytes, result-
ing in significantly ameliorated liver fibrosis. However, 
these studies are still in the preclinical stage. More impor-
tantly, the lack of a specific target might limit their further 
application. Therefore, it is important  to identify ideal tar-
gets that are specifically expressed on activated, but not 
quiescent, HSCs (Yazdani et al. 2017).

CD248 is a transmembrane glycoprotein that belongs to 
C-type lectin-like receptor family (Christian et  al. 2001). 
During development, CD248 is specifically expressed on 
interstitial fibroblasts and pericytes, but its expression 
largely disappears in adults (Lax et  al. 2007). However, 
CD248 expression is upregulated on activated HSCs during 
liver fibrosis, while in Cd248 knockout mice, CCl4-induced 
liver fibrosis was obviously alleviated and the expression 
of collagen I, α-SMA, and TGF-β were all inhibited signifi-
cantly (Mogler et al. 2015; Wilhelm et al. 2016). These find-
ings indicated that CD248 might play an important role in 
the progression of liver fibrosis and could be an ideal thera-
peutic target for fibrotic diseases (Teicher 2019).

Recently, it was found that resistance of myofibroblasts to 
apoptosis played a critical role in fibrotic diseases, and the 
induction of apoptosis in myofibroblasts could be an effec-
tive strategy to alleviate liver fibrosis (Hinz and Lagares 
2020; Li et  al. 2019, 2020; Oh et  al. 2016). In addition, 
Aghajanian et al. (2019) reported that cardiac fibrosis could 
be alleviated through specific killing of activated cardiac 
fibroblasts by FAP-specific CAR T cells, indicating that spe-
cific killing of activated fibroblasts could also be an effective 
way to inhibit tissue fibrosis. Inspired by these findings, we 
speculated that specifically killing of activated HSCs might 
have an anti-fibrotic effect in liver fibrosis. To realize spe-
cific killing, we generated an ADC named IgG78-DM1, in 
which the CD248 specific antibody IgG78 was conjugated 
with the microtubule inhibitor DM1 through an SMCC 
linker. We examined whether IgG78-DM1 could effectively 
alleviate CCl4-induced liver fibrosis in vivo.

First, we confirmed that CD248 expression was 
upregulated in the fibrotic liver tissues of both patients 
with hepatic cirrhosis and in CCl4-induced mice. We 
also confirmed that CD248 was expressed mainly on 
α-SMA-positive HSCs, which was consistent with pre-
vious reports (Mogler et  al. 2015; Wilhelm et  al. 2016). 
Next, CD248 expression was demonstrated to be mark-
edly upregulated in activated HSCs, either in TGF-β1 
stimulated normal HSCs or in freshly isolated HSCs from 
6-week CCl4-induced mice. Thus, CD248 was confirmed 
to be specifically expressed on activated HSCs and could 
be used as a target to treat liver fibrosis.

To exert specific killing on activated HSCs, ADC 
IgG78-DM1 was generated. To construct the ADC, the 
same structure as Tratuzumab-DM1 (T-DM1) was used, 
in which the antibody was conjugated with DM1 through 
a non-cleavable SMCC linker (von Minckwitz et  al. 
2019). CD248-mediated antibody internalization has 
been reported (Rybinski et al. 2015), and our results dem-
onstrated that IgG78-DM1 could specifically bind with 
and be internalized into CD248-positive activated HSCs. 
In addition, IgG78-DM1 could induce specific cytotox-
icity of activated HSCs. DM1 is a potent cytotoxic drug; 
therefore, it could kill target cells effectively, even at very 
low dose. The use of the non-cleavable SMCC linker to 
tether DM1 to IgG78 ensured that only CD248-positive 
activated HSCs were destroyed, while hepatocytes and 
other normal cells were not affected.

In vivo, after IgG78-DM1 was injected into 
CCl4-induced mice, it was distributed specifically in the 
fibrotic liver and colocalized with CD248 positive cells, as 
shown by IF staining of frozen liver sections. In addition, 
IgG78-DM1 alleviated liver fibrosis significantly in both 
prophylactic and therapeutic treatment models, as shown 
by the decreased deposition of collagen and decreased 
expression of fibrosis-related proteins. The results of 
TUNEL staining indicated that the inhibition of liver 
fibrosis by IgG78-DM1 was caused by the specific killing 
of activated HSCs. During our study, we observed that 
hIgG-DM1 also had some anti-fibrotic effect, which was 
hypothesized to be caused by metabolism of the ADC in 
liver tissue. However, the anti-fibrotic effect in IgG78-
DM1 treated group was significantly stronger than that 
of hIgG-DM1.

Fig. 7  Biosafety and reproductive safety analysis of IgG78-DM1 in C57BL/6 mice. A, B Food intake and body weight of different groups after 
IgG78-DM1 or hIgG-DM1 treatment. C–E Kidney function, liver index (liver weight/body weight), and liver function showing the biosafety of 
IgG78-DM1 in CCl4-induced mice. F H&E staining of different organs in CCl4-induced mice after IgG78-DM1 or hIgG-DM1 treatment (n = 5 in A–F). 
Scale bar, 50 μm. G H&E staining of embryos in early, middle, and late stages of pregnancy in normal C57BL/6 mice after IgG78-DM1 or hIgG-DM1 
treatment. H–K Duration of pregnancy, change in body weight during pregnancy, number of offspring, and weight of the pups in each group 
(n = 5 in G–K). Representative images are shown. DM1 Mertansine, H&E hematoxylin and eosin

(See figure on next page.)
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Besides evaluating the effectiveness of this strategy to 
alleviate liver fibrosis, we also examined the biosafety and 
reproductive safety of IgG78-DM1 in vivo. The results of 
liver and kidney function data and H&E staining of impor-
tant organs indicated that IgG78-DM1 did not cause obvi-
ous tissue toxicity in  vivo. In mice, the normal embryo 
development and the normal gestation time, number, and 
weight of pups at birth indicated that IgG78-DM1 did not 
induce reproductive toxicity when applied in vivo.

Conclusions
In summary, our study demonstrated that CD248 was 
specifically expressed on activated hepatic stellate cells in 
liver fibrosis and CD248 could be used as an effective tar-
get for anti-fibrotic therapy. A CD248-specific antibody-
drug conjugate (IgG78-DM1) was generated that could 
bind specifically with and kill CD248-positive hepatic 
stellate cells in vitro, could alleviate liver fibrosis in vivo, 
and had a good safety profile. To the best of our knowl-
edge, this is the first attempt to alleviate fibrosis using 
an ADC, and we believe that this strategy could also be 
applied to treat other fibrotic diseases.
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