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REVIEW

MALAT1‑miRNAs network regulate 
thymidylate synthase and affect 5FU‑based 
chemotherapy
Janusz Matuszyk*    

Abstract 

Background:  The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts 
by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA 
replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of 
TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is 
regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs 
(lncRNAs).

Aim:  To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein.

Main body:  Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can 
be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be 
divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as con-
firmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-
140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) 
miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. 
Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback 
loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a 
transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the 
activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA.

Conclusion:  The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by 
upregulating the level of thymidylate synthase.

Keywords:  Micro RNA, miRNAs, ceRNA network, 5-FU resistance, Chemoresistance, Colorectal cancer, Capecitabine, 
Hippo-YAP, Wnt beta-catenin
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Introduction
5-Fluorouracil (5FU) is a uracil analogue with a fluorine 
atom at the C-5 position of the pyrimidine (Fig.  1) and 
belongs to the class of chemotherapeutic agents known 

as the fluoropyrimidines. 5FU is used to treat several 
types of cancer. 5FU is used intravenously in palliative 
treatment of colorectal cancers (CRCs), breast cancers, 
gastric cancers, pancreatic cancers (Dean and Kane 
2016a). Another fluoropyrimidine, namely capecitabine 
(trade name Xeloda), was rationally designed to mimic 
the continuous infusion of 5FU (Hoff et  al. 2001) and 
is an oral 5FU prodrug used in the treatment of meta-
static colon and breast cancers (Dean and Kane 2016b), 

Open Access

Molecular Medicine

*Correspondence:  janusz.matuszyk@hirszfeld.pl

Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy 
of Sciences, 12 R. Weigla Street, 53‑114 Wroclaw, Poland

http://orcid.org/0000-0002-0382-1272
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10020-022-00516-2&domain=pdf


Page 2 of 33Matuszyk ﻿Molecular Medicine           (2022) 28:89 

including metastasis of HER2-positive breast cancer to 
the brain (Franchino et  al. 2018). Tegafur, another oral 
prodrug of 5FU, is involved in chemotherapy for solid 

tumors including advanced non-small-cell lung cancer 
(NSCLC), CRC, gastric cancer, breast cancer, pancreatic 
cancer, cervical cancer (Okamoto and Fukuoka 2009). 

Fig. 1   5-fluorouracil (5FU) metabolism pathways. The structure and atom numbering of 5FU is shown in the lower right corner of the figure. 
Antimetabolite activation pathways are marked in red. The degradation pathway for pyrimidines is marked in blue. The thymidylate synthesis 
is marked in green. Steps in simplified metabolic pathways: 1. Capecitabine, a 5FU prodrug, is bioactivated in the liver in a two-step process to 
5’-deoxy-5-fluorouridine (doxifluridine; DFUR), while tegafur, another 5FU prodrug, is bioactivated by CYP2A6. 2. DFUR is converted to 5FU by 
thymidine phosphorylase (TP). 3. 5FU is sequentially converted to 5-fluorouridine monophosphate (FUMP), diphosphate (FUDP) and triphosphate 
(FUTP), which is an active metabolite that is mistakenly incorporated into RNA, causing RNA damage. 4. FUDP is also sequentially converted to 
5-fluoro-2’-deoxyuridine diphosphate (FdUDP) and triphosphate (FdUTP), which is an active metabolite that is mistakenly incorporated into DNA, 
causing DNA damage. 5. TP converts 5FU to 5-fluoro-2’-deoxyuridine (FdUR). 6. Thymidine kinase (TK) converts FdUR to 5-fluoro-2’-deoxyuridine 
monophosphate (FdUMP). 7. FdUMP is an active metabolite that irreversibly inhibits thymidylate synthase (TS), an enzyme that catalyzes the 
conversion of 2’-deoxyuridine monophosphate (dUMP) to 2’-deoxythymidine monophosphate (thymidylate; dTMP). 8. Cyclically dihydrofolate 
(H2Folate) is reduced to tetrahydrofolate (H4Folate) which is then converted to 5,10-methylenetetrahydrofolate (CH2H4Folate). Leucovorin (folinic 
acid) is converted to CH2H4Folate and then stabilizes the bond formed between TS and FdUMP. 9. Dihydropyrimidine dehydrogenase (DPD) 
catalyzes the first step of the breakdown of 5FU (mainly in the liver) to 5,6-dihydro-5-fluorouracil (DHFU), which is further broken down into 
α-fluoro-β-alanine, carbon dioxide and ammonia, excreted from the body. 10. Thymidylate can be salvaged by TK from thymidine (dT) derived from 
dead cells. 11. FdUTP can be converted to FdUMP by dUTP pyrophosphatase and then converted back to FdUDP by UMP-CMP kinase. Based on 
information from Longley et al. (2003) and maps in KEGG (Kanehisa et al. 2017)
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However, the therapeutic efficacy of tegafur is highly 
dependent on the variant of the CYP2A6 enzyme that 
bioactivates this prodrug (Tanner and Tyndale 2017). The 
anti-tumor activities of 5FU and capecitabine are exerted 
by the irreversible inhibition of thymidylate synthase 
(TS), a cytosolic enzyme encoded by the TYMS (Thymi-
dylate Synthetase) gene (Fig. 1). TS catalyzes the thymi-
dylate synthesis reaction, which is the sole source of de 
novo thymidylate and is the rate-limiting step in DNA 
replication (Longley et al. 2003). In addition, 5FU acts as 
an antimetabolite to replace thymine and uracil, and thus 
by fraudulently incorporating fluoropyrimidine metabo-
lites into synthesized nucleic acids, it damages DNA and 
RNA (Blondy et al. 2020; Longley et al. 2003).

Metabolic pathways of 5FU and capecitabine
A key enzyme in the catabolic pathway of 5FU is dihy-
dropyrimidine dehydrogenase (DPD), encoded by the 
DPYD gene, which catalyzes the initial and rate-limiting 
step in the degradation of pyrimidines, including uracil, 
thymine, 5FU (Dean and Kane 2016a,b). DPD inactivates 
5FU by catalyzing the conversion of 5FU to the non-
cytotoxic metabolite 5,6-dihydro-5-fluorouracil (Fig.  1), 
which occurs mainly in liver cells, but also in other cells, 
both normal and neoplastic (Longley et  al. 2003). Even 
more than 80% of the administered 5FU is converted in 
the liver to 5,6-dihydrofluorouracil (Mattison et al. 2002) 
and excessive DPD activity seems to be one of the mech-
anisms of resistance to the anti-tumor effects of 5FU 
(Salonga et al. 2000). On the other hand, however, special 
care should be taken as patients with DPD enzyme defi-
ciency (Deac et al. 2021; Meulendijks et al. 2016) do not 
metabolize 5FU at a normal rate and are at risk of severe 
5FU toxicity such as mucositis, diarrhea, neutropenia, 
and neurotoxicity (Dean and Kane 2016a,b).

In the anabolic pathway, 5FU is activated intracel-
lularly by reactions catalyzed by two enzymes: thymi-
dine phosphorylase (TP, encoded by the TYMP gene), 
a key enzyme that reversibly converts 5FU to 5-fluoro-
2’-deoxyuridine (FdUR) and then by thymidine kinase 
(TK), which converts FdUR to 5-fluoro-2’-deoxyuridine 
monophosphate, FdUMP (Blondy et  al. 2020; Longley 
et  al. 2003), the major active metabolite of 5FU (Fig.  1) 
that is capable of irreversibly inhibiting TS (Langenbach 
et  al. 1972). In contrast, capecitabine is first converted 
in the liver to 5’-deoxy-5-fluorouridine (doxifluridine; 
DFUR), which then forms 5FU upon entry into cells via a 
TP-catalyzed reaction (Fig. 1), which appears to be more 
active in cancer cells than in normal cells, possibly lead-
ing to selective accumulation of 5FU in tumors (Longley 
et al. 2003). Also several other enzymes convert 5FU into 
active antimetabolites such as 5-fluorouridine triphos-
phate (FUTP) and 5-fluoro-2’-deoxyuridine triphosphate 

(FdUTP), which due to the ability to compete with 
endogenous nucleosides can be misincorporated into 
RNA and DNA, respectively (Blondy et al. 2020; Longley 
et al. 2003).

TYMS‑encoded thymidylate synthase
TS catalyzes reductive methylation of 2’-deoxyur-
idine monophosphate (dUMP) to 2’-deoxythymidine 
monophosphate (dTMP; thymidylate) (Fig.  1), with the 
cofactor 5,10-methylenetetrahydrofolate (C2H4Folate) 
as a methyl donor (Longley et  al. 2003). The TS cata-
lyzed reaction feeds the intracellular pool of thymidylate, 
which is essential in DNA biosynthesis. Regarding the 
mechanism of TS inhibition by active fluoropyrimidine, 
FdUMP enters the active site in TS and forms a stable 
ternary complex with enzyme and cofactor, thus blocking 
access of dUMP to the substrate binding site in TS and 
consequently inhibiting thymidylate synthesis (Longley 
et al. 2003; Boni et al. 2010). This leads to excessive deple-
tion of the thymidylate pool and disruption of DNA rep-
lication and repair (Longley et al. 2003). Ultimately, both 
thymidylate pool depletion and incorporation of fluo-
ropyrimidine metabolites into nucleic acids lead to cell 
cycle arrest in S phase (Boni et al. 2010) and apoptosis in 
response to DNA damage.

In chemotherapy regimens, 5FU is used in combina-
tion with folinic acid, also known as leucovorin, which 
is converted intracellularly to 5,10-methylenetetrahy-
drofolate, preventing the trace release of free enzyme 
molecules from the enzyme-cofactor-inhibitor complex, 
thus enhancing the inhibitory effect of the 5FU metabo-
lite on TS (Fig. 1). Folinic acid and 5FU in combination 
with oxaliplatin or irinotecan are used as the chemother-
apy regimens FOLFOX and FOLFIRI, respectively, in the 
postoperative treatment of stage II CRC with high risk of 
recurrence, stage III CRC and palliative chemotherapy 
of metastatic stage IV CRC (Azwar et  al. 2021; Iveson 
2020; Taieb and Gallois 2020; Collienne and Arnold 2020; 
Dienstmann et  al. 2015; Labianca et  al. 2013; Stec et  al. 
2011; Grávalos et al. 2009; Van den Eynde and Hendlisz 
2009). In turn, capecitabine (Xeloda) is used in combina-
tion with oxaliplatin or irinotecan as regimens XELOX 
(or CAPOX) and XELIRI, respectively. Evaluation of the 
therapeutic efficacy and toxicity of these regimens is 
beyond the scope of this article and is partially included 
in the articles cited above.

Non‑coding RNAs regulating pyrimidine 
metabolism and chemosensitivity to 5FU
The main failure of the fluoropyrimidine-based cancer 
therapy is the acquisition of drug resistance, which is a 
multifactorial process (Azwar et  al. 2021). Among the 
mechanisms of resistance to 5FU, there may be changes 



Page 4 of 33Matuszyk ﻿Molecular Medicine           (2022) 28:89 

in drug transport into and out of the cell, in particular 
overexpression of ATP-binding cassette transporters (Hu 
et al. 2016), as well as altered drug metabolism, increased 
level of the molecular target for an active drug, loss of 
cell cycle checkpoint control, increasing the threshold of 
apoptosis induction, the process of epithelial-mesenchy-
mal transition (EMT) (Sun et al. 2019b), reprogramming 
cancer cells into cancer stem-like cells (CSCs) (Shibata 
et  al. 2018), as well as abnormal levels of expression of 
non-coding RNAs (Wei et al. 2019a).

Cancer patients with low expression of all three genes 
TYMP, DPYD and TYMS had a longer survival compared 
to patients with high expression of any of these genes 
(Salonga et  al. 2000). Especially high levels of TYMS-
encoded protein in cancerous tissues are predictive of 
poor response to 5FU-based chemotherapy (Sakatani 
et al. 2019). On the other hand, higher levels of TYMP-
encoded protein in cancer cells appear rather beneficial 
for capecitabine treatment as thymidine phosphorylase 
catalyzes the conversion of an inactive prodrug to 5FU 
inside the cancer cell (Terranova-Barberio et  al. 2016). 
Interestingly, DPYD and TYMS code for enzymes that 
catalyze rate-limiting steps in enzyme pathways. In par-
ticular, expression of TYMS appears to be regulated by 
various mechanisms, including the involvement of non-
coding RNAs. It is postulated that non-coding RNAs 
form a complex layer of signaling networks, important 
in both normal and disease processes, including can-
cer (Chan and Tay 2018; Irminger-Finger et  al. 2014). 
In particular, two classes of non-coding RNAs are dis-
tinguished: short non-coding RNAs, including microR-
NAs (miRNAs) and long non-coding RNAs (lncRNAs) 
ranging from 200 to thousands of nucleotides in length 
(Micallef and Baron 2021; Han et al. 2015).

Mature miRNAs are single-stranded non-coding RNA 
molecules about 22 nucleotides in length that mediate post-
transcriptional gene silencing. Currently, 1917 human hair-
pin precursor miRNAs and 2654 human mature miRNAs 
are annotated in the miRBase (22.1 release) (Kozomara 
et al. 2019). The synthesis of miRNA precursors and their 
processing in the nuclear and cytoplasmic compartments 
into mature miRNAs have been thoroughly described 
(Bartel 2018; Gebert and MacRae 2019; Saliminejad et al. 
2019). Briefly, miRNA genes are transcribed into long pri-
mary miRNAs (pri-miRNAs) (Gebert and MacRae 2019). 
The transcripts form stem-loop structures, which are then 
cleaved in the nucleus by the Drosha RNase III endonucle-
ase (complexed with two DGCR8 protein molecules, form-
ing a so-called Microprocessor complex) into stem-loop 
molecules of about 70 nucleotides in length, referred to as 
precursor miRNAs (pre-miRNAs) (Gebert and MacRae 
2019; Bartel 2018). Pre-miRNAs are transported into the 
cytoplasmic compartment by Exportin  5/RAN-GTP. The 

Dicer RNase III endonuclease then cleaves the pre-miRNA 
near the loop into a small miRNA:miRNA* duplex, in 
which the miRNA* is the opposite (passenger) strand of the 
miRNA (guide strand). After loading into the Argonaute 
protein (in the ATP-consuming process), the passenger 
strand of the miRNA:miRNA* duplex is discarded (Bartel 
2018). A single mature miRNA is incorporated as a com-
ponent of an RNA-induced silencing complex (RISC) that 
binds to a target RNA, primarily messenger RNA (mRNA), 
through complementary base pairing of a  so-called seed 
region located between nucleotides 2–8 at the 5’-end of 
the miRNA molecule with a so-called microRNA response 
element within the target mRNA (Gebert and MacRae 
2019; Bartel 2018). Capturing the targeted mRNA by the 
miRNA-guided Argonaute protein results in inhibition 
of translation or mRNA degradation mediated by RISC 
(Gebert and MacRae 2019).

Due to the limited number of molecules of a given type of 
miRNA in a cell, some lncRNAs can affect protein levels by 
acting as competing endogenous RNAs (ceRNAs) that bind 
miRNAs, preventing them from binding to targeted mRNA 
molecules (Chan and Tay 2018). In other words, lncRNAs 
can act as sponges to absorb miRNA molecules (Rashid 
et al. 2016; Salmena et al. 2011). Thus, among the lncRNAs 
with different roles in the cell (Martino et al. 2021), there 
may be a subset of the lncRNAs that also act as molecu-
lar decoys that sequester specific miRNAs, thereby slow-
ing down the repression of those mRNAs targeted by these 
miRNAs. It can be assumed that under non-experimental 
conditions, due to the actual quantitative relationship in 
the cell between the lncRNA and the sponged miRNA, 
and between the miRNA and the target mRNA, a low-level 
miRNA in the cell will be more susceptible to lncRNA act-
ing as a specific ceRNA (Thomson and Dinger 2016).

It was suggested that miRNAs can act as fine tuners of 
gene expression because targeted miRNAs are typically 
mildly reduced under physiological conditions (Krützfeldt 
2016). A given miRNA can regulate the expression of mul-
tiple genes and it is uncertain whether its primary function 
is to fine-tune the entire set of different mRNAs or to sup-
press some major mRNAs (Lai 2015). Also, the expression 
of a given gene can be regulated by several different miR-
NAs. Accordingly, it can be expected that at least a few dif-
ferent miRNAs regulate the levels of the proteins encoded 
by TYMS and DPYD, and that altering the levels of these 
miRNAs may also contribute to reducing the sensitivity of 
cancer cells to 5FU.

MALAT1 and other lncRNAs affecting the level 
of TYMS‑encoded protein
A precursor transcript of Metastasis Associated Lung 
Adenocarcinoma Transcript 1 (MALAT1), also known 
as Nuclear-Enriched Abundant Transcript  2 (NEAT2), 
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is almost 8.8  kb long, from which is derived an over 
eight kb lncRNA, which is localized in the nucleus (in 
nuclear specles) and involved in epigenetic modula-
tion of gene expression and alternative splicing (Xu 
et al. 2022; Uthman et al. 2021). MALAT1 forms a fairly 
complex secondary structure with exposure of mul-
tiple miRNA-binding sites (McCown et  al. 2019). Its 
abnormal overexpression is associated with a higher 
risk of metastasis in lung cancer (Karimpour et  al. 
2021). Interestingly, a substantially cytosolic localiza-
tion of MALAT1 has been demonstrated in three colon 
cancer lines (HCT116, SW480, SW620) (Sun et  al. 
2019b), although this result will need to be confirmed 
in other cell lines and in CRC samples. Especially since 
MALAT1 is processed in the nucleus and only a short 
product is exported to the cytosol, while the lncRNA 
MALAT1 is unlikely to shuttle between the nucleus 
and the cytoplasmic compartment (Wilusz et al. 2008; 
Wilusz 2016). Importantly, however, in addition to the 
formation of RISC complexes in the cytoplasmic com-
partment, AGO2 (Argonaute protein) is also involved 
in various processes in the cell nucleus, including inter-
actions with lncRNAs (Meister 2013; Li et  al. 2020a) 
as well as some miRNAs were found in the nucleus 
(Gebert and MacRae 2019). An exosomal MALAT1 
that can be delivered to cancer cells and sponges miR-
NAs has also been described (Xu et  al. 2020d; Poulet 
et al. 2020). The indication of the cellular compartment 
in which MALAT1 interacts directly with various miR-
NAs still needs to be supported by experimental results 
and is under discussion (Zhou et al. 2021a; Arun et al. 
2020; Sun and Ma 2019).

MALAT1 is overexpressed in many types of cancer 
(Goyal et  al. 2021), including CRCs (Younis et  al. 2022; 
Uthman et  al. 2021; Hu et  al. 2021; Zheng et  al. 2020; 
Xiong et al. 2018; Yang et al. 2015), metastatic lung can-
cers (Shen et al. 2015), advanced stages of pancreatic can-
cers (Pang et al. 2015). In general, high levels of MALAT1 
expression have been demonstrated in the vast major-
ity of CRC specimens compared to adjacent non-tumor 
control colorectal tissue specimens in cancer patients 
(Sun et  al. 2019b; Zheng et  al. 2020; Luan et  al. 2020; 
Xiong et  al. 2018; Li et  al. 2017a). Moreover, MALAT1 
expression was significantly higher in advanced stages 
III–IV of tumor-node-metastasis (TNM) (Labianca et al. 
2013) than in early stages I–II of CRC (Luan et al. 2020). 
MALAT1 has also been found to be overexpressed in 
human colon cancer cell lines including LoVo, SW620, 
SW1116, HCT116, SW480, HT29, and COLO205 cells 
compared to the normal human intestinal epithelial cells 
(Wu et al. 2018a; Tang et al. 2019a; Li et al. 2017a). How-
ever, conflicting with these observations are analyzes in 

another report that suggest decreased levels of MALAT1 
in CRC compared to normal colon (Kwok et al. 2018).

Interestingly, the transcriptional regulator YAP1 may 
be significantly involved in the upregulation of MALAT1 
gene expression in cancer cells. YAP1 is an effector of the 
Hippo pathway and is active while the Hippo pathway 
is inactive (Dey et  al. 2020; Wierzbicki and Rybarczyk 
2015). According to the analysis of clinical data, higher 
levels of YAP1 were statistically significantly associated 
with higher stages III–IV of CRC, and statistical analy-
sis showed a very strong positive correlation between 
MALAT1 and YAP1 mRNA levels in CRC tissue speci-
mens from patients (Sun et al. 2019b). The stability and 
nuclear localization of YAP1 depends on the ANKHD1 
protein (ankyrin repeat and KH domain containing  1) 
which also acts as a YAP1 coactivator, and high levels of 
ANKHD1 were associated with the invasive properties of 
CRC cells (Almeida and Machado-Neto 2020). It turned 
out that nuclear YAP1 in CRC cells binds as a transcrip-
tion coactivator with the TCF4/β-catenin transcription 
factor complex in the promoter region of the MALAT1 
gene to induce expression of this gene (Sun et al. 2019b). 
Interestingly, MALAT1 was shown to physically associ-
ate with the ANKHD1 protein (Yao et al. 2022), possibly 
via the KH domain of ANKHD1, which is involved in 
binding to lncRNAs (Almeida and Machado-Neto 2020). 
The actual location in the cellular compartment and the 
importance of this interaction are not fully elucidated in 
the cited studies of Yao et al. (2022), but it can be specu-
lated that it may stabilize the ANKHD1 and YAP1 com-
plex recruited by TCF4/β-catenin to the promoter region 
of the MALAT1 gene and enhance gene transcription. 
Further, upregulated MALAT1 promotes the EMT pro-
cess of CRC cells and tumor metastasis (Sun et al. 2019b; 
Chen and Shen 2020). In contrast, silencing MALAT1 
reversed the EMT process in HT29 cells (Xiong et  al. 
2018), strongly arguing for a link between higher 
MALAT1 expression and CRC metastatic potential. The 
involvement of YAP1 interacting with TCF4/β-catenin in 
the regulation of transcription of the MALAT1 gene was 
previously found in liver cancer cells (Wang et al. 2014a).

The inverse (negative) correlation of MALAT1 with 
a given miRNA in clinical samples may suggest a direct 
interaction. For example, a strong negative correlation 
was observed between MALAT1 and miR-200c-3p in 
CRCs compared to normal tissues and was associated 
with the response to cisplatin (Hu et  al. 2021). How-
ever, clinical data should be supported by the results of 
reporter assays (Karreth et  al. 2011; Tang et  al. 2019c) 
using transfected cultured cells that confirm the impor-
tance of a specific site in the MALAT1 sequence for 
interaction with miRNA. The mentioned interaction 
of MALAT1 and miR-200c-3p was in fact previously 
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confirmed in 293  T cells (Zhuo et  al. 2018). It is worth 
mentioning here that the upregulation of MALAT1 
through miR-200c-3p sponging leads to an increase in 
the level of the transcriptional repressor ZEB1 and con-
tributes to the promotion of the EMT process (Pretzsch 
et  al. 2019), and thus the migration and invasiveness of 
cancer cells (Zhuo et  al. 2018). MALAT1 in CRCs pre-
vents binding of miRNAs to mRNAs encoding proteins 
such as β-catenin, c-Myc (in the Wnt/β-catenin signal-
ing pathway), TWIST, SLUG (promote EMT: down-
regulation of E-cadherin, upregulation of N-cadherin, 
vimentin) and many others, supported by both extensive 
analyzes of clinical samples and the results of experi-
ments using established human colon cancer cell lines 
(Xu et  al. 2022; Uthman et  al. 2021). At this point, it is 
also worth suggesting a relationship between the level of 
TYMS expression and the EMT process in cancer cells. 
Namely, the results of the analysis of EMT markers in 
cell lines derived from tumors of various types indicate 
that the levels of TYMS mRNA are increased in cell lines 
with a predominance of the mesenchymal-like phenotype 
(Siddiqui et al. 2017). However, some caution should be 
exercised when comparing the results of lncRNA interac-
tion in cell lines in vitro with respect to the interaction of 
the complex network of non-coding RNA in metastatic 
cancer cells (Witusik-Perkowska et al. 2022).

MALAT1 can also sponge several miRNAs target-
ing TYMS, as discussed later in this article. Finally, and 
of particular importance for further consideration, 
increased levels of MALAT1 in cancer cells may contrib-
ute to their resistance to 5FU chemotherapy. Namely, the 
level of lncRNA MALAT1 was increased in 5FU-resistant 
colon cancer subline HCT-116/5-FU compared to the 
parental HCT-116 cell line, while silencing of MALAT1 
by siRNA was shown to increase the chemosensitivity of 
HCT-116/5-FU cells to treatment with 5FU (Tang et al. 
2019a). Also in the derived HT-29FUR subline of 5FU-
resistant cells, the level of MALAT1 was more than 2 
times higher compared to the parent colon cancer HT-29 
cell line (Aksoy et al. 2022). However, due to the involve-
ment of MALAT1 in multiple processes, its classification 
as an oncogene or tumor suppressor is under discussion 
(Chen et al. 2020a).

Through the use of high-throughput RNA sequenc-
ing technology, it was found that several hundred lncR-
NAs are differentially expressed in 5FU resistant and 
non-resistant CRC patients. Among them, lncRNA X 
Inactive Specific Transcript (XIST) was found to pro-
mote TS expression through an unknown mechanism, 
and increased serum XIST levels were associated with 
lower survival rates in CRC patients receiving 5FU-based 
therapy (Xiao et  al. 2017). The importance of XIST in 
CRC progression is demonstrated by increased levels of 

XIST in CRCs and its effect on the Wnt/β-catenin sign-
aling pathway, which promotes elevated c-Myc levels 
and tumor growth (Sun et al. 2018a). Clinical data indi-
cate that high levels of another lncRNA, namely Tau-
rine Upregulated Gene  1 (TUG1), were also associated 
with recurrence of CRC in patients receiving 5FU-based 
chemotherapy (Wang et  al. 2019a). In turn, elevated 
levels of lncRNA HOX Transcript Antisense RNA 
(HOTAIR) were also found in CRC tissues from patients 
and in colon cancer cell lines (Lu et  al. 2018). High 
HOTAIR levels were associated with a poor response to 
5FU treatment in CRC patients, while silencing HOTAIR 
in CRC cells improved their sensitivity to 5FU (Li et  al. 
2017b). A recent review described a number of lncRNAs 
acting as oncogenes in the CRCs, including HOTAIR and 
TUG1, which reduce chemosensitivity to 5FU (Yang et al. 
2021).

MiRNAs targeting TYMS mRNA
miR‑192/215‑5p
TYMS was shown as a direct target of miR-192-5p 
and miR-215-5p (Boni et  al. 2010; Song et  al. 2010) 
that share the same seed region (see Table  1). Expres-
sion of miR-192/215-5p, contained in two different 
miRNA clusters (Vychytilova-Faltejskova and Slaby 
2019), can be strongly induced in normal colon tis-
sue by activated transcription factor p53 in response 
to DNA damage (Braun et  al. 2008). Subsequently, 
miR-192/215-5p by targeting MDM2, a key p53 nega-
tive regulator (Pichiorri et  al. 2010; Sun et  al. 2019a), 
could further potentiate the action of p53, contribut-
ing to p53-dependent cell cycle arrest (Braun et  al. 
2008; Georges et  al. 2008). It was also noted that lev-
els of miR-192/215-5p were significantly reduced dur-
ing colon carcinogenesis (Braun et  al. 2008). On the 
other hand, an almost threefold increase in miR-215-5p 
levels and a dramatic decrease in the level of TYMS-
encoded protein were detected in a small fraction of 
slowly proliferating colorectal cancer stem-like cells 
(CRC CSCs) derived from the HCT116 cell line con-
taining wild-type p53 (Song et  al. 2010). All of this 
together may suggest that miR-192/215-5p synchronize 
thymidylate synthesis with the rate of proliferation. 
Thus, ectopic miR-192/215-5p expression decreased 
the amount of TYMS-encoded protein in CRC cells, 
but this effect did not result in the expected 5FU sen-
sitization, but paradoxically increased their resistance 
to 5FU treatment, presumably due to cell cycle arrest, 
thus reducing 5FU-sensitive fraction of cells in the S 
phase of the cell cycle (Boni et al. 2010). The arrest of 
the cell cycle was presumably a consequence of miR-
215-5p targeting the DTL gene product (Denticleless 
protein homolog) and p53-dependent p21 upregulation 
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as well (Fesler et  al. 2015; Song et  al. 2010). Interest-
ingly, however, the increase in endogenous levels of 
miR-215-5p following treatment of HCT116-5FU and 
SW480-5FU cells (resistant to 5FU) with melatonin 
led to reduction in TYMS-encoded protein levels and 
could also increase the susceptibility of CRC cells to the 
cytotoxic effects of 5FU (Sakatani et  al. 2019). Over-
all, miR-192/215-5p function as tumor suppressors in 
human cancers, including preventing the EMT process 
in CRC (Rokavec et al. 2019; Chen et al. 2017c), which 
is necessary for the initiation of the processes of migra-
tion, invasiveness and metastasis of cancer cells. On 
the other hand, lowering the levels of miR-192/215-5p 
blunts their inhibitory effects on the triglyceride syn-
thesis pathway and genes governing extracellular 
matrix remodeling, which therefore promotes the pro-
gression of CRC (Zhao et al. 2019c). It should be noted, 
however, that miR-195/215-5p belong to several miR-
NAs that potentially target the largest number of genes 
active in CRC (Toolabi et  al. 2022). Therefore, the 
impact of changes in these miRNA levels during ther-
apy on tumor progression and chemoresistance may be 
unpredictable. Moreover, these were the conclusions 
of experiments carried out in well-controlled in  vitro 
model systems, while in various clinical cases, presum-
ably many different and uncontrolled factors affect the 
rate of tumor cell proliferation. However, analysis of 
clinical samples of post-operative CRC tissues showed 
that low miR-215-5p levels were significantly correlated 
with a high probability of 3-year recurrence, while high 
miR-215-5p levels could potentially predict the ben-
efit of 5FU-based chemotherapy after surgery (Li et al. 
2013). However, other reports have shown contradic-
tory correlations between the levels of miR-215-5p and 
the effectiveness in the treatment of patients with CRC, 

which may be a result of the uncontrolled diversity of 
research material in many respects, including the geno-
type of patients and the stage of CRC (Vychytilova-Fal-
tejskova and Slaby 2019).

Importantly, it has recently been shown that in highly 
aggressive hepatocellular carcinoma (HCC), miR-215-5p 
targets the 3’UTR of mRNA encoding Cell Division Cycle 
6 (CDC6), which is involved in the assembly of the pre-
replicative complex during the G1 phase of the cell cycle 
(Xu et  al. 2020a). In turn, it was found in breast cancer 
cells that miR-215-5p targets mRNA encoding RAD54 
Homolog B (RAD54B), which is involved in homologous 
recombination repair of DNA breaks, thus inhibiting 
proliferation and promoting apoptosis of MCF-7 breast 
cancer cells (Wang et al. 2021i). It is therefore understood 
that lowering the levels of both miR-215-5p and miR-
192-5p promotes cancer cell proliferation. Interestingly, 
lncRNA XIST, which is significantly elevated in hepatitis 
B virus-related HCC compared to adjacent liver tissues, 
has been found to interact with miR-192-5p and inhibit 
the activity of this miRNA (Wang et al. 2021h).

Overall, levels of miR-192/215-5p are down-regulated 
in cancers of various types (Table  2 and Fig.  2), yet up-
regulated levels of miR-192/215-5p have been found 
in esophageal squamous cell carcinoma (ESCC) and 
gastric cancers (GCs) where these miRNAs also target 
tumor suppressors, such as mRNAs encoding the pro-
apoptotic BIM protein in ESCC (Li et  al. 2015c) or the 
important tumor suppressor RB Transcriptional Core-
pressor 1 (RB1) and RUNX Family Transcription Factor 
1 (RUNX1) in GCs (Chen et al. 2017e; Li et al. 2016) (see 
also Table 3).)

Interestingly, in addition to miR-215-5p targeting 
TYMS expression, also miR-215-3p derived from the 
opposite arm of the same primary hairpin microRNA 

Table 1  Confirmed miRNA response elements in the 3’-untranslated region of TYMS mRNA

† human miRNA (hsa-miR) sequences were taken from miRBase (www.​mirba​se.​org); seed sequences complementary to the 3’UTR of TYMS mRNA are underlined
‡ 3’UTR TYMS mRNA sites targeted by miRNA seed sequences; the numbers refer to the position after the STOP codon according to the GenBank sequence accession 
number NM_001071.4; the sites confirmed by the luciferase reporter assay in the cited publication are underlined

miRNA Sequence (5’- > 3’)† Targeted sites‡ References

miR-140-3p UACC​ACA​GGG​UAG​AAC​CAC​GG 433–438 Wan et al. (2021)

miR-192-5p CUGA​CCU​AUGA​AUU​GAC​AGC​C 97–103 Song et al. (2010)

miR-197-3p UUC​ACC​ACCU​UCU​CCA​CCC​AGC​ 321–327 Sun et al (2015); 
Wang et al (2019a)

miR-203a-3p GUGA​AAU​GUU​UAG​GAC​CAC​UAG​ 291–296, 327–332 Li et al. (2015a)

miR-215-5p AUGA​CCU​AUGA​AUU​GAC​AGA​C 97–103 Song et al. (2010)

miR-330-3p GCAA​AGC​ACA​CGG​CCU​GCA​GAGA​ 192–197, 506–511 Xu et al. (2017)

miR-375-3p UUU​GUU​CGUU​CGG​CUC​GCG​UGA​ 237–243 Xu et al. (2020b)

miR-433-3p AUC​AUG​AUGGG​CUC​CUC​GGU​GU 419–426 Gotanda et al. (2013)

miR-1307-3p ACUC​GGC​GUG​GCG​UCG​GUC​GUG​ 56–61 Chen et al. (2017a)

http://www.mirbase.org
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has gene silencing activity that influences 5FU cyto-
toxic activity since ectopic overexpression of miR-
215-3p increased the sensitivity of CRC cells to 5FU, 
and although the exact mechanism has not been dis-
covered, it has been shown to be at least in part related 
to targeting the CXCR1 chemokine receptor, which is 
an interleukin-8 receptor (Li et al. 2018a).

As show in Table 3, miR-192/215-5p down-regulation 
in CRCs not only promotes an increase in TS, but also 
an increase in ZEB2, which promotes the EMT pro-
cess (Pretzsch et  al. 2019), and an increase in eIF5A2, 
which further potentiates the EMT process (Bao et  al. 
2015). Down-regulation of miR-192/215-5p are gen-
erally found in cancers of various types, and in breast 
cancer it results in an increase in the levels of AKT 

protein kinase and DNA repair and recombination pro-
tein RAD54B.

Finally, it is worth mentioning that p53, which raises the 
level of miR-192/215-5p, may also act as a transcription 
repressor of the MALAT1 gene, at least in hematopoietic 
cells (Ma et  al. 2015). As counteraction, MALAT1 may 
indirectly deacetylate p53 and inhibit p53 transcriptional 
activity as found in HepG2 cells (Chen et al. 2017h).

Reports also indicate several other miRNAs, which in 
various types of cancer may regulate the level of protein 
encoded by TYMS and thus affect the sensitivity of can-
cer cells to 5FU chemotherapy, including miRNA such 
as miR-140-3p (Wan et al. 2021), miR-197-3p (Sun et al. 
2015), miR-203a-3p (Li et al. 2015a), miR-218-5p (Li et al. 

Table 2  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ”UP” or “down” in the level of a given miRNA: in cancerous tissues as compared to adjacent non-cancerous tissues (or to tissues of healthy individuals in cases of 
cervical and prostate cancers); one stage of cancer compared to another stage; cancer cell line compared to a normal epithelial cell line
‡ Cancer tissues collected from patients and cancer cell lines of various types: BLCA bladder cancer, BRCA​ breast cancer (various molecular subtypes including 
triple-negative breast cancer TNBC), CeCa cervical cancer, CRC​ colorectal cancer, ESCC esophageal squamous cell carcinoma, GC gastric cancer, HCC hepatocellular 
carcinoma, LSCC laryngeal squamous cell carcinoma, NSCLC non-small cell lung cancer (including LUAD lung adenocarcinoma SqCLC squamous cell lung carcinoma), 
OVCA ovarian cancer, OSCC oral squamous cell carcinoma, PCa prostate cancer, PDAC pancreatic ductal adenocarcinoma

miRNA Level† Cancers‡ References

miR-192-5p Down CRC tissues Zhao et al. (2020b)

Down CRC cell lines (HCT116, SW480, RKO, HT29) Zheng et al. (2019b)

Down CRC tissues (TNM stage II) Braun et al. (2008)

Up ESCC tissues and four cell lines Li et al. (2015c)

Down NSCLC: four cell lines (i.a. A549, H1299) Zou et al. (2019)

Down BLCA tissues and five cell lines (i.a. T24) Ji et al. (2018)

Down BRCA tissues, MCF-7 and MDA-MB-231 cell lines Chen et al. (2019d)

Down HCC tissues Wang et al. (2021h)

Down HCC tissues Lian et al. (2016)

Down HCC tissues Ge et al. (2015)

Down PCa: PC-3 and DU145 cell lines Sun et al. (2016)

miR-215-5p Down CRC tissues stages: III + IV vs I + II Yan et al. (2020b)

Down CRC tissues stages: II, III, IV vs I Vychytilova et al. (2017)

Down CRC tissues stages: IV vs III vs II vs I Chen et al. (2017c)

Down CRC tissues: liver metastasis vs without metastasis Chen et al. (2017c)

Down CRC tissues and cell lines (SW480, HCT116, LoVo, HT29) Chen et al. (2016)

Down CRC tissue stages: III–IV vs I–II Chen et al. (2016)

Down CRC tissues (stage II) Braun et al. (2008)

Down CRC tissues Song et al. (2010)

Up CRC CSCs Song et al. (2010)

Up GC tissues, TNM stage III–IV vs I–II Chen et al. (2017e)

Up GC tissues, stage III/IV vs I/II Li et al. (2016)

Up GC tissues Deng et al. (2014b)

Down BRCA tissues Wang et al. (2021i)

Down BRCA tissues, stage III–IV vs I–II, three cell lines Gao et al. (2019)

Down BRCA tissues, cell lines (i.a. MDA-MB-231) Yao et al. (2017)

Down BRCA tissues Zhou et al. (2014a)

Down OVCA tissues and three cell lines Ge et al. (2016)
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2015b), miR-330-3p (Xu et  al. 2017), miR-375-3p (Xu 
et al. 2020b), miR-433-3p (Gotanda et al. 2013).

MiR‑140‑3p
MiR-140-3p has been reported to target the 3’UTR 
of TYMS mRNA in lung adenocarcinoma cells (Wan 
et  al. 2021). Interestingly, miR-140-5p levels were also 

Fig. 2   MiRNA levels in various types of cancer. Downregulated miRNAs in a given cancer type are marked green, upregulated marked red, 
regulated ambiguously marked blue. Cancer abbreviations as in Table 2. The numbers represent the number of the respective reports referred to in 
Tables 2 to 17

Table 3  Major genes targeted by miR-192-5p and miR-215-5p in various types of cancer

† mRNAs encoding the following proteins: AKT1 encodes AKT Serine/Threonine Kinase 1; BCL2L11 codes for pro-apoptotic BH3-only protein BIM; CDC6 is an oncogene 
encoding Cell Division Cycle 6 Homolog; EIF5A2 is an oncogene encoding Eukaryotic Translation Initiation Factor 5A2; EREG codes for Epiregulin, ligand of epidermal 
growth factor receptor (Cheng et al. (2021); HOXB9 encodes transcription factor Homeobox B9 (Contarelli et al. 2020); NOB1 is an oncogene encoding Nin One 
Binding Protein; RAB2A is an oncogene encoding a member of the RAS family; RAD54B is an oncogene encoding helicase RAD54 Homolog B involved in homologous 
recombination and DNA repair (Zhang et al. 2019c); RB1 is a tumor suppressor gene encoding RB Transcriptional Corepressor 1, a key regulator of the G1/S transition 
in the cell cycle; RUNX1 is tumor suppressor gene coding for RUNX Family Transcription Factor 1; SLC39A6 is an oncogene that encodes a zinc-influx transporter; SOX9 
is an oncogene encoding SRY-Box Transcription Factor 9; TRIM25 encodes E3 ubiquitin ligase involved in p53 inactivation (Zhang et al. 2015); TRIM44 is an oncogene 
encoding a protein involved in the ubiquitination and degradation of target proteins; YY1 is an oncogene encoding Yin Yang 1 transcriptional factor; ZEB2 encodes 
Zinc Finger E-Box Binding Homeobox 2, a transcriptional corepressor promoting the EMT process in cancer cells

Cancers Targeted gene products† References

Cancers with down-regulation of miR-192/215-5p

Acting as oncogenes or tumor promoters

CRC​ TYMS, EIF5A2, EREG, HOXB9 Boni et al. (2010); Song et al. (2010); Zhao et al. (2020b); Chen et al. 
(2016)

RAB2A, YY1, ZEB2 Vychytilova et al. (2017); Zheng et al. (2019b); Chen et al. (2017c)

BRCA​ AKT1, RAD54B, SOX9 Yao et al. (2017); Wang et al. (2021i); Gao et al. (2019)

NSCLC TRIM44 Zou et al. (2019)

BLCA YY1 Ji et al. (2018)

HCC CDC6, SLC39A6, TRIM25 Xu et al. (2020a); Lian et al. (2016); Wang et al. (2021h)

PCa NOB1 Sun et al. (2016)

Cancers with up-regulation of miR-192/215-5p

Acting as tumor suppressors

GC RB1, RUNX1 Chen et al. (2017e); Deng et al. (2014b); Li et al. (2016

ESCC BCL2L11 Li et al. (2015c)
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reported to be decreased in CRC specimens taken 
from patients, but increased in slowly proliferating 
and chemoresistant CRC CSCs, and furthermore, CRC 
cells transfected with miR-140 precursor were resist-
ant to 5FU (Song et al. 2009). However, it is still worth 
awaiting stronger experimental support for a direct 
link between levels of miR-140-3p and TYMS-encoded 
protein, and the chemosensitivity of CRC cells to 5FU. 
It is worth noting that miR-140-3p also has the poten-
tial to target mRNA encoding Phosphatase and TEN-
sin homolog (PTEN) (Yin et  al. 2020), an important 
tumor suppressor that antagonizes the effects of PI3K, 
thereby activating the PI3K/AKT signaling pathway, 
although it appears that this putative miR-140-3p func-
tion in cancer cells is not likely to be significant. As 
shown in Table  4, miR-140-3p is generally down-reg-
ulated in various types of cancer, causing, in addition 
to the expected increase in TS, also an increase in the 
anti-apoptotic protein BCL-2 in CRC and GC cells and 
activation of the WNT/β-catenin pathway in CRC (see 
Table 5).

Potentially both miR-140-5p and miR-140-3p could 
be sponged by lncRNA MALAT1, although this has 
not been shown in CRC, while the direct interaction of 
miR-140-5p with MALAT1 has been shown experimen-
tally in cancers of various types such, as prostate cancer 

(Hao et  al. 2020), hepatocellular carcinoma (Fan et  al. 
2020; Hou et al. 2020), osteosarcoma (Sun and Qin 2018), 
tongue squamous cell carcinoma (Zhu et al. 2019). MiR-
140-3p levels can also be regulated by lncRNA TUG1 
and this has already been demonstrated in bladder can-
cer (Yuan et al. 2021). It was also confirmed that TUG1 
sponges miR-140-5p in osteosarcoma cells (Zhao et  al. 
2019a).

MiR‑197‑3p
One report showed that miR-197-3p directly targets the 
3’UTR of TYMS mRNA, which led to a reduction in TS 
protein level, while increasing the sensitivity of CRC 
cells to the cytotoxic effects of 5FU (Sun et  al. 2015). 
On the other hand, lncRNA TUG1 can act as a ceRNA 
that sponges miR-197-3p and thereby increases the 
level of TYMS-encoded protein, mediating the acquisi-
tion of 5FU resistance by CRC cells (Wang et al. 2019a). 
HOTAIR, which is elevated in CRC tissues, has also been 
shown to sponge miR-197-3p (Lu et  al. 2018). Impor-
tantly, miR-197-3p has been found to be sponged also 
by MALAT1 in NSCLC, contributing to the process of 
EMT and cancer cell resistance to treatment with cis-
platin, adriamycin, gefitinib and paclitaxel (Yang et  al. 
2019). The direct interaction of miR-197-3p with the 
miRNA response elements in MALAT1 was confirmed 

Table 4  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-140-3p Down CRC tissues Chen et al. (2020c)

Down CRC tissues, SW480 and HCT116 cell lines Jiang et al. (2019a)

Down Primary tumor tissues of CRC patients Piepoli et al. (2012)

Down Liver metastatic vs none-metastatic CRC​ Liu et al. (2021)

Down GC tissues and cell lines Wang et al. (2021a)

Down GC tissues and five cell lines Chen et al. (2021)

Down ESCC tissues and five cell lines Wang et al. (2021d)

Down ESCC tissues and five cell lines Chen et al. (2020d)

Down NSCLC (LUAD) tissues and five cell lines (i.a. A549) Wang et al. (2021f )

Down NSCLC (LUAD): four cell lines (i.a. A549, H1299) Wu et al. (2020)

Down NSCLC tissues and three cell lines (i.a. A549, H1299) Hu et al. (2020)

Down NSCLC (SqCLC) tissues, stage III vs II vs I, four cell lines Huang et al. (2019a)

Down NSCLC tissues Dong et al. (2016)

Down Lung cancer tissues and six cell lines (i.a. A549) Kong et al. (2015)

Down BLCA tissues and four cell lines (i.a. T24) Yuan et al. (2021)

Down BRCA tissues stage I-IV Dou et al. (2021)

Down BRCA tissues, MCF-7 (ER+) and MDA-MB-453 (HER2+) Zhou et al. (2019)

Down HCC tissues Gao et al. (2021b)

Down CeCa tissues Wang et al. (2022a)

Down CeCa tissues Wang et al. (2021g)

Down OVCA tissues Qiao et al. (2021)
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by the results of reporter assays (Yang et al. 2019). In this 
context, it would be particularly valuable to determine 
whether the increase in the level of MALAT1 in CRCs 
contributes to the reduction of their chemosensitivity 
to 5FU, e.g. by sponging miR-197-3p. According to old 
measurements, the level of miR-197-3p was decreased 
in the HCT116 colorectal cancer cell line after treatment 
with 5FU (Zhou et  al. 2010). It is worth noting at this 
point that SGC7901/5-FU gastric cancer cells partially 
resistant to 5FU also had decreased level of miR-197-3p 
compared to parental SGC7901 line, while transfection 
of the miR-197 mimic into SGC7901/5-FU cells restored 
sensitivity to the growth inhibitory effects of 5FU (Xiong 
et  al. 2015). Importantly, miR-197-3p, whose levels are 
lower in CRCs (Lu et  al. 2018), in turn in NSCLC, acts 
as an oncomiR targeting mRNAs encoding pro-apoptotic 
BH3-only proteins NOXA and BMF (Fiori et al. 2014).

As shown in Tables  6 and 7, miR-197-3p is down-
regulated in CRC and GC, where it targets TYMS and 
MTDH, which encodes a protein also involved in TYMS 
induction and PTEN repression, while in NSCLC and 
BRCA miR-197-3p is up-regulated because it also targets 
suppressor genes that are important in these cancers. 
Reports on the level of miR-197-3p in HCC seem contra-
dictory, but it is worth paying attention to the up-regula-
tion of the level of miR-197-3p in metastatic HCC, which 
results in a decrease in the level of negative regulators of 

the WNT/β-catenin pathway (AXIN2, NKD1, DKK2) in 
HCC clinical tissues (Hu et al. 2018a).

MiR‑203a‑3p
Levels of miR-203a-3p were also found to be decreased 
in 5FU-resistant CRC cells (see Table  8). Mir-203a-3p 
can target several sites in the 3’UTR of TYMS mRNA 
(Table 1) and it was found that silencing of miR-203a-3p 
by an antisense oligonucleotide increased the level of the 
TYMS-encoded protein and decreased the sensitivity of 
CRC cells to the cytotoxic effects of 5FU, and conversely, 
as a result of miR-203a mimic transfection, a decreased 
level of TS protein and an increased sensitivity to 5FU 
were observed (Li et al. 2015a). More importantly, miR-
203a-3p increased the anti-tumor activity of 5FU also 
after injection of the miR-203 precursor along with 5FU 
into NOD/SCID mice with CRC (Li et al. 2015a). Impor-
tantly, however, miR-203a-3p can also target mRNA 
encoding PTEN, thereby activating the PI3K/AKT sign-
aling pathway, and its involvement in stimulating cell 
proliferation and inhibiting apoptosis has been demon-
strated in hepatocytes (Zhang et al. 2020).

Moreover, it has been shown in ovarian cancer and ear-
lier in glioblastomas that miR-203a-3p can target mRNA 
encoding ataxia-telangiectasia (ATM) (Liu et  al. 2019a; 
Yang et al. 2017), a serine-threonine kinase activated by a 
double-strand DNA break and involved in the checkpoint 

Table 5  Major genes targeted by miR-140-3p in various types of cancer

† mRNAs encoding the following proteins: AGTR1 encodes the Angiotensin II Receptor Type I and is recognized as an oncogene in various cancers; ANXA8 encodes 
Annexin A8 that is highly expressed in some cancers; ATP6AP2 is a proto-oncogene coding for ATPase H + Transporting Accessory Protein 2 (Renin/Prorenin Receptor); 
BCL2 codes for anti-apoptotic protein; BCL9 codes for the coactivator involved in β-catenin mediated transcription; BRD9 encodes Bromodomain-Containing Protein 9 
involved in chromatin remodeling complexes; E2F3 encodes E2F Transcription Factor 3; E2F7 is a tumor suppressor gene that encodes atypical E2F Transcription Factor 
7; ELOA encodes Elongin A, also known as RNA polymerase II Transcription Elongation Factor B Subunit 3; GRN encodes Granulin Precursor that is presumably involved 
in tumorigenesis; JAK1 encodes Janus Kinase 1 phosphorylating a tyrosine residue; NRIP1 encodes Nuclear Receptor Interacting Protein 1 which is elevated in tumors; 
PDZK1 is a tumor suppressor gene encoding PDZ Domain Containing 1, scaffolding protein; TRIM28 encodes a protein that may have both oncogenic and tumor 
suppressor effects; VEGFA encodes Vascular Endothelial Growth Factor A that promotes angiogenesis

Cancers Targeted gene products† References

Cancers with down-regulation of miR-140-3p

Acting as oncogenes or tumor promoters

CRC​ BCL2, BCL9 Liu et al. (2021)

GC BCL2 Chen et al. (2021)

ESCC E2F3, NRIP1 Wang et al. (2021d); Chen et al. (2020d)

LUAD TYMS Wan et al. (2021)

Lung cancer ATP6AP2, BRD9, JAK1 Kong et al. (2015); Huang et al. (2019a); 
Hu et al. (2020)

BLCA ANXA8 Yuan et al. (2021)

HCC GRN, VEGFA Gao et al. (2021b); Hou et al. (2020)

OVCA AGTR1 Qiao et al. (2021)

Acting both as oncogenes and tumor suppressors, or unclassified

LUAD E2F7 Wang et al. (2021f )

BRCA​ TRIM28 Zhou et al. (2019)

CeCa ELOA (TCEB3), PDZK1 Wang et al. (2021g); Wang et al. (2022a)
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of DNA damage response processes. This has potential 
implications for therapy as inhibition of ATM has been 
shown to sensitize gliomas to chemotherapy (Yang et al. 
2017).

In addition to the brief summary in Table 9, it is worth 
noting that miR-203a-3p targets TYMS mRNA and a 
number of oncogenes in various types of cancer, such 
as BIRC5 encoding the anti-apoptotic Survivin and 
SNAI2/ZEB2 encoding transcriptional repressors that 
promote EMT (Pretzsch et al. 2019). On the other hand, 
miR-203a-3p can also target tumor suppressors and is 
up-regulated in HCC (Tables 8, 9).

Interestingly, lncRNA MALAT1 was shown to down-
regulate miR-203a-3p levels in glioblastoma multiforme 
cells, thereby promoting TYMS expression (Chen et  al. 
2017b). The direct interaction of MALAT1 and miRNA 
was indicated by the significant upregulation of miR-
203a-3p in si-MALAT1 transfected human glioblastoma 
cells resistant to temozolomide (Chen et  al. 2017b). 
Other studies confirmed that MALAT1 sponges miR-
203a-3p in renal cell carcinoma (Zhang et  al. 2019a). 
Luciferase reporter assays confirmed a targeted relation-
ship between MALAT1 and miR-203a-3p, and expres-
sion level analyzes showed significant upregulation of 
miR-203a-3p in si-MALAT1 transfected renal cell carci-
noma lines (Zhang et al. 2019a). The direct interaction of 

miR-203a-3p with two sites in MALAT1 was also dem-
onstrated in luciferase reporter assays in human retinal 
microvascular endothelial cells (Yu et al. 2020). RT-PCR 
analysis of CRC samples from 85 patients also showed an 
inverse correlation between MALAT1 and miR-203a-3p 
(Wu et al. 2018b). However, the question of localization 
in the cellular compartment where the demonstrated 
direct interaction of MALAT1-miRNA takes place still 
needs to be answered.

MiR‑218‑5p
MiR-218-5p was found to be downregulated in primary 
CRC tissues and its expression in CRC cell lines was 
significantly decreased after treatment with 5FU, while 
ectopic overexpression of miR-218-5p directly sup-
pressed BIRC5-encoded Survivin as well as indirectly 
decreased TS levels through an unknown molecular 
mechanism (Li et al. 2015b). MiR-218-5p can be derived 
from two stem-loop sequences, mir-218-1 and mir-218-
2, which are transcribed from two loci located on chro-
mosomes 4p15.31 and 5q35.1, respectively (Guan et  al. 
2013), and its level may be partially regulated by lncRNA 
HOTAIR which can recruit EZH2 (enhancer of zeste 2 
polycomb repressive complex 2 subunit) to the promoter 
of the SLIT3 gene and repress its transcription along 
with the mir-218-2 contained therein (Li et  al. 2017b). 

Table 6  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-197-3p Down HCT8Fu (5FU resistant) vs HCT8 (parental sensitive) Wang et al. (2019a)

Down CRC tissues, HCT116, LoVo, HT29, SW480 cell lines Lu et al. (2018)

Down after treatment with 5FU in HCT116 cell line Zhou et al. (2010)

Down GC tissues and two cell lines Han and Liu (2021)

Down GC tissues Niu et al. (2020)

Down GC tissues Chen et al. (2019c)

Down GC tissues and four cell lines Liao et al. (2018)

Up NSCLC tissues and four cell lines (i.a. A549, H460, H1299) Yang et al. (2019)

Up NSCLC (LUAD) tissues Chen and Yang (2018)

Up BLCA tissues and four cell lines (i.a. T24) Jiang et al. (2019b)

Up BLCA tissues and three cell lines (i.a. T24) Wang et al. (2016a)

Up BRCA tissues and MCF-7, T47D cell lines (ER+ luminal A) Li et al. (2021d)

Up BRCA 11 cell lines, TNBC vs luminal Ye et al. (2019)

Up BRCA (TNBC) tissues Tang et al. (2018)

Down HCC tissues Bi et al. (2021)

Down HCC tissues and three cell lines Ni et al. (2019)

Up HCC tissues with metastasis vs non-metastasis Hu et al. (2018a)

Up HCC cell lines Dai et al. (2014)

Down CeCa tissues Gu et al. (2021)

Down CeCa tissues and four cell lines Hu et al. (2018b)

Down OVCA tissues and four cell lines Xie et al. (2020)
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Table 7  Major genes targeted by miR-197-3p in various types of cancer

† mRNAs encoding the following proteins: ABCA7 encodes ATP Binding Cassette Subfamily A Member 7 (Muriithi et al. 2020); AGR2 is an oncogene that encodes 
a protein disulphide isomerase; AXIN2, NKD1 and DKK2 function as tumor suppressors and regulators of the WNT/β-catenin pathway; BMF encodes pro-apoptotic 
BH3-only protein; CD82 codes for metastasis suppressor; CTNND1 encodes Catenin Delta 1 which interacts with cadherins and acts in adhesion between cells; CXCR6 
encodes C-X-C Motif Chemokine Receptor 6; CYLD is a tumor suppressor gene that codes for CYLD Lysine 63 Deubiquitinase; E2F6 encodes E2F Transcription Factor 
6; FBXW7 is a tumor suppressor gene encoding F-Box and WD Repeat Domain Containing 7 which targets cyclin E and c-Myc for ubiquitin-mediated degradation; 
FOXM1 functions as an oncogene encoding Forkhead Box M1 protein; HIPK3 codes for Homeodomain Interacting Protein Kinase 3, serine/threonine protein kinase; 
MAPK1 encodes Mitogen-Activated Protein Kinase 1 (p42-MAPK/ERK2); MTDH (Metadherin) acts as an oncogene and is involved in induction of TYMS (Yoo et al. 2009); 
NLK codes for Nemo-Like Kinase, serine/threonine protein kinase and acts as tumor suppressor in breast cancer; PMAIP1 codes for NOXA, which is a p53-induced 
pro-apoptotic BH3-only protein; PRKCB codes for Protein Kinase Cβ; ZIK1 encodes the Zinc Finger Protein Interacting With K Protein 1, which probably acts as a 
transcriptional repressor

Cancers Targeted gene products† References

Cancers with down-regulation of miR-197-3p

Acting as oncogenes or tumor promoters

CRC​ TYMS Sun et al. (2015); Wang et al. (2019a)

GC PRKCB Chen et al. (2019c)

GC CXCR6, MAPK1, MTDH Han and Liu (2021); Xiong et al. 
(2015); Liao et al. (2018)

HCC AGR2 Bi et al. (2021)

CeCa E2F6, FOXM1 Gu et al. (2021); Hu et al. (2018b)

Acting both as oncogenes and tumor suppressors, or unclassified

HCC ZIK1 Ni et al. (2019)

OVCA ABCA7 Xie et al. (2020)

Cancers with up-regulation of miR-197-3p

Acting as tumor suppressors

NSCLC BMF, PMAIP1 (NOXA) Fiori et al. (2014)

LUAD CYLD Chen and Yang (2018)

BRCA​ FBXW7, HIPK3, NLK Ye et al. (2019); Li et al. (2021d); 
Tang et al. (2018) 

HCC AXIN2, NKD1, DKK2, CD82 Hu et al. (2018a); Dai et al. (2014)

Acting both as oncogenes and tumor suppressors, or unclassified

NSCLC CTNND1 Yang et al. (2019)

Table 8  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-203a-3p Down CRC tissues, SW480, HT29, SW620, HCT15 cell lines Qian et al. (2019)

Up CRC tissues, HCT116, HT29, LoVo, SW1116 cell lines Chen et al. (2018)

Down CRC tissues Xiao et al. (2018)

Down LoVo/5-FU (5FU resistant) vs LoVo (parental sensitive) Li et al. (2015a)

Up in serum of CRC patients Huang et al. (2020a)

Down GC tissues and two cell lines Wang et al. (2018a)

Down NSCLC tissues Liang et al. (2020)

Down NSCLC tissues Yang et al. (2020)

Down NSCLC (LUAD) tissues, TNM stage III–IV vs I–II Wang et al. (2020a)

Down BLCA tissues and four cell lines (i.a. T24) Na et al. (2019)

Up BRCA tissues (mainly luminal A/B) Gomes et al. (2016)

Up HCC tissues Huo et al. (2017)

Down PDAC four cell lines (i.a. PANC-1, SW 1990) An and Zheng (2020)

Down OVCA tissues Liu et al. (2019a)
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Importantly, increased levels of MALAT1 in CRCs have 
been shown to directly inhibit the activity of miR-218-5p 
as well as cause EZH2-dependent repression of the CDH1 
gene encoding E-cadherin (Li et  al. 2017a). Thus, by 
repressing the CDH1 gene and sponging the miR-218-5p, 
MALAT1 can promote the EMT process and cancer cell 
metastasis, lead to an increase in Survivin levels and can-
cer cell resistance to 5FU and oxaliplatin treatment.

MiR‑330‑3p
Other studies found that miR-330-3p levels were reduced 
in CRC tissues (see Table 10) compared to adjacent nor-
mal tissues in patients, suggesting that miR-330-3p may 
act as a tumor suppressor (Xu et al. 2017). Importantly, 
miR-330-3p levels were also decreased in 5FU-resistant 
CRC tissues compared to 5FU-sensitive CRC tissues after 
surgery (Gao et al. 2021a). Moreover, it was shown that 
ectopic expression of miR-330 mimics directly decreased 
the level of TYMS-encoded protein and increased the 
sensitivity of CRC cells to the cytotoxic effect of 5FU 
(Xu et  al. 2017). Also, the second strand of the mature 
miRNA, namely miR-330-5p, has the potential to regu-
late TYMS expression because the miRNA response 
element is located in the mRNA coding region, but the 
direct interaction of miR-330-5p with TYMS mRNA still 

needs to be supported by experimental results. MiR-
330-5p levels have been found to be reduced in CRC tis-
sues and two colon cancer cell lines (Huang et al. 2022). 
MiR-330-5p/3p levels can be regulated by MALAT1 and 
it has already been shown that MALAT1 can sponge 
miR-330-5p (Shi et  al. 2021). The functions of miR-
330-5p and miR-330-3p in various types of cancer, not 
yet taking into account the interaction with MALAT1, 
have been discussed in a recent review article (Jafarzadeh 
et al. 2022).

Using A549 cells, it was shown that miR-330-3p can 
also target PTEN mRNA and consequently promote AKT 
phosphorylation, which partly explains the selective pres-
sure to increase miR-330-3p levels in NSCLC (Wang 
et  al. 2021e). In turn, in highly invasive triple negative 
breast cancers, miR-330-3p targets the proto-oncogene 
c-Myc (He et al. 2020). Moreover, in prostate cancer cells, 
miR-330-3p was found to act as a tumor suppressor that 
targets the 3’UTR of mRNA encoding the transcription 
factor E2F1 (Lee et al. 2009). Thus, it can be seen that the 
selection pressure in cancer cells to decrease or increase 
the level of this miRNA is strongly dependent on the type 
of tumor.

Although miR-330-3p can target a variety of tumor 
suppressor genes, including PTEN and PDCD4, and 

Table 9  Major genes targeted by miR-203a-3p in various types of cancer

† mRNAs encoding the following proteins: ATM codes for ATM Serine/Threonine Kinase (Ataxia Telangiectasia Mutated), although it is considered as a tumor 
suppressor, ATM signaling can be involved in chemoresistance of cancer cells (Cremona and Behrens 2014) as well as promote the EMT process (Liu et al. 2019a); AVL9 
codes for cell migration associated protein and is an oncogene in NSCLC; BIRC5 can be regarded as an oncogene that codes for apoptosis inhibitor Survivin; DLX5 
codes for transcriptional activator and acts as oncogene (Tan and Testa 2021); E2F1 encodes E2F Transcription Factor 1; IGF1R encodes the Insulin-like Growth Factor 
1 Receptor (Werner et al. 2016); IL24 codes for interleukin 24, which can induce apoptosis in a variety of cancer cells, thereby acting as a tumor suppressor; PDE4D 
encodes cAMP-specific Phosphodiesterase 4D; PTEN is a tumor suppressor gene encoding Phosphatase and Tensin Homolog; SIX4 codes for transcriptional regulator 
and acts as oncogene; THBS2 codes for Thrombospondin 2; SNAI2 codes for SLUG which represses the gene encoding E-cadherin and thus promotes the EMT process 
of cancer cells

Cancers Targeted gene products† References

Cancers with down-regulation of miR-203a-3p

Acting as oncogenes or tumor promoters

CRC​ TYMS Li et al. (2015a)

Glioblastoma TYMS Chen et al. (2017b)

NSCLC AVL9, BIRC5, DLX5, E2F1, ZEB2 Liang et al. (2020); Yang et al. (2020); 
Wang et al. (2020a)

BLCA SIX4 Na et al. (2019)

PDAC SNAI2 An and Zheng (2020

Acting both as oncogenes and tumor suppressors, or unclassified

CRC​ THBS2 Qian et al. (2019)

GC IGF1R Wang et al. (2018a)

OVCA ATM Liu et al. (2019a)

Cancers with up-regulation of miR-203a-3p

Acting as tumor suppressors

HCC IL24, PTEN Huo et al. (2017); Zhang et al. (2020)

Acting both as oncogenes and tumor suppressors, or unclassified

CRC​ PDE4D Chen et al. (2018)
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is therefore up-regulated in various cancer types (see 
Table  11). In CRCs, however, miR-330-3p is down-reg-
ulated and targets TYMS mRNA and HK2 mRNA (Gao 
et  al. 2021a). HK2 encodes Hexokinase  2 catalyzing the 
rate-limiting step of glucose metabolism and is therefore 
an enzyme that is highly expressed in rapidly growing 
cancer cells (Pedersen 2007; Sun et al. 2018b).

MiR‑375‑3p
Also for miR-375-3p there is a miRNA response ele-
ment in the 3’UTR of TYMS mRNA (see Table 1) and 
overexpression of miR-375 mimics in CRC cell lines 
increased their sensitivity to cytotoxic activity of 5FU 
in  vitro and in tumor-bearing mice (Xu et  al. 2020b). 
As the transcription factor FOXM1 has been shown to 
up-regulate TYMS expression in CRCs (Varghese et al. 
2019), it is wort noting that miR-375-3p also targets 
FOXM1 mRNA (Chen et al. 2020b).

MiR-375-3p is down-regulated in CRC and analy-
sis of clinical data showed a statistically significant 
reduction in miR-375-3p levels in stages III–IV com-
pared to stages I–II (Mao et al. 2016), which is inverse 

to higher YAP1 levels in stages III–IV than in stages 
I–II (Sun et  al. 2019b). Notes that miR-375-3p targets 
YAP1, a nuclear effector of the Hippo pathway, and the 
down-regulation of miR-375-3p in CRCs also leads to 
increased expression of Cyclin D1 and Survivin, which 
promotes proliferation and chemoresistance of cancer 
cells (Xu et al. 2019a). The works cited in Table 12 also 
contain data indicating a reduction in miR-375-3p lev-
els in 5FU-resistant CRCs compared to 5FU-sensitive 
CRCs (Chen et al. 2020b; Xu et al. 2019a).

In contrast, in breast cancers (both luminal A/B and 
HER2-positive) the up-regulated mir-375-3p targets the 
mRNA encoding the tumor suppressor FOXO1 (fork-
head box protein O1), which activates the p53 signaling 
pathway and indeed p53 tumor suppressor was found 
to be decreased along with FOXO1 in breast cancer cell 
lines (Guan et al. 2021). Also in paclitaxel-resistant cervi-
cal cancer, miR-375-3p targeting CDH1 mRNA encoding 
E-cadherin was found to be up-regulated, therefore miR-
375-3p may facilitate the EMT process of cervical cancer 
cells (Shen et al. 2013, 2014).

Table 10  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-330-3p Down CRC tissues and HCT116, SW480 cell lines Wang et al. (2022b)

Down CRC tissues: 5FU resistant vs sensitive (after surgery) Gao et al. (2021a)

Down CRC tissues and SW480, SW620 cell lines Huang et al. (2020b)

Down CRC tissues and HCT116, HT29, SW620, SW480 cell lines Xu et al. (2017)

Down GC tissues and cell lines Ma et al. (2020)

Down GC tissues and cell lines Guan et al. (2016)

Up ESCC: two cell lines Meng et al. (2015)

Down LSCC tissues and cell lines Cheng et al. (2020a)

Down LSCC tissues and two cell lines Fan and Zhu (2022)

Down OSCC tissues Qian et al. (2021)

Up NSCLC tissues Wang et al. (2021e)

Up NSCLC primary tissues with vs without brain metastasis Wei et al. (2019b)

Up NSCLC tissues and four cell lines (i.a. A549) Chen et al. (2019b)

Up NSCLC tissues Liu et al. (2015)

Up BRCA tissues, four cell lines (i.a. MCF-7, MDA-MB-231) Ji et al. (2021)

Up BRCA tissues (ER/HER2 ±), metastatic vs non-metastatic Zhang et al. (2019b)

Up BRCA tissues (ER/PR ±) Wang et al. (2018b)

Down BRCA (TNBC) tissues (stage I–III) He et al. (2020)

Up HCC tissues and four cell lines Zhao et al. (2019b)

Up HCC tissues, TNM stage II + III vs I, six cell lines Hu et al. (2017a)

Up PDAC cell lines (i.a. PANC-1, SW 1990) Xiong et al. (2019)

Down OVCA tissues, stage III–IV vs I–II, three cell lines Cai et al. (2021)

Down PCa tissues and four cell lines (i.a. PC-3, DU145) Li et al. (2020b)

Down PCa: four cell lines (i.a. PC-3, DU145) Lee et al. (2009)
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The direct interaction of miR-375-3p with the miRNA 
response element in MALAT1 was supported by the 
results of luciferase reporter assays performed with 
293 T fibroblast cells, while the results of the RNA pull-
down assays using hepatocellular carcinoma cells showed 
a  direct interaction of MALAT1-miRNA dependent on 
the miR-375-3p seed sequence (Zhao et al. 2020a).

As a brief summary, Tables 12 and 13 show that down-
regulation of miR-375-3p targeting FOXM1, TYMS, 
YAP1, PIK3CA, FZD8 can promote 5FU resistance of 
CRC cells, tumor growth and CRC metastasis by activat-
ing the PI3K/AKT and WNT/β-catenin signaling path-
ways. In CRC cells, YAP1 promotes proliferation and 
inhibits apoptosis by upregulating Survivin (Xu et  al. 
2019a). Besides CRCs, miR-375-3p targets the Hippo 
pathway effector YAP1 also in other cancers such as GC, 
HCC and OVCA (see Table 13 and Fig. 3).

MiR‑433‑3p
In turn, overexpression of miR-433-3p in human cervi-
cal cancer HeLa cells resulted in a reduction of TYMS 

mRNA and protein levels, and sensitized cells to treat-
ment with 5FU (Gotanda et  al. 2013). The set of onco-
genes targeted by miR-433-3p that is down-regulated in 
various types of cancer (Table  14) is listed in Table  15. 
From this overview, it can be seen that miR-433-3p tar-
geting mRNA encoding the cAMP Response Element-
Binding protein 1 (CREB1) has been found in cancer cells 
of various types including CRC, bladder cancer and HCC 
(Yan et al. 2018; Xu et al. 2016b; Yang et al. 2013).

MiR‑1307‑3p
Mir-1307-3p targets a variety of tumor suppressor genes 
and is rather up-regulated in various types of cancer (see 
Tables  16, 17). However, miR-1307-3p also directly tar-
gets 3’UTR of TYMS mRNA and is significantly involved 
in the regulation of TS protein levels, as in CRC patients 
with low miR-1307-3p levels (due to T > C SNP in the 
terminal-loop of pre-miRNA) (Tang et  al. 2015) ele-
vated TS levels were reported along with insensitivity to 
capecitabine chemotherapy (Chen et  al. 2017a). Moreo-
ver, relatively high levels of miR-1307-3p and low levels 
of TYMS-encoded protein were found in Caco-2 and 

Table 11  Major genes targeted by miR-330-3p in various types of cancer

† mRNAs encoding the following proteins: BMI1 encodes BMI1 Proto-Oncogene, Polycomb Ring Finger; BTG1 is a tumor suppressor gene that codes for BTG Anti-
Proliferation Factor 1; EGR2 is a tumor suppressor gene that codes for transcription factor Early Growth Response 2; GLS encodes GLS1 (Glutaminase) which promotes 
proliferation as opposed to proliferation-inhibiting GLS2 (Kim and Kim 2013); GRIA3 encodes Glutamate Ionotropic Receptor AMPA Type Subunit 3; HK2 encodes 
Hexokinase 2 catalyzing the rate-limiting step of glucose metabolism and is highly expressed in rapidly growing cancer cells; ING4 encodes tumor suppressor protein 
that can bind p53; MSI1 encodes Musashi RNA-binding protein that is involved in tumorigenesis; MYC encodes transcription factor MYC Proto-Oncogene (c-Myc); 
MYO6 encodes motor protein Myosin VI; PFN1 encodes Profilin 1 that binds actin monomers and mediates actin polymerization but also inhibit formation of IP3 from 
PIP2; PDCD4 encodes programmed cell death protein 4 acting as a tumor suppressor; PRRX1 codes for Paired Related Homeobox 1 protein that can promote the EMT 
process in cancer cells (Du et al. 2021); RASSF1A is a tumor suppressor gene encoding Ras Association Domain Family Member 1; RIPK4 encodes Receptor Interacting 
Serine/Threonine Kinase 4 and acts as a tumor suppressor or promoter depending on the type of cancer (Xu et al. 2020c); SLC7A11 encodes Cystine/Glutamate 
Transporter (Koppula et al. 2021); TRA2B is an oncogene encoding Transformer 2 β Homolog

Cancers Targeted gene products† References

Cancers with down-regulation of miR-330-3p

Acting as oncogenes or tumor promoters

CRC​ TYMS, HK2 Xu et al. (2017); Gao et al. (2021a)

GC MSI1, PRRX1 Guan et al. (2016); Ma et al. (2020)

LSCC SLC7A11, TRA2B Fan and Zhu (2022); Cheng et al. (2020a)

OSCC GLS Qian et al. (2021)

BRCA​ MYC He et al. (2020)

PCa BMI1, E2F1 Li et al. (2020b); Lee et al. (2009)

Acting both as oncogenes and tumor suppressors, or unclassified)

CRC​ MYO6, PFN1 Wang et al. (2022b); Huang et al. (2020b)

NSCLC GRIA3 Wei et al. (2019b)

OVCA RIPK4 Cai et al. (2021)

Cancers with up-regulation of miR-330-3p

Acting as tumor suppressors

ESCC PDCD4 Meng et al. (2015)

NSCLC EGR2, PTEN, RASSF1A Liu et al. (2015); Wang et al. (2021e); 
Chen et al. (2019b)

BRCA​ PDCD4 Ji et al. (2021)

HCC BTG1, ING4 Zhao et al. (2019b); Hu et al. (2017a)
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Table 12  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

miRNA Level† Cancers‡ References

miR-375-3p Down CRC tissues, Caco2, HCT116, SW480, HT29 cell lines Xu et al. (2020b)

Down CRC tissues Liu et al. (2020a)

Down CRC tissues: 5FU-resistant vs sensitive Chen et al. (2020b)

Down CRC tissues, Caco2, HCT116, SW480, HT29, SW620 lines Xu et al. (2019a)

Down HCT8/FU (5FU resistant) vs HCT8 (parental sensitive) Xu et al. (2019a)

Down HCT116/FU (5FU resistant) vs HCT116 (sensitive) Xu et al. (2019a)

Down CRC tissues: 5FU-resistant vs sensitive Xu et al. (2019a)

Down in serum of CRC patients Huang et al. (2020a)

Down CRC tissues, HCT116, SW480, HT29, SW620 cell lines Xu et al. (2016a)

Down CRC tissues, SW480, HT29, SW620, HCT116, HCT8 Mao et al. (2016)

Down CRC stage III–IV vs stage I–II Mao et al. (2016)

Down CRC tissues Wang et al. (2014b)

Down CRC tissues, HT29, SW620, HCT116 cell lines Dai et al. (2012)

Down GC tissues and three cell lines Liu et al. (2019b)

Down GC tissues and two cell lines Huang et al. (2019b)

Down GC tissues and ten cell lines Kang et al. (2018)

Down GC tissues Chen et al. (2017d)

Down GC tissues Yuan et al. (2018)

Down ESCC tissues and four cell lines Li et al. (2021a)

Down ESCC tissues Cheng et al. (2020b)

Down ESCC tissues and two cell lines Xu et al. (2019b)

Down ESCC tissues and one cell line Hu et al. (2017b)

Down ESCC tissues and cell lines Kong et al. (2012)

Down LSCC and three cell lines Chang et al. (2020)

Up LSCC: III/IV vs I/II TNM stage Wu et al. (2016)

Down LSCC: III–IV vs I–II clinical stage Guo et al. (2016)

Down LSCC tissues and two cell lines Wang et al. (2016b)

Down LSCC tissues, UICC advanced III–IV vs early I–II stage Luo et al. (2014)

Down OSCC tissues and four cell lines Tong et al. (2021)

Down OSCC tissues and four cell lines Wu et al. (2017)

Down OSCC tissues, with vs without lymph node metastasis Zhang et al. (2017)

Down OSCC tissues Shi et al. (2015)

Down NSCLC tissues and A549, H1299 cell lines Jin et al. (2021)

Down NSCLC tissues, stages IV vs III vs II vs I Chen et al. (2017f )

Down NSCLC (SqCLC) tissues, stage III vs II Chen et al. (2017g)

Up BRCA tissues (luminal A/B, HER2+), three cell lines Guan et al. (2021)

Down HCC tissues and four cell lines (i.a. Huh7) Xu et al. (2021)

Down HCC tissues and five cell lines Li et al. (2021b)

Down HCC tissues and four cell lines (i.a. Huh7) Li et al. (2021c)

Down HCC tissues and five cell lines (i.a. Huh7) Li et al. (2018b)

Down HCC tissues He et al. (2012)

Down HCC tissues Liu et al. (2010)

Down PDAC tissues and two cell lines (PANC-1, SW 1990) Yonemori et al. (2017)

Up PDAC tissues and ten cell lines (i.a. PANC-1, SW 1990) Yang et al. (2016)

Down PDAC tissues Zhou et al. (2014b)

Down PDAC tissues Song et al. (2013a)

Down PDAC tissues and four cell lines (i.a. PANC-1, SW 1990) Song et al. (2013b)

Down CeCa tissues (stage I-IV) and four cell lines Cao et al. (2021)

Up CeCa: PTX-resistant vs pre-chemotherapy tissues Shen et al. (2013)

Down CeCa tissues, FIGO stage IIA vs IB1/IB2 Wang et al. (2011)

Down OVCA tissues and four cell lines Shu et al. (2021)

Up PCa tissues Porzycki et al. (2018)
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HCT116 cell lines, while low levels of miR-1307-3p along 
with high levels of TYMS-encoded protein were found 
in SW480, LoVo and DLD1 cell lines (Chen et al. 2017a). 

This suggests a significant involvement of miR-1307-3p in 
the regulation of TYMS expression in at least some colon 
cancers. However, this effect does not appear to be of any 

Table 12  (continued)
† ,‡For description see footnote to Table 2

Table 13  Major genes targeted by miR-375-3p in various types of cancer

† mRNAs encoding the following proteins: CBX3 codes for protein involved in transcriptional silencing (upregulated in cancers); CCN2 codes for connective tissue 
growth factor; CDH1 is a tumor suppressor gene encoding E-cadherin; ERBB2 codes for HER-2 Receptor Tyrosine Kinase; FOXO1 is a tumor suppressor gene; FZD8 
encodes Frizzled Class Receptor 8 which is a receptor for Wnt proteins (Sun et al. (2021); HMGA2 encodes HMG AT-Hook Protein 2, which functions in the regulation 
of the cell cycle; HMGB1 encodes HMG Box 1, which has both oncogenic and tumor suppression functions; HNF1B encodes Hepatocyte Nuclear Factor 1-β and 
functions as a tumor suppressor gene or oncogene (Chandra et al. (2021); HOXB3 encodes transcription factor Homeobox B3 (Li et al. (2019b); JAK2 encodes Janus 
Kinase 2 phosphorylating a tyrosine residue; KLF4 is a tumor suppressor gene encoding Kruppel Like Factor 4, but may also act as an oncogene depending on the 
cellular context; KLF5 encodes Kruppel Like Factor 5 and acts as an oncogene or tumor suppressor gene depending on the cellular context; PAX6 is a tumor suppressor 
gene encoding transcription factor Paired Box 6; PDGFC codes for Platelet Derived Growth Factor C (promotes angiogenesis); PDPK1 encodes 3-Phosphoinositide-
Dependent Protein Kinase-1 (Domrachev et al. (2021); PIK3CA is an oncogene encoding PI3K, subunit p110α; SESN3 encodes sestrin3, stress-induced protein; SP1 
encodes Sp1 Transcription Factor that regulates oncogenes and tumor suppressor genes; SPIN1 encodes Spindlin 1 and is considered an oncogene (Janecki et al. 
(2018); TEAD4 is an oncogene encoding TEA Domain Transcription Factor 4 (Hippo pathway); YBX1 is an oncogene encoding Y-Box Binding Protein 1; YAP1 is an 
oncogene encoding Yes1 Associated Transcriptional Regulator (Hippo pathway); ZFP36L2 is an oncogene encoding ZFP36 Ring Finger Protein Like 2; YWHAZ is 
functioning as an oncogene and codes for an adapter protein belonging to the 14-3-3 family

Cancers Targeted gene products† References

Cancers with down-regulation of miR-375-3p

Acting as oncogenes or tumor promoters

CRC​ TYMS, CBX3, FOXM1, Xu et al. (2020b); Liu et al. (2020a); Chen et al. 
(2020b); 

FZD8, PIK3CA, YAP1 Xu et al. (2016a); Wang et al. (2014b Xu et al. (2019a

ESCC MTDH Hu et al. (2017b)

GC PDPK1, TEAD4, YAP1, Chen et al. (2017d); Kang et al. (2018)

YBX1, YWHAZ Huang et al. (2019b); Liu et al. (2019b)

OSCC SLC7A11 Wu et al. (2017)

NSCLC SPIN1 Jin et al. (2021)

HCC ERBB2, HMGA2, JAK2 Li et al. (2018b); Xu et al. (2021); Li et al. (2021b)

HCC MTDH, PDGFC, YAP1 He et al. (2012); Li et al. (2021c); Liu et al. (2010) 

HCC CSCs YAP1 Zhao et al. (2020a)

PDAC PDPK1, ZFP36L2 Zhou et al. (2014b); Song et al. (2013a); Yonemori 
et al. (2017) 

OVCA YAP1 Shu et al. (2021)

Acting both as oncogenes and tumor suppressors, or unclassified

CRC​ KLF4, SP1 Mao et al. (2016); Xu et al. (2019a)

GC CCN2 Kang et al. (2018)

ESCC HMGB1, IGF1R, SESN3, Cheng et al. (2020b); Kong et al. (2012); Li et al. 
(2021a)

SP1 Xu et al. (2019b)

LSCC HNF1B, IGF1R Chang et al. (2020); Luo et al. (2014)

OSCC KLF5, IGF1R, PAX6 Shi et al. (2015); Zhang et al. (2017); Tong et al. 
(2021)

CeCa SP1 Wang et al. (2011)

Cancers with up-regulation of miR-375-3p

Acting as tumor suppressors

BRCA​ FOXO1 Guan et al. (2021)

CeCa CDH1 Shen et al. (2014)

Acting both as oncogenes and tumor suppressors, or unclassified

PDAC HOXB3 Yang et al. (2016)
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importance in other cancers. For example, in the early 
stages of breast cancer of a various molecular subtypes 
(luminal, triple negative), miR-1307-3p significantly tar-
gets the mRNA encoding the SMYD4 protein (Han et al. 
2019) identified as a tumor suppressor in breast cancer 
(Hu et al. 2009).

In summary, a series of at least a few miRNAs (see 
Table 1 and Fig. 2) acting directly on TYMS mRNA fine-
tune TS enzyme protein levels according to cell needs 
and may contribute to cancer cell resistance to the cyto-
toxic effects of 5FU. In addition, at least two lncRNAs, 
MALAT1 and TUG1, affect TS levels by sponging the 
respective miRNAs (see Table 18). Other lncRNAs, such 
as HOTAIR and XIST, also appear to affect TS levels and 
the sensitivity of cancer cells to 5FU, although the mech-
anisms of action are still poorly understood.

MiRNAs targeting DPYD mRNA
Two highly homologous miRNAs, miR-27a-3p and 
miR-27b-3p, have been shown to directly reduce the 
levels of DPYD mRNA and DPD protein in CRC cells, 
and ectopic expression of miR-27a-3p and miR-27b-3p 
significantly increased the sensitivity of cancer cells to 
the cytotoxic effect of 5FU (Offer et al. 2014). Another 
report showed that ectopic overexpression of miR-
302b-3p led to an increase in the sensitivity of HCC 
cell lines to 5FU by negatively regulating DPD pro-
tein levels, as well as inhibiting entry into the S phase 
of the cell cycle and promoting apoptosis by targeting 
mRNA encoding the anti-apoptotic protein MCL-1 
(Cai et al. 2015). MiR-494-3p was also found to directly 
target DPYD mRNA and miR-494-3p was shown to 
be reduced in CRC cells selected for 5FU resistance, 

Fig. 3   MALAT1-miRNAs network regulating the expression level of TYMS along with other cancer-related genes in various types of cancer. Cancer 
type designation: CRC, colorectal cancer; GC, gastric cancer; NSCLC, non-small cell lung cancer; BRCA, breast cancer; HCC, hepatocellular carcinoma. 
Red indicates oncogenic effects, green indicates tumor suppressor effects, blue indicates tumor suppressor or oncogenic effects depending on the 
type of cancer. YAP1 in complex with TCF4/β-catenin upregulates the expression of the MALAT1 gene in CRC and HCC (Sun et al. 2019b; Wang et al. 
2014a)
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compared to 5FU sensitive parental cells, while miR-
494 mimic caused restoration of cell chemosensitivity 
to 5FU (Chai et al. 2015).

It should also be noted that the levels of enzymes 
encoded by the TYMS, TYMP and DPYD genes are indi-
rectly regulated by miR-21-5p targeting the human mutS 
homolog2 (hMSH2) in CRC cells (Deng et  al. 2014a). 
Finally, it is worth mentioning that both miR-215-5p 
and miR-21-5p, regulating the TYMS-encoded protein 
directly or indirectly, are included in a set of six miRNAs 
whose levels were tested in CRC surgical specimens for 
verification as a diagnostic tool to predict which stage II 
CRC patients may benefit from chemotherapy following 
radical surgery for CRC. That clinical trial project was 
registered at ClinicalTrial.gov as NCT02635087. Accord-
ing to published data, miR-215-5p along with miR-
103a-3p and miR-143-5p, both alone and in combination, 
have proven to be reliable stage II CRC biomarkers that 
can help stratify patients into risk groups and identify 
patients who could potentially benefit from postoperative 
chemotherapy (Caritg et al. 2016).

Conclusions and future perspectives
Putting it all together, it can be seen that, at least in colon 
cancer, several miRNAs targeting TYMS mRNA have 
been identified, the levels of which can be regulated to 
varying degrees by long non-coding RNAs, creating a 
complex regulatory network. Due to their negative regu-
lation by MALAT1, which can consequently increase the 
level of the TS enzyme and decrease the susceptibility to 
5FU treatment, these miRNAs can be divided into three 
groups (Fig. 3).

The first  group of miRNAs targeting TYMS mRNA 
consists of miR-197-3p, miR-203a-3p and miR-375-3p 
which are negatively regulated by MALAT1 as confirmed 
experimentally. The levels of these miRNAs are actually 
reduced in colon and gastric cancers. On the other hand, 
the selection pressure to increase miR-197-3p levels may 
be suggested in non-small cell lung cancer, bladder can-
cer, breast cancer and hepatocellular carcinoma (Table 6 
and Fig.  2), presumably because miR-197-3p also tar-
gets mRNAs encoding proteins that function as tumor 
suppressors in these types of cancer, such as apoptosis 
initiators in lung cancers (Fiori et  al. 2014) or negative 

Table 14  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-433-3p Down CRC tissues, LoVo, SW620, SW480, HCT116 cell lines Zhang et al. (2018)

Down CRC: stage II vs stage I Zhang et al. (2018)

Down CRC tissues, SW480, LoVo, HT29, Caco-2, SW620 lines Li et al. (2018c)

Down CRC tissues and cell lines Yan et al. (2018)

Down CRC tissues, SW620, HCT116, SW480, LoVo, HT29 lines Li et al. (2017c)

Down GC: recurrent vs non-recurrent Wang et al. (2021c)

Down GC tissues: stage IV vs stage II Guo et al. (2013)

Down ESCC tissues and two cell lines Li and Li (2021)

Down ESCC tissues Cheng et al. (2020b)

Down OSCC tissues Liu et al. (2020b)

Down OSCC tissues, TNM stage III/IV vs I/II Wang et al. (2017)

Down OSCC tissues and five cell lines Wang et al. (2015)

Down NSCLC tissues and A549, H1975 cell lines Yu et al. (2022)

Down NSCLC tissues and A549, H522 cell lines Guo et al. (2022)

Down NSCLC tissues and A549, H1299, H23, H1581 cell lines Zhang et al. (2021)

Down NSCLC tissues Liu et al. (2020c)

Down NSCLC tissues Li et al. (2019a)

Down NSCLC tissues and four cell lines (A549, H460, H522) Liu et al. (2018)

Down BLCA tissues and five cell lines (i.a. T24) Wang et al. (2020b)

Down BLCA tissues and three cell lines (i.a. T24) Xu et al. (2016b)

Down HCC tissues, stage III/IV vs I/II, four cell lines Song et al. (2021)

Down HCC tissues Ma et al. (2021a)

Down PDAC tissues and two cell lines (PANC-1, SW 1990) Zhou et al. (2021b)

Down CeCa tissues and four cell lines Liang et al. (2017)

Down OVCA tissue Liang et al. (2016)
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regulators of the Wnt/β-catenin pathway in hepatocel-
lular carcinoma (Hu et  al. 2018a). On the other hand, 
decreased levels of miR-375-3p were found in most of the 
cancer types shown in Fig. 2, and apart from the targeted 

TYMS mRNA, the targeting of YAP1 mRNA by miR-
375-3p has also been found in various cancers (Table 13).

The second group of miRNAs targeting TYMS mRNAs 
consists of miR-140-3p and miR-330-3p, which could 

Table 15  Major genes targeted by miR-433-3p in various types of cancer

† mRNAs encoding the following proteins: ATG5 and ATG12 code for Autophagy-Related Proteins 5 and 12, respectively; CBX3 encodes Chromobox Protein Homolog 3 
and functions as both an oncogene and a tumor suppressor; CCAR1 codes for Cell Division Cycle And Apoptosis Regulator 1 that functions as a transcriptional 
coactivator; CREB1 codes for transcription factor cAMP Response Element Binding Protein 1; E2F3 is an oncogene coding for E2F Transcription Factor 3; FXYD3 codes 
for Sodium/Potassium-Transporting ATPase Subunit FXYD3; GOT1 codes for Glutamic-Oxaloacetic Transaminase 1 that functions as a tumor promoter in pancreatic 
cancer growth; HDAC6 encodes Histone Deacetylase 6; HOXA1 is an oncogene coding for transcription factor Homeobox A1 (Li et al. 2019b); KRAS encodes KRAS 
Proto-Oncogene (GTPase K-Ras); LPCAT1 is an oncogene encoding Lysophosphatidylcholine Acetyltransferase 1 (Wei et al. 2019c); MACC1 codes for Metastasis-
Associated in Colon Cancer protein 1; MAPK8 codes for Mitogen-Activated Protein Kinase 8 and is involved in colon cancer chemoresistance (Wu et al. 2019); NOTCH1 
encoding Notch Receptor 1 acts as an oncogene or tumor suppressor gene, depending on the cellular context; NUCKS1 is recognized as oncogene encoding Nuclear 
Casein Kinase and cyclin dependent Kinase Substrate 1 that is involved in DNA repair and promotes proliferation, invasion and migration of NSCLC (Zhao et al. 2020c); 
PAK4 gene codes for P21 (RAC1) Activated Kinase 4, serine/threonine protein kinase; PTK2 encodes non-receptor Protein Tyrosine Kinase 2, also known as Focal 
Adhesion Kinase; REV3L codes for catalytic subunit of the DNA polymerase zeta complex, involved in the chemoresistance of ESCC (Zhu et al. 2016); SMAD2 encodes 
the SMAD Family Member 2 protein, which can act as an oncogenic protein in the TGF-β pathway (Pefani et al. 2016); TIPRL codes for TOR Signaling Pathway Regulator 
that was found as metastasis suppressor in gastric cancer

Cancers Targeted gene products† References

Cancers with down-regulation of miR-433-3p

Acting as oncogenes or tumor promoters

CRC​ CREB1, HOXA1, MACC1, MAPK8 Yan et al. (2018); Li et al. (2018c); Li et al. (2017c)

GC KRAS Guo et al. (2013)

ESCC REV3L Li and Li (2021)

OSCC HDAC6, PAK4, PTK2 Wang et al. (2015); Liu et al. (2020b); Wang et al. (2017)

NSCLC E2F3, LPCAT1, SMAD2, NUCKS1 Liu et al. (2018); Guo et al. (2022); Li et al. (2019a); Yu et al. (2022)

BLCA CREB1 Xu et al. (2016b)

HCC CREB1 Yang et al. (2013)

PDAC GOT1 Zhou et al. (2021b)

CeCa TYMS, MTDH Gotanda et al. (2013); Liang et al. (2017)

Acting both as oncogenes and tumor suppressors, or unclassified

CRC​ CCAR1 Yan et al. (2018)

GC ATG5, ATG12 Wang et al. (2021c)

ESCC HMGB1 Cheng et al. (2020b)

NSCLC TIPRL Zhang et al. (2021)

BLCA CCAR1 Wang et al. (2020b)

HCC CBX3, FXYD3 Song et al. (2021); Ma et al. (2021a)

OVCA NOTCH1 Liang et al. (2016)

Table 16  Expression levels of miRNAs targeting i.a. TYMS mRNA in cancer

† ,‡For description see footnote to Table 2

miRNA Level† Cancers‡ References

miR-1307-3p Down CRC tissues, HT29, SW480, SW620, HCT116 cell lines Zheng et al. (2019a)

Down CRC cell lines: LoVo, DLD1, SW620, SW480 Chen et al. (2017a)

Up SW480 and SW620 colon cancer cell lines Yue et al. (2020)

Up GC tissues and cell lines Ma et al. (2021b)

Up BLCA tissues Wang et al. (2021b)

Up BRCA tissues (stage I), cell lines (MCF-7, MDA-MB-231) Han et al. (2019)

Up HCC tissues Wang et al. (2019b)

Up HCC tissues and four cell lines Chen et al. (2019a)

Up OVCA: PTX-resistant vs sensitive cancer tissue Zhou et al. (2015)

Up PCa tissue and five cell lines (i.a. PC-3, DU145) Qiu and Dou (2017)
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potentially be sponged by MALAT1, but the inhibition of 
these miRNAs by MALAT1 has not yet been supported 
by experimental results. While miR-140-3p levels have 
been found to be down-regulated in all the cancer types 
shown in Fig. 2, miR-330-3p levels have also been found 
to be reduced in colon and gastric cancers, but the influ-
ence of selection pressure on the elevation of miR-330-3p 
levels may be suggested in non-small cell lung cancer, 
breast cancer and hepatocellular carcinoma, in which 
miR-330-3p seems to be significantly involved also in tar-
geting tumor suppressor genes such as PTEN, PDCD4, 
and ING4 (Table 11 and Fig. 3).

The third  group of miRNAs targeting TYMS mRNAs 
consists of miR-192-5p, miR-215-5p, miR-433-3p and 
miR-1307-3p whose seed sequences do not recog-
nize complementary miRNA response elements within 
MALAT1. MiR-192-5p and miR-215-5p are up-regulated 
by p53 in response to DNA damage and target mRNAs 
encoding i.a. proliferation promoting proteins includ-
ing TYMS mRNA (Fig.  3). MiR-192/215-5p also target 
mRNA encoding the transcriptional corepressor ZEB2 
(Chen et  al. 2017c), which is involved in the transfor-
mation of epithelial cancer cells into cells capable of 
migration, invasion and metastasis. MiR-192/215-5p are 

Table 17  Major genes targeted by miR-1307-3p in various types of cancer

† mRNAs encoding the following proteins: DAB2IP is a tumor suppressor gene encoding DAB2 Interacting Protein, a Ras GTPase-activating protein; DAPK3 is a tumor 
suppressor gene that codes for serine/threonine Death Associated Protein Kinase 3; FOXO3 is a tumor suppressor gene encoding a transcription factor that activates 
genes encoding i.a. pro-apoptotic BIM and PUMA; ISM1 codes for Isthmin 1 that acts as an angiogenesis inhibitor; SMG1 is a tumor suppressor gene encoding a 
protein that can enhance p53 activity (Gewandter et al. 2011); SMYD4 is a tumor suppressor gene involved in the development of breast cancer; TRARG1 codes for 
Trafficking Regulator of GLUT4

Cancers Targeted gene products† References

Cancers with down-regulation of miR-1307-3p

Acting as oncogenes or tumor promoters

CRC​ TYMS Chen et al. (2017a)

Acting as tumor suppressors

CRC​ ISM1 Zheng et al. (2019a); Yue et al. (2020)

Cancers with up-regulation of miR-1307-3p

Acting as tumor suppressors

CRC​ TRARG1 Zheng et al. (2019a)

GC DAB2IP Ma et al. (2021b)

BLCA SMG1 Wang et al. (2021b)

BRCA​ SMYD4 Han et al. (2019)

HCC DAB2IP, ISM1 Chen et al. (2019a); Wang et al. (2019b)

OVCA DAPK3 Zhou et al. (2015)

PCa FOXO3 Qiu and Dou (2017)

Table 18  lncRNA MALAT1 sponging miRNAs targeting TYMS 

† Sites in MALAT1 and TUG1 (transcript variant 8) according to the GenBank sequence accession numbers NR_002819.4, NM_001398480.1, respectively; sites 
confirmed by the luciferase reporter assay are underlined

lncRNA Confirmed or putative binding sites for miRNA† References

MALAT1 Confirmed as ceRNA for miRNAs:

miR-197-3p at 2775–2781, 2814–2820, 2854–2864 Yang et al. (2019)

miR-203a-3p at 5414–5419, 6400–6405 Yu et al. (2020); Zhang et al. (2019a); 
Chen et al. (2017b)

miR-375-3p at 772–778 Zhao et al. (2020a)

MALAT1 Presumably can sponge miRNAs:

miR-140-3p at 683–689, 4525–4531, 8737–8743 –

miR-330-3p at 8439–8445, and other –

TUG1 Confirmed as ceRNA for miRNAs:

miR-140-3p at 2096–2101, 6438–6443, 6728–6733 Yuan et al. (2021)

miR-197-3p at 1438–1444, 2098–2103, 3549–3554 Wang et al. (2019a); Tang et al. (2018)



Page 23 of 33Matuszyk ﻿Molecular Medicine           (2022) 28:89 	

down-regulated in most types of cancers (Fig. 2), but in 
the invasive and metastatic stages of gastric cancers there 
appears to be a selection pressure on the up-regulation 
of these miRNA, presumably because they also target 
mRNA encoding a significant tumor suppressor and 
Retinoblastoma-associated protein (Chen et al. 2017e). In 
turn, the potential involvement of miR-433-3p and miR-
1307-3p in the regulation of TS levels in colon cancers 
does not seem to be well documented. Although miR-
433 is down-regulated in all the cancer types analyzed 
(Fig. 2), miR-433-3p targeting TYMS mRNA and its con-
tribution to increasing 5FU susceptibility was demon-
strated primarily in cervical cancer HeLa cells (Gotanda 
et  al. 2013). To conclude this part of the discussion, 
although one report showed that miR-1307-3p targets 
TYMS mRNA in colon cancer cells (Chen et  al. 2017a), 
the biological significance of this interaction is uncertain 
as miR-1307-3p is elevated in most of the cancer types 
analyzed here (Fig. 2).

Considering the putative MALAT1-miRNAs inter-
action network presented in Fig.  3, a  potential positive 
feedback loop is seen to the upregulate MALAT1 expres-
sion in colon cancer as well as in hepatocellular carci-
noma (Fig.  4). In both colon cancer and hepatocellular 
carcinoma, it was found that YAP1 can complex with 
TCF4/β-catenin at the promoter region of the MALAT1 
gene and enhance the expression of this gene (Sun et al. 
2019b; Wang et al. 2014a). Further, the lncRNA MALAT1 
can directly interact with miR-375-3p as revealed by the 
results of the RNA pull-down assay in Huh7 hepatocel-
lular carcinoma cells, thus counteracting the down-regu-
lation of YAP1 by miR-375-3p (Zhao et al. 2020a). Thus, 
YAP1, by activating the BIRC5 gene encoding the anti-
apoptotic Survivin, contributes, along with the increase 
in the TS enzyme level, to reducing the sensitivity of colo-
rectal cancer cells to the 5FU treatment (Xu et al. 2019a). 
YAP1 also promotes the EMT process which enables the 
cancer metastasis process (Ling et al. 2017). Interestingly, 
the direct interaction of YAP1 with the TCF4/β-catenin 
complex was also found in the nuclei of placenta-derived 
mesenchymal stem cells (Feng et  al. 2020). It would be 
valuable to try to determine whether the involvement of 
YAP1 in the upregulation of MALAT1 gene expression is 
unique in colon cancer and hepatocellular carcinoma, or 

whether a similar upregulation mechanism of MALAT1 
gene expression is involved in various types of cancer. 
The exact mechanism leading to aberrant expression of 
MALAT1 is still unknown, but various transcription 
factors, coactivators and RNA-binding proteins may be 
involved (Xu et  al. 2022). Therefore, it may also be the 
starting point for the search for small molecule inhibi-
tors of the YAP1/TCF4/β-catenin transcription complex 
(Yong et al. 2021; Yan et al. 2020a; Tang et al. 2019b). This 
could be a fruitful area for further research in the context 
of the lack of approved therapy targeting the abnormal 
overexpression of MALAT1 (Uthman et  al. 2021). Pre-
sumably, at least partially suppressing MALAT1 overex-
pression by influencing the miRNA interaction network 
could both reduce tumor metastatic potential and 
increase the sensitivity of cancer cells to 5FU.

Finally, it would also be important to estimate the 
weight of the individual elements of the MALAT1-miR-
NAs network, taking into account their actual concentra-
tions in a 5FU-sensitive cancer cell compared to a 5FU 
resistant cell, as this could contribute to the construction 
of a diagnostic tools to monitor the therapeutic process.

This article focuses on those non-coding RNAs that, 
by regulating the level of thymidylate synthase, can influ-
ence the sensitivity of cancer cells to 5FU treatment. It is 
worth noting, however, that the MALAT1 and miRNAs 
network outlined here regulating the level of the protein 
encoded by TYMS is rather a subset of a much larger set 
of non-coding RNA networks involving MALAT1 (Su 
et al. 2021; Poursheikhani et al. 2020). The effectiveness 
of 5FU therapy may also depend on other non-coding 
RNAs, not mentioned in this article, that may affect the 
concentration of fluoropyrymidines inside the cell, as 
well as affect glucose metabolism in the cancer cell (Mar-
janeh et al. 2019), DNA damage repair, cell cycle regula-
tion, inducing and executing apoptosis. While the main 
goal of looking for interactions between non-coding 
RNAs in cancer cells is to open up new possibilities for 
diagnosis and therapy, identifying potential MALAT1 
and miRNAs interaction networks is also interesting in 
itself, as like the Rosetta Stone mentioned earlier (Sal-
mena et  al. 2011), it points to complex mechanisms of 
fine-tuning the expression level of key genes involved in 
the proliferation of cancer cells.
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